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We propose a dielectric photonic structure for ultrafast deflection and focusing of relativistic

charged particle beams. The structure is designed to transform a free-space laser beam into a

deflection force that acts on the free particles with the same optical phase over a distance of

travel that is much greater than the laser wavelength. The proposed structure has a two-

dimensional geometry and is compatible with existing nanofabrication methods. Deflection

fields of GV=m magnitude and subfemtosecond switching speeds are expected to be possible

from these dielectric structures. With these elements a submeter scale extreme ultraviolet

synchrotron source seems feasible.
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I. INTRODUCTION

In a prior publication we described a laser-driven dielectric-material deflection microstruc-
ture that acts as a building block for a compact undulator [1]. This article explores further
aspects of this structure, including its ability for beam focusing, for ultrafast beam streaking,
and for beam switching. Generation of beams consisting of electron pulses with sub-fsec
duration from laser-driven particle accelerators was observed recently by indirect means [2]. A
direct temporal diagnostic is desirable for future studies of laser-driven particle accelerators
and for the successful development of other devices that manipulate sub-fsec electron beams.
The compactness of the proposed deflection device is possible from the ability of dielectric
materials to support ultrashort laser pulses with electric field values in theGV=m range without
damage. The deflection structure shares a similar geometry with dielectric grating based laser-
driven particle accelerators [3] and, hence, can be integrated with these into the same substrate
and by the same nanofabrication process.

The proposed deflection structure features three key aspects; first, the generation of a phase-
synchronous deflection force that allows for an interaction length that extends far beyond a
single wavelength of the laser beam. The synchronicity condition is imposed by a periodic
evanescent field. Second, the deflection structure provides a symmetric force pattern that
minimizes the electron beam degradation. Finally, the structure is nonresonant, which, as
discussed in Sec. III, allows the for application of few-cycle laser pulses.

The dielectric double grating whose cross section is depicted in Fig. 1 supports these
properties. Binary quartz based gratings have become commercial components [4–6]. The
incoming laser beam travels in the y direction as indicated by the solid arrow in Fig. 1, and its
phase front is parallel to the electron beam. To maintain extended overlap with the electron
beam along the vacuum channel, the laser beam has to be pulse-front tilted. The grooves of the
transmission grating create phase-synchronous diffraction orders inside the vacuum channel. In
Sec. II it is shown that these are evanescent. For simplicity only one laser beam is shown, but as
discussed in Sec. III, the desired field symmetry is generated by a pair of laser beams
approaching the structure from opposite sides.
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Metallic open grating accelerator structures have been studied by Palmer [7], Pickup [8], and
other authors. Recently, metallic grating Smith-Purcell undulators for THz radiation were
explored by Lin et al. [9]. The acceleration and synchronicity concepts developed for metallic
gratings are applicable to the proposed dielectric double-grating structure, but one fundamental
property that appears with transparent gratings is that the laser can be coupled from within the
medium. This allows for a double-grating geometry that has a confined vacuum channel and
that, when illuminated from both sides, can provide a field pattern that is symmetric with
respect to the electron beam orbit. In addition, the confined vacuum space brings about a
different set of boundary conditions for the evanescent field when compared to the traditional,
semiopen Smith-Purcell accelerator geometry.

II. PHASE AND ENVELOPE SYNCHRONICITY CONDITIONS

We apply a plane-wave field decomposition method to find the diffraction modes that
provide a significant deflection and have a phase velocity that is matched to that of the electron
beam. The electron beam is assumed to have a velocity j ~vj ¼ �c, where� is smaller than unity.
Similar to Palmer’s open grating accelerators [7], and as shown in Fig. 2, we allow the grating
grooves to have an oblique orientation with respect to the electron beam that is quantified by the
angle �. The unprimed coordinate system in Fig. 2 is aligned with the structure grooves while
the primed is aligned with the electron beam. It is found that � � 0 is critical for the generation
of a nonzero phase-synchronous deflection force (i.e. perpendicular to the nominal beam
direction). The geometry is assumed to have infinite extent along the z coordinate. The validity
of this approximation is presented in the Appendix. The electromagnetic fields can then be
approximated by independent transverse electric (TE) and transverse magnetic (TM) polar-
izations. Here the TE polarization corresponds to the mode with the electric field parallel to the
grating grooves. The period of the grating, denoted by �p, is Lp ¼ �p= cos�.

FIG. 1. (Color) Top view of a proposed periodic-phase modulation accelerator structure. The grating
grooves are parallel to the ẑ axis and the laser beam is traveling parallel to the ŷ axis. The electron beam
is traveling in the vacuum channel parallel to the x̂ axis. The pulse-front tilt causes the laser pulse
envelope in the vacuum channel to remain overlapped with the relativistic electron bunch. The substrate
is a dielectric material transparent to the laser wavelength in question.
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First assume that the laser beam is a TM-polarized monochromatic plane wave of angular
frequency!. Let this wave impinge on the grating structure with an angle ’ as shown in Fig. 3
(note that ’ is not the pulse-front tilt angle c as shown in Fig. 1). The electric field of such an
incident wave is described by
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ŷ

ẑ
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ẑ

x̂ŷ
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FIG. 3. (Color) Geometry of the incident TM-polarized plane wave on the grating structure and the
electron beam trajectory. The side view inset shows the oblique orientation of the electron trajectory with
respect to the grating grooves.

FIG. 2. (Color) Perspective view of the laser-driven dielectric deflection structure. The oblique ori-
entation of the grating grooves with respect to the electron beam is a key aspect of the proposed
structure.
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~Eðx; y; z; tÞ ¼ P̂E0e
ið!t�kx sin’�ky cos’Þ�i�: (1)

P̂ is the polarization vector, E0 is the electric field amplitude,� is the optical phase of the input
plane wave, and k is the absolute value of the free-space wave vector corresponding to k ¼
!=c. Since the structure and the incident plane wave are assumed to extend to infinity along the
grating grooves, the field components show no dependence on z, which will be omitted from
here on.

The field components inside the vacuum channel determine the deflection and focusing
forces acting on the electron beam. These fields have amplitudes uðx; yÞ that obey the
Helmholtz wave equation r2uðx; yÞ=k2 þ uðx; yÞ ¼ 0. For gratings these satisfy a pseudoper-
iodicity condition of the form uðxþ �p; yÞ ¼ uðx; yÞe�i�pk sin’ [10]. Let kp ¼ 2�=�p be the

grating k-vector magnitude. Then the field can be expressed as a discrete Fourier series having
the form

Exðx; y; tÞ ¼
Xþ1

n¼�1
UnðyÞeixðnkp�k sin’Þeikct�i�

Eyðx; y; tÞ ¼
Xþ1

n¼�1
VnðyÞeixðnkp�k sin’Þeikct�i�

Bzðx; y; tÞ ¼
Xþ1

n¼�1
WnðyÞeixðnkp�k sin’Þeikct�i�:

(2)

UnðyÞ, VnðyÞ, and WnðyÞ describe the amplitudes of the grating diffraction orders and their
dependence on the y coordinate. These are decomposed into

UnðyÞ ¼ un;þeþ�ny þ un;�e��ny

VnðyÞ ¼ vn;þeþ�ny þ vn;�e��ny

WnðyÞ ¼ wn;þeþ�ny þ wn;�e��ny:

(3)

The coefficients �n describe the mode of the nth grating diffraction order, and since the

optical field k vector is k ¼ ðk2x þ k2y þ k2zÞ1=2, these are

�n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnkp � k sin’Þ2 � k2

q
: (4)

In the present notation a real �n corresponds to an evanescent mode. The field amplitudes are
related to each other, and application of Maxwell’s equations shows that inside the vacuum
channel they are related to WnðyÞ by

UnðyÞ ¼ c

ik
dWnðyÞ=dy VnðyÞ ¼ �nkp � k sin’

k=c
WnðyÞ: (5)

In the present analysis it is assumed that the fields do not significantly alter the particle’s
trajectory over a grating period. Following Fig. 3 the particle’s velocity is described by ~vðtÞ ¼
�cðx̂ cos�þ ẑ sin�Þ and a corresponding position ~rðtÞ ¼ ~vt. The Lorentz force from the TM
wave acting on the particle, expressed in the ðx; y; zÞ coordinates, is

~F½ ~rðtÞ� ¼ qRef ~E½ ~rðtÞ� þ ~v� ~B½~rðtÞ�g ¼ qRe
Ex½ ~rðtÞ�

Ey½ ~rðtÞ� � �cBz½~rðtÞ� cos�
0

0
@

1
A: (6)

We seek the average force on the particle over an extended interaction distance. Let sðtÞ ¼ �ct
be the distance traveled by the particle. The averaged force experienced by the free particle
between t ¼ 0 and t ¼ T is

hFji ¼ 1

sðTÞ
Z sðTÞ

0
Fj½~rðsÞ�ds: (7)

PLETTNER et al. Phys. Rev. ST Accel. Beams 12, 101302 (2009)

101302-4



The average force components are therefore

hFxiTM ¼ qRe

�
1

sðTÞ
Z sðTÞ

0

Xþ1

n¼�1
UnðyÞeis cos�ðkpn�k sin’Þeiks=��i�ds

�

hFyiTM ¼ qRe

�
1

sðTÞ
Z sðTÞ

0

Xþ1

n¼�1
½VnðyÞ � cWðyÞ� cos��eis cos�ðkpn�k sin’Þeiks=��i�ds

�

hFziTM ¼ 0:

(8)

The interaction is cumulative if the phase term of the exponents in Eq. (8) does not change
with s, that is,

nkp � k sin’þ k=ð� cos�Þ ¼ 0: (9)

Equation (9) represents the sought phase-synchronicity condition for a particle traveling with a
velocity �c in the structure shown in Fig. 2. It assumes that the structure is illuminated by a
plane wave with k-vector magnitude k and an angle of incidence ’. Inspection of Eq. (9) and
the coefficient �n reveals that for�< 1 and any grating tilt angle � phase synchronicity is only
possible with the evanescent modes. This is in agreement with the Lawson-Woodward theorem,
which states that free-space waves cannot sustain a linear long-range interaction with uniformly
moving free particles [11]. Thus we encounter a situation similar to linear-interaction-force
laser-driven accelerator structures, where a cumulative nonzero laser-electron interaction
(either deflection or acceleration) can only occur in the presence of a material boundary.

Next, the analysis is extended to short laser pulses, which can be represented as a superpo-
sition of plane waves with different k-vector magnitudes. Define � as the center wavelength and
k0 ¼ 2�=� as the corresponding k-vector magnitude. Equation (9) establishes that each plane-
wave component of the laser pulse with a specific kmust satisfy a certain angle of incidence ’.
Assume that phase synchronicity for the center wavelength is satisfied at the angle of incidence
’ ¼ 0. Then with Eq. (9) the phase-synchronicity condition at the center wavelength reads

k0 ¼ �nkp� cos�: (10)

Again, kp ¼ 2�=�p is the grating structure period. For a nonzero k0, Eq. (10) can only be

satisfied for n � �1, which corresponds to the evanescent modes described in Eq. (4). Assume
that the angles of incidence of the other plane-wave components of different wavelength are
small, such that sin’� ’. Defining �k ¼ k� k0 and �’ ¼ ’� ’0, where ’0 ¼ 0 is the
angle of incidence of the center wavelength, Eq. (9) can be rewritten as

1

� cos�
¼ k

�’

�k
� tanc : (11)

Equation (11) represents a pulse-front tilt condition for an electromagnetic wave where the
pulse-front tilt angle is c [12], which guarantees synchronicity of the laser pulse envelope with
the particle. Equations (10) and (11) establish the carrier phase and the envelope synchronicity
conditions with the particle traveling down the vacuum channel at a velocity �c.

The force components hFxi, hFyi, and hFzi in Eq. (8) are expressed in a coordinate system

ðx; y; zÞ that is aligned with the structure coordinates shown in Fig. 2. However, we are
interested in these forces as observed in the particle’s coordinate system ðx0; y0; z0Þ, which is
rotated by an angle � about the y axis:

hFx0 i ¼ þhFxi cos�þ hFzi sin� hFz0 i ¼ �hFxi sin�þ hFzi cos� hFy0 i ¼ hFyi:
(12)

hFx0 i is the average acceleration force experienced by the particle. hFy0 i and hFz0 i are the

average horizontal and vertical deflection forces. Note that Eq. (9) can be satisfied for one mode
at a time, and in general, the diffraction modes are weaker with increasing diffraction order
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number. Therefore the sum in Eq. (8) reduces to the one particular value of n for which phase
synchronicity is satisfied, and typically the n ¼ �1 mode is the strongest evanescent mode.
This will be discussed more extensively in Sec. III with a numerical example. For the TM-
polarized laser beam the first-order diffraction modes n ¼ �1 yield a set of force components
of the form

hFx0 iTM ¼ qc

k
cos�Re½e�i�dW�1ðyÞ=dy�

hFy0 iTM ¼ qc

�
1

� cos�
� � cos�

�
Re½e�i�W�1ðyÞ�

hFz0 iTM ¼ �qc

k
sin�Re½e�i�dW�1ðyÞ=dy�:

(13)

Section IVexplores the effect of the grating tilt angle and the depth of the grating groove on the
amplitude of the grating diffraction order WnðyÞ and on the deflection force component.

III. SYMMETRIC LASER PUMPING OF THE STRUCTURE

The evanescent field pattern described in Sec. II possesses the desired synchronicity con-
ditions but is nonuniform and asymmetric. Furthermore, the deflection force is not aligned with
the structure coordinates. A practical beam manipulation element is only useful if it generates a
deflection force that possesses a high degree of uniformity, symmetry along the vacuum
channel, and furthermore is aligned to the beam coordinates. Excitation of symmetric modes
in the vacuum channel of a resonant dielectric periodic structure is one possibility that has been
explored for other laser-driven accelerator structures [13]. However, as stated in the
Introduction, we are interested in the application of ultrashort, few-cycle laser pulses and
therefore cannot resort to resonant-field architectures. Instead, we can illuminate the transpar-
ent grating structure from opposite sides to generate a symmetric field pattern and furthermore
accomplish the cancellation of undesired force components.

First, consider the addition of two TM-polarized laser beams of equal amplitude whose
electric field components are in phase at the center of the vacuum channel. This results in a laser
field amplitude that modifies the expression of WnðyÞ in Eq. (3) to a hyperbolic function:

WnðyÞ ¼ wn sinhð�nyÞ; wn ¼ 2ðwn;þ � wn;�Þ: (14)

For this superposition of fields the amplitude components in Eq. (13) become

hFx0 iTM ¼ qc

k
cos�Re½e�i�w�1��1 coshð��1yÞ�

hFy0 iTM ¼ qc

�
1

� cos�
� � cos�

�
Re½e�i�w�1 sinhð��1yÞ�

hFz0 iTM ¼ � qc

k
sin�Re½e�i�w�1��1 coshð��1yÞ�:

(15)

Near the center of the vacuum channel the deflection component hFy0 i shows a dependence that
is nearly linear with the y coordinate due to the sinhð�nyÞ function while the other components
remain nearly uniform. This external laser beam configuration results in a force pattern that
provides a focus along the y axis while generating a uniform synchronous force component in
the other two dimensions. This is a favorable configuration since it allows for extended
transport of a beam that is tightly focused in the y direction while providing a uniform
deflection parallel to the vacuum channel.

Consider the opposite case, where the laser beam electric field components are out of phase
by � with respect to each other. The amplitude functionWnðyÞ in Eq. (14) changes parity to an
odd function WnðyÞ ¼ wn coshð�nyÞ; wn ¼ 2ðwn;þ þ wn;�Þ and therefore the force compo-

nents that result from phase synchronicity with the first diffraction order modify to
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hFx0 iTM ¼ qc

k
cos�Re½e�i�w�1��1 sinhð��1yÞ�

hFy0 iTM ¼ qc

�
1

� cos�
� � cos�

�
Re½e�i�w�1 coshð��1yÞ�

hFz0 iTM ¼ �qc

k
sin�Re½e�i�w�1��1 sinhð��1yÞ�:

(16)

The deflection force that is oriented into the walls of the structure, hFy0 i, remains nearly uniform

while the other deflection force and the acceleration force component scale as sinhð�nyÞ. This
field pattern is clearly undesirable since it skews the electron beam.

IV. STRUCTURE MATERIAL AND GEOMETRY CONSIDERATIONS

Inspection of the force components of Eqs. (15) and (16) shows an explicit dependence of
these on the grating tilt angle � and on the strength of the grating diffraction mode W�1ðyÞ.
These diffraction modes depend on the shape of the grating grooves and on the index of
refraction of the grating material. The effect of these parameters is discussed in this section by
means of an example. Figure 4(a) shows a schematic of the grating diffraction modes WnðyÞ
inside the vacuum channel.

Assume that a pair of laser beams with the polarization and phase conditions of Eq. (15) with
a field amplitude jElaserj ¼ 1 are incident on a quartz (index of refraction ¼ 1:58 for � ¼
800 nm) based grating structure as shown in Fig. 2. Furthermore, assume the grating structure
having a channel width w ¼ 0:4� and a groove depth of 0:2�. The grating period is established
by the phase-synchronicity condition of Eq. (9), which depends on the grating tilt angle �. In
this example it will be assumed that the electron beam is relativistic; � ! 1. We employ a
multilayer grating field decomposition method to determine the magnitude and relative phase
of the diffraction orders Wn [14].

Figure 4(b) shows the dependence of the diffraction modes at the center of the vacuum
channel Wnðy ¼ 0Þ on the depth g of the grating grooves for a grating with a period �p ¼
�= cos� with � ¼ 50�. Interference effects from reflections between grating layers are
appreciable on the zeroth diffraction mode, which in the example considered here is the only
nonevanescent mode. When the grating groove depth g is zero, the first and higher order
diffraction modes are zero. The magnitude ofW�1 peaks at g ¼ 0:2� and slightly decreases for
deeper grating grooves. The other modes remain negligibly small.

Next, Fig. 5(a) shows the amplitude coefficients of the diffraction orders at the center of the
vacuum channel Wnðy ¼ 0Þ for g ¼ 0:2� as a function of �. The diffraction orders become

FIG. 4. (Color) (a) Top view of the grating vacuum channel and the orders Wn. (b) Magnitude of the
diffraction modes as a function of the grating groove depth g.
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drastically weaker with increasing diffraction order number. In this particular example, W0

is the only propagating mode while the remaining modes are evanescent. Since the grating
period is reduced with increasing grating tilt angle �, the evanescent modes become weaker.
Figure 5(b) shows the magnitudes of the deflection forces corresponding to each diffraction
mode. As expected from Fig. 4(a) the first grating diffraction mode accounts for most of the
total force.

Dielectric materials can support a maximum fluence of �1:5 J=cm2 from ultrashort laser
pulses [15], which for 10 fsec translates to a maximum local electric field of �27 GV=m.
Application of Eqs. (3)–(5) and (14) allows for an estimate of the ratio between the field at the
walls of the structure and the free-space field of the input laser beam, which for the chosen
parameters is �2:8. Therefore the maximum applicable laser field is Ein � 10 GV=m. As
shown in Fig. 5(b) the maximum deflection force is hFz0 i � 0:1qEin for the selected grating
geometry, which hence corresponds to a maximum average deflection field of �1 GV=m. A
magnetic field of�3 Twould be required to match this average deflection force generated from
the laser beam inside the grating structure.

Some conclusions on the fabrication tolerances can be drawn from Figs. 4 and 5. Figure 4(b)
shows that the magnitude of the deflection is a slowly varying function of the groove depth, and
near the optimum parameters the groove depth can vary by 0:1� without a significant change in
the value ofW�1. Control of the etch depth on quartz structures to within 1% has been reported
[16]. Another important fabrication aspect is the tolerance of the grating period. Modification
of Eq. (9) reveals that for the grating order n ¼ �1 the accumulated phase mismatch�� over a
grating length L reads �L=L ¼ ð��=2�Þð�p=L� cos�Þ. If we establish a tolerance condition

of �� equal to 1� for a grating of period �p ¼ 800 nm over L ¼ 1 cm, we obtain a groove

position tolerance of �L� 2 nm. Deep-UV lithography fabrication techniques have shown
linewidth uniformity values of 0.1 nm over 1 cm distances [17]. The tight tolerance of the
length and the thermal expansion coefficient of �5� 10�7=�C for quartz establish a limited
operating temperature range for the cm-long grating of � 1

2
�C but also allows for postfabri-

cation temperature-controlled tuning of the structure, in similar fashion as is carried out with
conventional metal structure accelerators.

V. APPLICATIONS

A. Swept beam steering and focusing devices

Beam steering devices are found in applications such as kickers for high energy beams [18–
20], electron sweepers for A-D converters [21], and streak cameras [22,23]. Their development

FIG. 5. (Color) (a) Magnitude of the grating diffraction modes as a function of the grating tile angle
satisfying the synchronicity condition for the first diffraction mode. The grating groove depth g is g ¼
0:2�. (b) Magnitude of the corresponding deflection force in the z0 direction.
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toward increased sweep speed remains an active field of research. The state-of-the-art de-
flectors are millimeter-scale electronic elements that are based on circuit- and rf-based
traveling wave deflection concepts [24–26]. The proposed laser-driven deflection structure
represents the extension of these rf-based deflection concepts to optical wavelengths to reach
time resolution values in the sub-fsec scale.

Figure 6(a) shows the profile of the electron beam inside the deflection device, having
dimensions �0;y0 and �0;z0 , where �0;z0 	 �0;y0 . The laser beams powering the structure are set

to be in phase, which as described in Sec. III generates a deflection force parallel to the vacuum
channel.

Application of focusing can enhance the angular resolution along the deflection coordinate.
Instead of using a conventional focusing element we propose employing the same type of
double-grating structure for this purpose, as is illustrated in Fig. 6(b). Applying a laser field
spatial envelope of the form Aðz0Þ / z0 on the structure generates a position dependent
deflection angle of the form �ðz0Þ ¼ �0 þ z0=f, where �0 is the original beam direction
upstream of the focusing element and f is the effective focal length.

Assume a grating structure with the optimized parameters of Sec. IV, where the deflection
force hFz0 i scales with the external laser amplitude Aðz0Þ as hFz0 i � 0:1qAðz0Þ. Assuming the
acceleration from the deflection force results in a lateral velocity much smaller than c, it can be
shown that the focal length f from a field with profile variation dA=dz0 over a structure length
LF is

1

f
¼

��������
d�

dz0

���������0:1
qLF

�m�2c2
ðdA=dz0Þ: (17)

A pair of TEM01 beams with peak field amplitude E0 ¼ 9 GV=m and vertical spot size of
�1 mm possesses an amplitude variation dA=dz0 � 1013 V=m2 near the center of the beam.
For a focusing element length LF ¼ 100 	m and a 10 MeVelectron beam, Eq. (16) predicts a
focal length of �10 cm.

Define the angular resolution as the ratio of the transverse sweep range z0f versus the beam
spot size at the observation plane, that is, R0 ¼ zf=�f;z0 . Similar to a Gaussian laser beam the

electron beam spot size evolution is parametrized by a beam waist spot size �f;z0 in the focal

plane and a depth of focus �f;z0 . The spot sizes �0;z0 and �f;z0 are related to the focal length f

and the depth of focus �f;z0 by an equation of the form [27]

DL
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FIG. 6. (Color) (a) Cross-sectional view of the deflector structure and the electron beam. (b) Transverse
view of the deflector structure, the focusing structure, and the electron beam. The solid arrows indicate
the expected force generated by the laser beam pattern on the electron beam.
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�0;z0 ¼ �f;z0 ð1þ f2=�f;z0
2Þ1=2: (18)

For a deflection force hFz0 i, a deflector structure length LD, and a focal length f, the resulting
deflection is z0f � fLDhFz0 i=�mc2 and the resolution becomes

R ¼ fLDhFz0 i
�f;z0�mc2

: (19)

Optimization of R suggests minimizing the focal plane spot size �f;z0 . As shown in Eq. (18) for

a given�0;z0 ,�f;z0 is a function of the focal length f and the depth of focus of the electron beam,

�f;z0 ¼ �2
f;z0=4"z0 , which depends on the transverse geometric emittance of the beam "z0 . Ideal

electron sources for this application are laser-driven field emitters capable of ultralow emit-
tance values followed by a dielectric-structure laser accelerator. Such devices are expected to
support geometric electron beam emittance values of "? � 10�9=� m [28,29].

To obtain an order-of-magnitude estimate of the resolution possible from the proposed
device, consider a grating structure whose total length satisfies LD þ LF < 2�0;y0 , where

�0;y0 ¼ �2
0;y0=4"y0 . Since the vacuum channel has a submicron width the electron spot size

should be on the order of � 1
10 	m. Consider an electron beam of 10 MeVenergy, and having

an emittance "z0 � "y0 � 10�9=� m and a transverse electron spot size that allows it to traverse

the grating structure, for example �0;y0 � 1
10 	m. This constrains the total structure length

LD þ LF to�250 	m. The optimization consists in selecting the lengths LD and LF such that
R is maximized, which in this example yields LD � 9LF, a focal length of 13.4 cm, and a
resolution R� 103. Figure 7 shows the evolution of the electron beam y and z envelopes for the
given example downstream of the structure. At the focal plane the spot size in the sweep

FIG. 7. (Color) Transverse beam profile as a function of distance behind the structure shown in Fig. 5.
Without further focusing elements the beam comes to a line focus about 13 cm downstream.
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direction is 2 	mwhile its other dimension is�100 times larger. Since the driving waveform is
sinusoidal in time only�10% of the cycle corresponds to a sweep that is approximately linear.

The 2 	m spot size at the focal plane corresponds to the smallest CCD pixel size values for
commercially available image detectors. The temporal resolution for one such pixel and laser
wavelength of � ¼ 1 	m corresponds to a temporal resolution �t ¼ �=2�cR, or �t� 5�
10�19 sec . Imaging of MeV-energy electron beams can be accomplished with scintillator
materials such as Ce:YAG, which shows a fluorescence lifetime of �100 nsec. The readout
speed is limited by this lifetime, and for electron bunch repetition rates above 10 MHz the
streak camera displays an average temporal structure of the electron beam within the laser
optical cycle.

B. Bending elements

The maximum deflection field was found to be hF?=qi � 1 GV=m, which leads to a beam
bending radius of r ¼ �m�2c2=hF?i. For few-MeV beam energies it can be on the order of
1 cm, allowing for the possibility of fitting an electron ring into a few-cm diameter device.
Besides the deflector units, an electron ring requires input and exit beam kickers, accelerator,
and focusing sections. As shown in Fig. 8(a) all these binary grating elements are envisioned to
be fabricated onto a pair of quartz wafers and be powered by the corresponding laser beam
modes. Figure 8(b) shows the bending radius, synchrotron critical frequency !c and photon
flux (within 0.1% of !c) for a 10 fC, 100 attosecond electron bunch as a function of beam
energy. At 20 MeV the electron bunch would generate a GHz-repetition visible light pulse train
with a radiation energy loss of �1 eV per turn. At 200 MeV, the required bending radius is
�20 cm, the peak radiation wavelength is 14 nm, and the synchrotron radiation energy loss is
hundreds of eV per turn. Such a device could function as a compact and high-repetition rate
collimated extreme ultraviolet source.

VI. OUTLOOK

A first analysis of the transparent double grating as a deflection and focusing element was
presented. Existing nanofabrication and laser technologies render the proposed structure a
promising future beam manipulation device. Demonstration experiments of these deflection
and focusing properties with MeV-energy electron beams form a crucial next step. Finally, a
series of more refined analysis and simulation efforts will be required to study the dynamics of a
particle beam that is propagated through a more complex grating based device such as an entire
grating based laser-accelerator unit, undulator, or electron ring. These will ultimately pinpoint
the capabilities and limitations of the proposed beam manipulation device and will determine
their feasibility as practical devices.

FIG. 8. (Color) (a) Schematic of an electron ring based on dielectric grating manipulation elements.
(b) Synchrotron parameters as a function beam energy.
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APPENDIX

A real structure and laser beam do not have infinite spatial extent. However, if the field
amplitude of the laser beam is varying slowly in the z direction it can be approximated by a
function of the form uðx; y; zÞ � aðzÞbðx; yÞ. The incoming laser beam possesses a beam profile
described by a slowly varying envelope function aðzÞ. The function bðx; yÞ, on the other hand,
shows a rapid spatial variation caused by the diffraction from the grating grooves which have
features with a size of �. Hence, the resulting field variations include components of the form
eikxxþikyy, where kx and ky scale with the wavelength of the laser k ¼ 2�=�. The amplitude

uðx; y; zÞ satisfies the Helmholtz equation ðr2 þ k2Þuðx; y; zÞ ¼ 0. Thus, to neglect the depen-
dence on z it is required that the derivative of aðzÞ with z be small compared to the derivative of
bðx; yÞwith respect to ðx; yÞ. This yields a condition for the minimum laser profilewz 	 �=2�.
A laser focus as small as wz � 50� is readily attainable with standard focusing elements and
lies well within the mentioned condition for the two-dimensional field approximation. The
Rayleigh range of such a focus would correspond to ZR � 800� and, assuming that the beam
waist is at the center of the vacuum channel, the radius of phase front curvature at a distance �
away would correspond to a radius of �6� 105�. This indicates that there is no significant
phase variation in the z direction and that the two-dimensional diffraction analysis in the ðx; yÞ
coordinates is applicable for the described laser beam.
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