TRUST-LAPSE

When can you trust your model's predictions? A Mistrust Scoring Framework for inference

Nandita Bhaskhar, EE PhD Candidate, Stanford University

Email: <u>nanbhas@stanford.edu</u> Website: <u>www.stanford.edu/~nanbhas</u> Paper: <u>https://arxiv.org/abs/2207.11290</u>

Daniel Rubin

Christopher Lee-Messer

Rubin Lab

Juan Manuel Zambrano Chaves Khaled Saab Siyi Tang Liangqiong Qu Florian Dubost

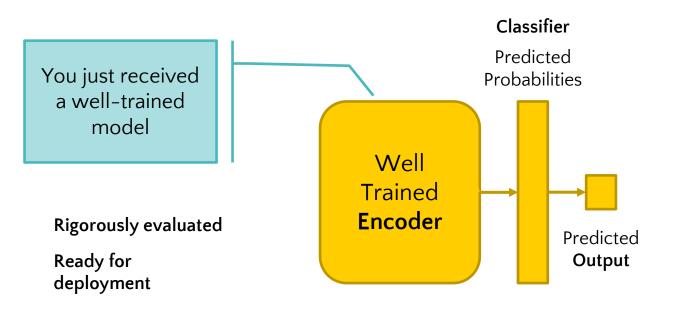
Lee-Messer Lab

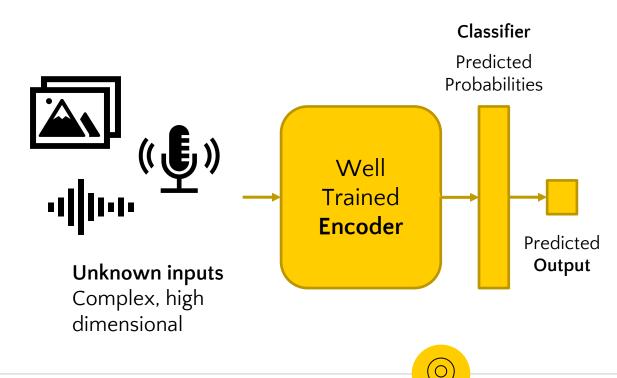
Neurotranslate team

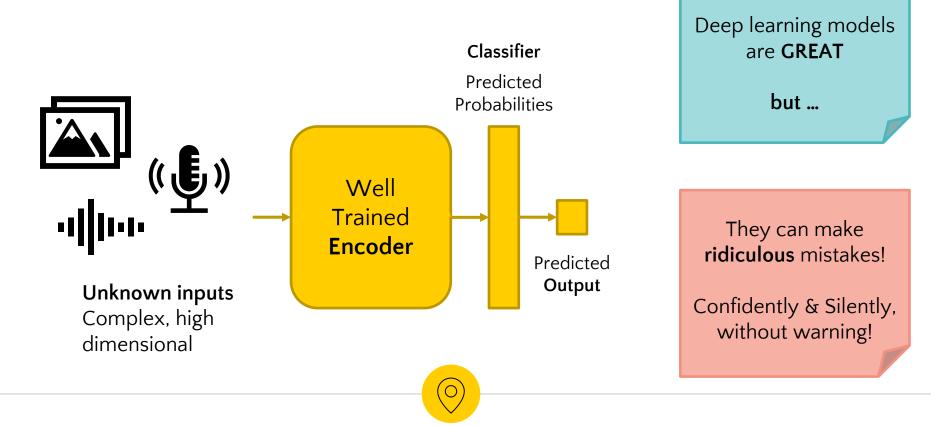
Chaudhari Lab

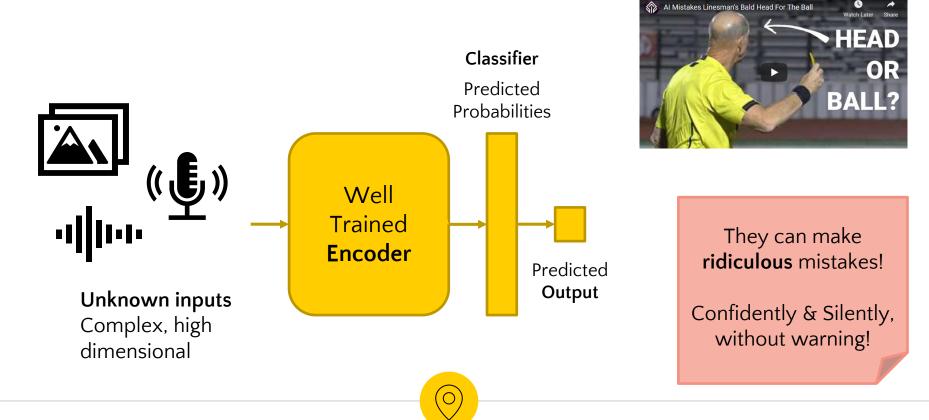
Akshay Chaudhari Phil Adamson Louis Blankemeier Arjun Desai Anthony Gatti Beliz Gunel Anoosha Pai Peyman Shokrollahi Dave van Veen Rogier van der Sluijs Ben Viggiano Jackson Wang

Acknowledgments









When should we trust this classifier's predictions?

Continuous Model Monitoring

How do humans do it?

We are surprisingly good at knowing when we don't know!

Past learnt knowledge, lived experiences, human intuition, our "Spidey" sense

How do humans do it?

We are surprisingly good at knowing when we don't know!

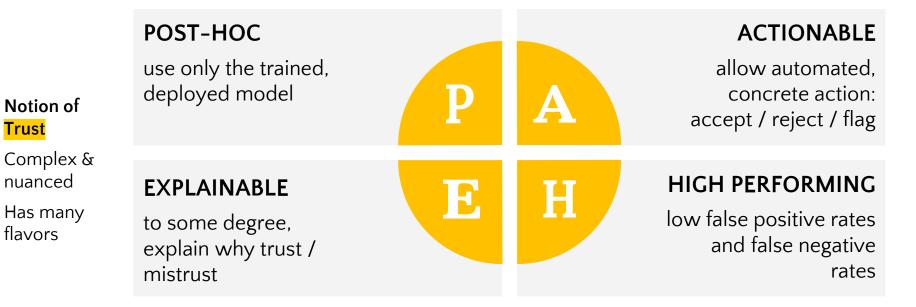
Past learnt knowledge, lived experiences, human intuition, our "Spidey" sense **For example:** When we encounter a language shift

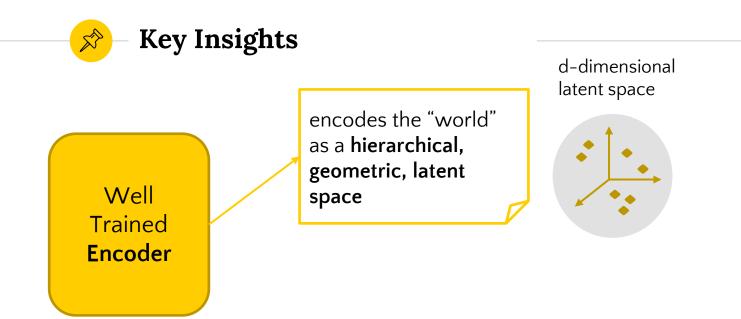
For example: Doctors do this all the time! "Something is weird in the EEG signal", "I don't feel comfortable with this MRI", ...

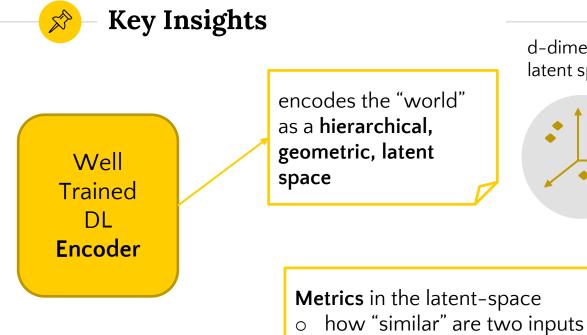
TRUST-LAPSE: Our mistrust scoring framework

Continuous Model Monitoring

Desiderata for Continuous Model Monitoring







how "near" or "far" are two 0 inputs

Track these over time as a sequence!

d-dimensional

latent space

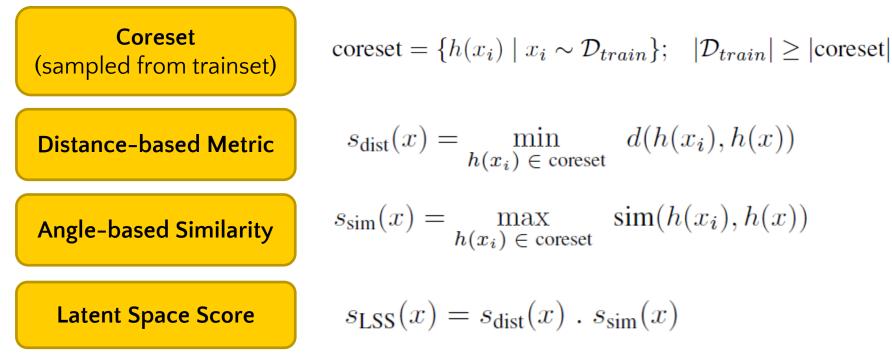
- Different metrics capture different aspects of the latentspace embeddings
- **Combining** them has value (as we'll show)
- Continuous model monitoring by tracking these over time as a sequence

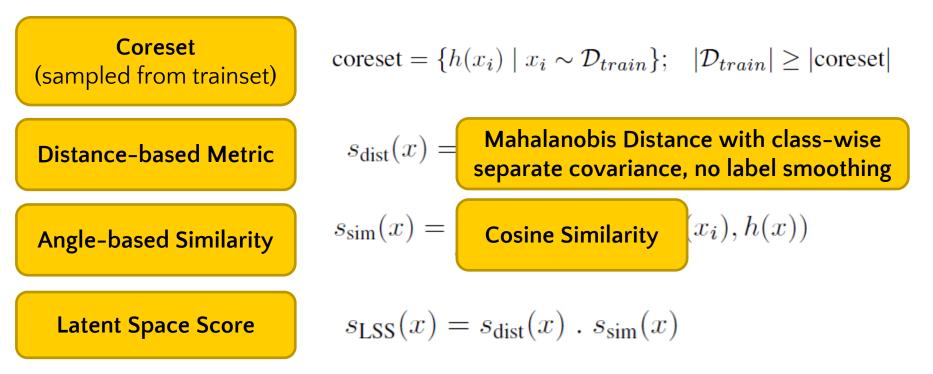
- Different metrics capture different aspects of the latentspace embeddings
- **Combining** them has value (as we'll show)
- Continuous model monitoring by tracking these over time as a sequence

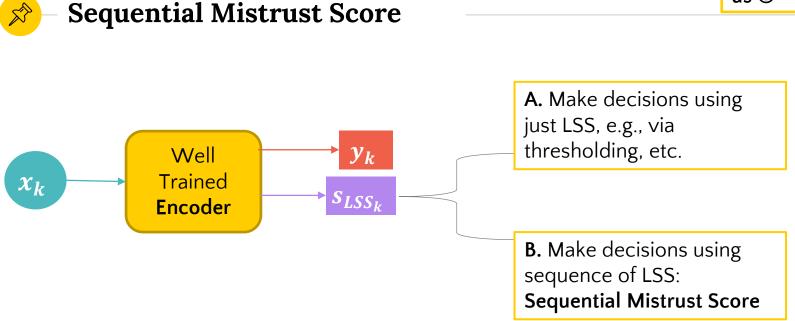
Results Sneak Peak SOTA on vision, audio, challenging clinical EEG domains Results Sneak Peak Detects SEMANTIC shifts too, unlike other methods **Results Sneak Peak** Evaluate on Drift detection. Very high drift detection rates

Coreset (sampled from trainset)

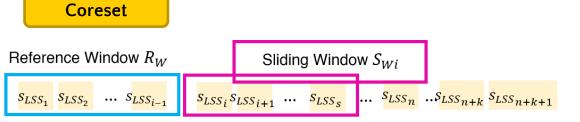
- **Project** complex, high dimensional inputs to the Latent-Space
- Compare latent-space embeddings with those of coreset using different **metrics** to get **Latent Space Score**
- Estimate correlations over SEQUENCES of these scores (setbased approach vs instance-based approach) to give Sequential Mistrust Score
- 🖲 Final Decision: Trust / Mistrust

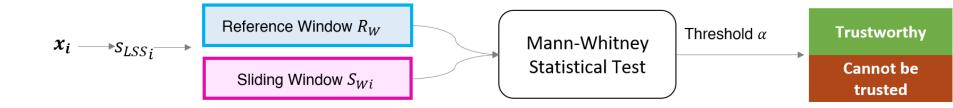






19



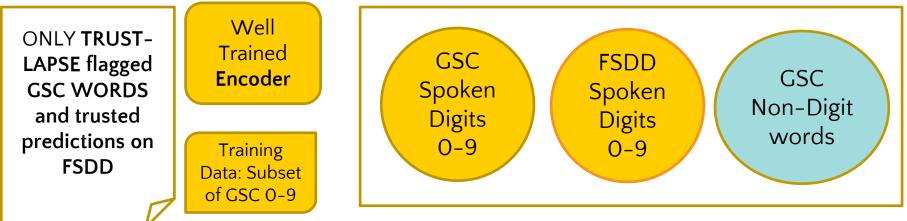


Results: Distributionally Shifted Input Detection

SOTA	AUROC [†] / AUPR [†] / FPR80		
	Audio	EEG Data	Vision
Task	Speech Classification	Seizure Detection	Image Classification
OOD Sets	Other spoken words	Other institutions	SVHN
MSP	0.626 / 0.527 / 0.515	0.358 / 0.421 / 0.754	0.760 / 0.770 / 0.358
Predictive Entropy	0.615 / 0.515 / 0.515	0.393 / 0.495 / 0.742	0.761 / 0.752 / 0.357
KL_U	0.553 / 0.475 / 0.579	0.390/0.472/0.719	0.775/0.786/0.347
ODIN	0.466 / 0.448 / 0.712	0.325 / 0.388 / 0.790	0.748 / 0.776 / 0.402
Vanilla Mahalanobis	0.680 / 0.636 / 0.520	0.633 / 0.651 / 0.525	0.738/0.782/0.477
Test-Time Dropout	0.649 / 0.619 / 0.523	0.647 / 0.619 / 0.583	0.716/0.725/0.494
TRUST-LAPSE (ours)	0.739 / 0.704 / 0.439	0.771 / 0.701 / 0.335	0.814 / 0.827 / 0.311

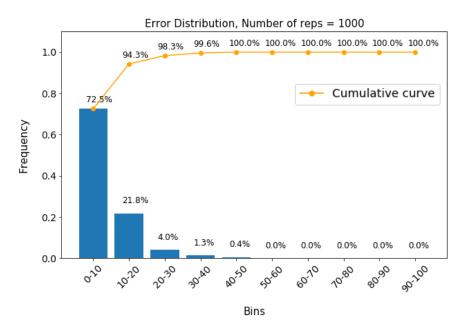
Results Peek: Semantic Shifts

Interesting counterfactual experiment with two spoken word datasets Google Speech Commands (GSC) and Free-Spoken Digits Dataset (FSDD)

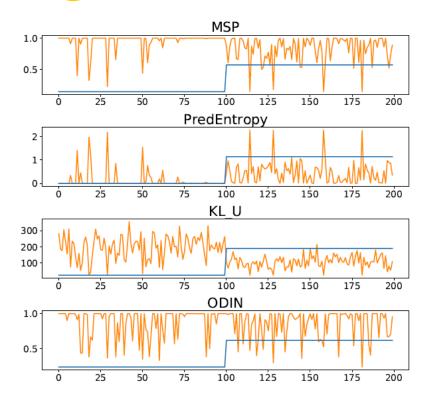


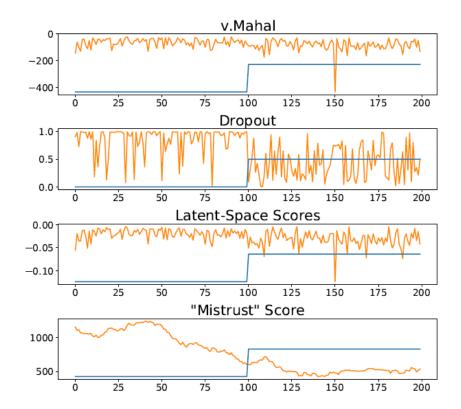
Results: Drift Detection

- EEG: Over 73% of 1000 data streams (of length 10,000) have less than 10% error and over 93% have less than 20% error
- Audio: over 85% of the streams have less than 10% error and over 97% have less than 20% error
- Vision: the error distribution is even tighter - near 99% detection accuracy for over 95% of the streams



Results: Drift Detection



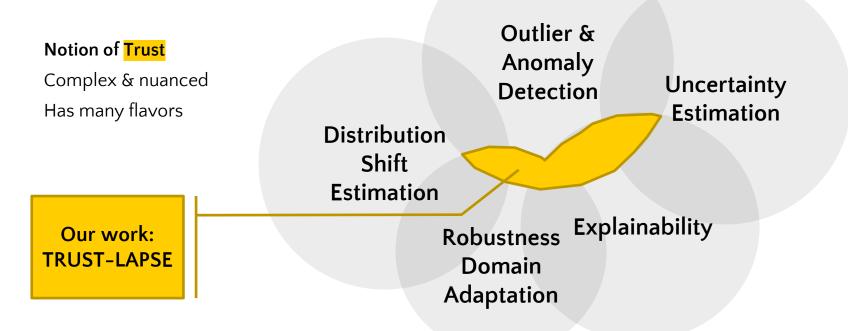


Other Key Results Summary (Details in the poster session)

TRUST-LAPSE detects SEMANTIC shifts too on all domains (vision, audio, EEG) unlike other methods

TRUST-LAPSE detects lack of generalization in models

Ablations: TRUST-LAPSE depends on encoder capacity Ablations: Just 1–2% of trainset in the coreset is sufficient for TRUST– LAPSE



📌 – Conclusions

- As deep learning sees more success, there is a need for continuous model monitoring to enable deployment
- Essential in safety-critical domains like healthcare, selfdriving, etc.
- TRUST-LAPSE is a simple yet powerful and flexible framework that we can use for any model and any task for monitoring a model in deployment
- Provides an opportunity for exploring: metrics, domains, data, etc
- $igodoldsymbol{eta}$ Want to apply it for your models? Come chat with us $igodoldsymbol{eta}$

Any <mark>questions</mark> ?

Paper: https://arxiv.org/abs/2207.11290

You can find me at

- Email: <u>nanbhas@stanford.edu</u>
- Twitter: <u>@BhaskharNandita</u>

Thanks!

- Website: <u>www.stanford.edu/-nanbhas</u>
- LinkedIn: <u>https://www.linkedin.com/in/nanditabhaskhar/</u>