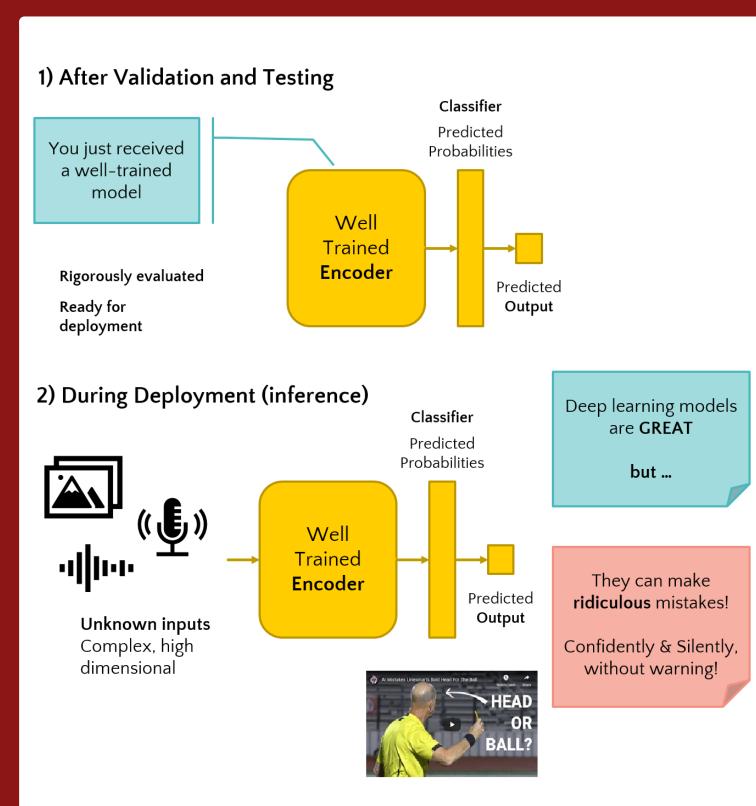


Trust Me Not: Trust Scoring for Continuous Model Monitoring

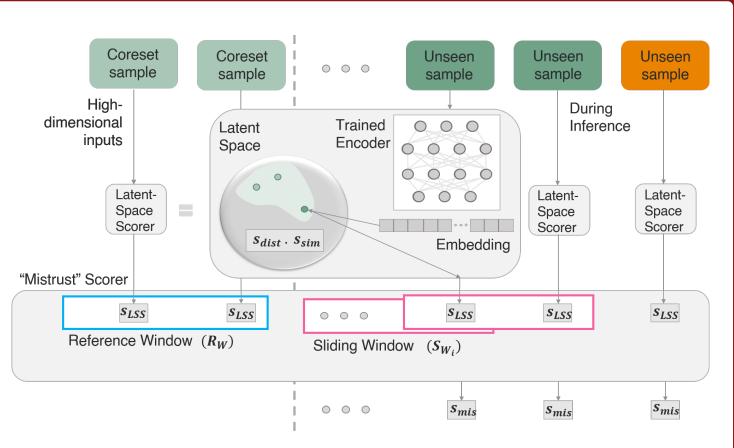
Nandita Bhaskhar, Daniel Rubin, Christopher Lee-Messer

Stanford University

Motivation: Continuous Model Monitoring



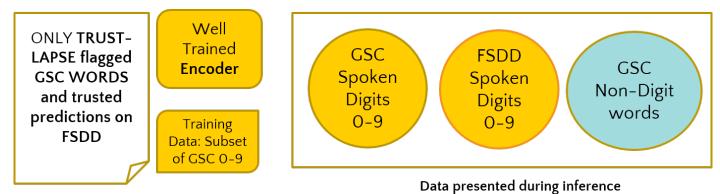
TRUST-LAPSE: Our Approach



- Project complex, high dimensional inputs to the Latent-Space
- Compare latent-space embeddings with those of coreset using different metrics to get Latent Space Score
- Estimate correlations over SEQUENCES of these scores (set-based approach vs instance-based approach) to give Se-

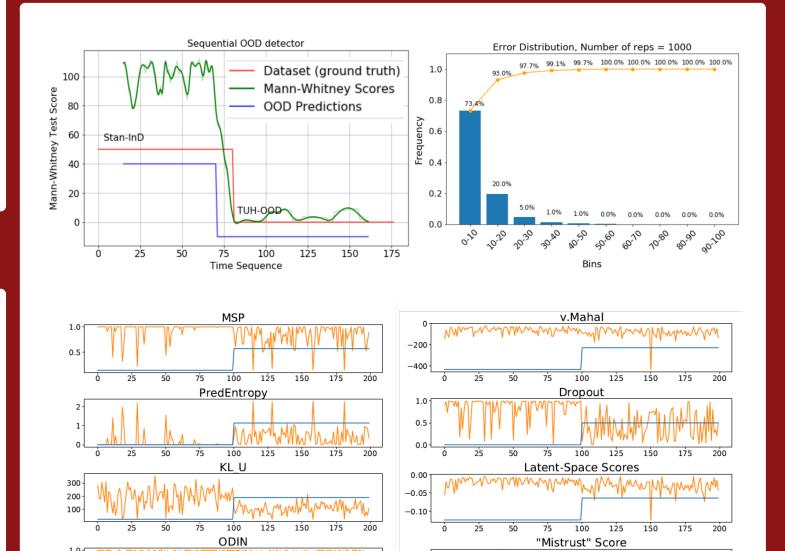
Results: Semantic Shifts

- Other methods: more prone to dataset statistics, NOT semantic content, unlike TRUST-LAPSE
- Counterfactual experiment with 2 spoken word datasets: GSC and FSDD



TRUST-LAPSE detects semantic shifts on ALL domains (vision, audio, EEG) unlike other methods. Details in paper.

Results: Drift Detection



Problem Formulation

Goal: During inference, for *every* incoming input, determine:

- Is the trained model's prediction trustworthy?
- ► *accept* or *reject* model predictions?

Desiderata: Continuous Model Monitoring

Notion of Trust

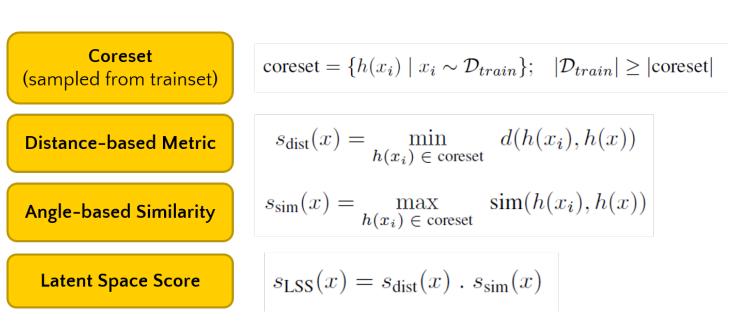
Trust: (i) Nuanced, (ii) Difficult to quantify, (iii) Subjective, (iv) Context driven, (v) Boils down to belief

Various flavours of Trust

- Probability: Model confidence
- Uncertainty: Classical techniques
- Explainability: Glass Box Model
 Fairness: Human metrics for fairness
 Adversarial attacks: Robustness
 Generalizability: Diverse test sets

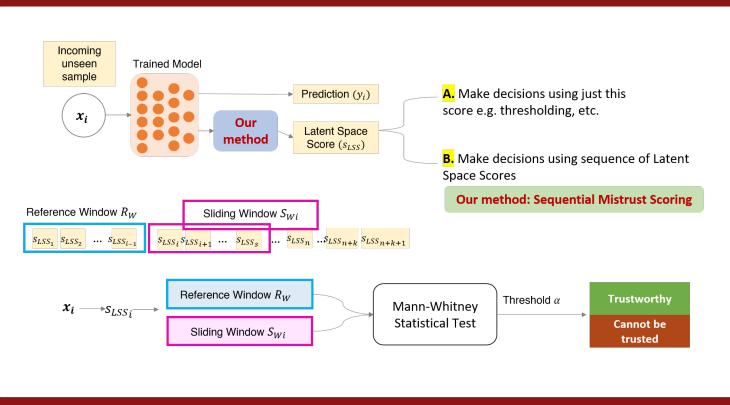
quential Mistrust Score
 Final Decision: Trust / Mistrust

Latent-Space Scorer



- Distance-based Metric: Mahalanobis Distance with class-wise separate covariance, no label smoothing
- ► Angle-based Metric: Cosine Similarity

Sequential Mistrust Scorer



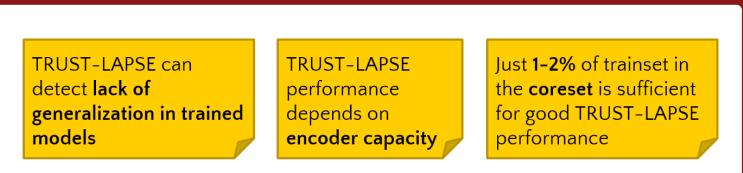
Key Insights

EEG: >73% of 1000 datastreams (of length 10,000) have <10% error and >93% have <20% error</p>

175

- Audio: >85% of streams have <10% error and >97% have <20% error</p>
- Vision: near 99% detection accuracy for >95% of streams

More Key Results



Ties to Explainability

How do humans do it?:

- Surprisingly good at this
- Past learnt knowledge, lived experiences, human intuition
- ► e.g. encountering a language shift

Limitations in Current Approaches

Current Approaches: Calibration, Bayesian Neural Networks, Variational methods, Ensembling, Monte Carlo Dropout, etc.

Limitations

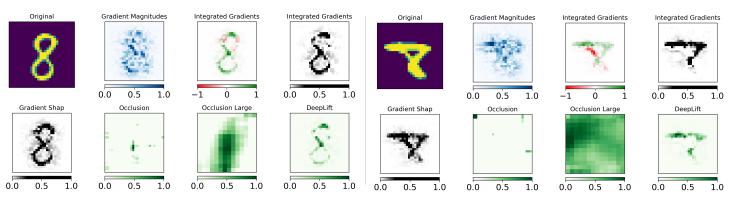
- Difficult to train
- Separate / new architectures
- Modifications to training strategies
- Computationally expensive
- May need exposure to labelled outliers
- Insensitive to semantic content!!
- ► Ultimately, do NOT fulfil desiderata

- Well-trained encoder: encodes world into hierarchical, geometric, latent space
- Metrics in latent-space: capture how similar are two inputs and how near or far are two inputs
- Different metrics capture different aspects of the latent-space. Combining them has value
- Track these over time as a sequence for continuous model monitoring

Results: Out of Distribution Detection

SOTA on vision, audio and challenging clinical EEG domains

SOTA	AUROC [†] / AUPR [†] / FPR80		
	Audio	EEG Data	Vision
Task	Speech Classification	Seizure Detection	Image Classification
OOD Sets	Other spoken words	Other institutions	SVHN
MSP Predictive Entropy KL_U ODIN Vanilla Mahalanobis Test-Time Dropout TRUST-LAPSE (ours)	0.626 / 0.527 / 0.515 0.615 / 0.515 / 0.515 0.553 / 0.475 / 0.579 0.466 / 0.448 / 0.712 0.680 / 0.636 / 0.520 0.649 / 0.619 / 0.523 0.739 / 0.704 / 0.439	0.358 / 0.421 / 0.754 0.393 / 0.495 / 0.742 0.390 / 0.472 / 0.719 0.325 / 0.388 / 0.790 0.633 / 0.651 / 0.525 0.647 / 0.619 / 0.583 0.771 / 0.701 / 0.335	0.760 / 0.770 / 0.358 0.761 / 0.752 / 0.357 0.775 / 0.786 / 0.347 0.748 / 0.776 / 0.402 0.738 / 0.782 / 0.477 0.716 / 0.725 / 0.494 0.814 / 0.827 / 0.311



- High (low) trust scores from TRUST-LAPSE correlate with correct (incorrect) predictions and good (poor) attributions
- (left) Digit 8, Prediction 8. Trust score: 0.95 (high). (right) Digit 8, Prediction 7. Trust score: 0.44 (low).

Conclusions & Contact Details

TRUST-LAPSE is a **simple** yet **powerful** and **flexible** framework that we can use for any model and any task for monitoring a model in deployment, essential in safety-critical domains like healthcare, self-driving, etc.

Questions? Hiring? Reach Out :)

Email: nanbhas@stanford.edu, Website: www.stanford.edu/~nanbhas, Twitter: @BhaskharNandita, LinkedIn: https://www.linkedin.com/in/nanditabhaskhar/

Bhaskhar, Rubin & Lee Messer

nanbhas@stanford.edu