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Abstract

Modern data analysis challenges require building complex statistical models with
massive numbers of parameters. It is nowadays commonplace to learn models with
millions of parameters by using iterative optimization algorithms. What are typical
properties of the estimated models? In some cases, the high-dimensional limit of a
statistical estimator is analogous to the thermodynamic limit of a certain (disordered)
statistical mechanics system. Building on mathematical ideas from the mean-field the-
ory of disordered systems, exact asymptotics can be computed for high-dimensional
statistical learning problems.

This theory suggests new practical algorithms and new procedures for statistical in-
ference. Also, it leads to intriguing conjectures about the fundamental computational
limits for statistical estimation.

1 Introduction

Natural and social sciences as well as engineering disciplines are nowadays blessed with
abundant data which are used to construct ever more complex statistical models. This
scenario requires new methodologies and new mathematical techniques to analyze these
methods. In this article I will briefly overview some recent progress on two prototypical
problems in this research area: high-dimensional regression and principal component anal-
ysis. This overview will be far from exhaustive, and will follow a viewpoint that builds on
connections with mean field theory in mathematical physics and probability theory (see
Section 5 for further context).
High-dimensional regression. We are given data points (y1;x1), …(yn;xn) that are
independent draws from a common (unknown) distribution. Here xi 2 Rd is a feature
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vector (or vector of covariates), and yi 2 R is a label or response variable. We would like
to model the dependency of the response variable upon the feature vector as

yi = h�0;xi i + wi ;(1-1)

where �0 2 Rd is a vector of parameters (coefficients), and wi captures non-linear de-
pendence as well as random effects. This simple linear model (and its variants) has an
impressive number of applications ranging from genomics Shevade and Keerthi [2003],
to online commerce McMahan et al. [2013], to signal processing D. L. Donoho [2006]
and Candès, Romberg, and Tao [2006].
Principal component analysis. We are given unlabeled data x1; : : : ;xn 2 Rd , that are
i.i.d. with zero mean and common covariance Σ � Efx1xT

1g. We would like to estimate
the directions of maximal variability of these data. Namely, denoting by �1 � �2 � � � � �

�n the ordered eigenvalues ofΣ and by v1(Σ), …, vn(Σ) the correspondent eigenvectors,
we would like to estimate v1(Σ); : : : ; vk(Σ) for k � d a fixed number. This task is a
fundamental component of dimensionality reduction and clustering Kannan, S. Vempala,
and Vetta [2004], and is often used in neuroscience Rossant et al. [2016] and genomics
Abraham and Inouye [2014].

2 High-dimensional regression

Since Gauss [2011], least squares has been the method of choice for estimating the param-
eter vector �0 in the linear model (1-1). Least squares does not make assumptions on the
coefficients �0, but implicitly assumes the errors wi to be unbiased and all of roughly the
same magnitude. In this is the case (for ‘non-degenerate’ features xi ), consistent estima-
tion is possible if and only if n/p � 1.

In contrast, many modern applications are characterized by a large amount of data,
together with extremely complex models. In other words, both n and p are large and
often comparable. The prototypical approach to this regime is provided by the following
`1 regularized least squares problem, known as the Lasso Tibshirani [1996] or basis pursuit
denoising Chen and D. L. Donoho [1995]:

�̂(�;y;X) � arg min
�2Rp

�
1

2n
ky � X�k

2
2 + �k�k1

�
:(2-1)

Here y = (y1; : : : ; yn) 2 Rn is the vector of response variables, and X 2 Rn�p is the
matrix whose i -th row is the i -th feature vector xi . Since the problem (2-1) is convex
(and of a particularly simple form) it can be solved efficiently. In the following, we will
drop the dependence of �̂ upon y;X unless needed for clarity.
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Figure 1: Mean square estimation error of the Lasso per dimension k�̂(�)��0k22/d ,
as a function of the regularization parameter �. Each point corresponds to a differ-
ent instance of the problem (2-1) with symbols representing the dimension d =
N 2 f100; 500; 1000; 2000g. The number of samples is n = dı, with ı = 0:64,
and the noise level �2 = 0:2 � n. The ‘true’ coefficients were generated with i.i.d.
coordinates �0;i 2 f0;+1;�1g and P (�0;i = +1) = P (�0;i = +1) = 0:064.

Over the last ten years, a sequence of beautiful works Candes and Tao [2007] andBickel,
Ritov, and Tsybakov [2009] has developed order-optimal bounds on the performance of
the Lasso estimator. Analysis typically assumes that the data are generated according to
model (1-1), with some vector �0, and i.i.d. noise (wi )i�n: to be concrete we will assume
here wi ∼ N(0; �2). For instance, if �0 has at most s0 non-zero elements, and under
suitable conditions on the matrix X , it is known that (with high probability)

k�̂(�) � �0k
2
2 �

C s0�
2

n
log d ;(2-2)

where C is a numerical constant.
This type of results give confidence in the use of the Lasso, and explain the origins of

its effectiveness. However, they are not precise enough to compare different estimators
with the same error rate or –say– different ways of selecting the regularization parameter
�. Also, they provide limited insight on the distribution of �̂(�), an issue that is crucial
for statistical inference.
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2.1 Exact asymptotics for the Lasso. In order to address these questions, a different
type of analysis makes probabilistic assumptions about the feature vectors xi , and derives
an asymptotically exact characterization of the high-dimensional estimator. In order to
state a result of this type for the case of the Lasso, it is useful to introduce the proximal
operator of the `1 norm (in one dimension):

�(y;˛) � argmin
x2R

n1
2
(y � x)2 + ˛jxj

o
:(2-3)

Explicitly, we have �(y;˛) = (jyj � ˛)sign(y). We also note that the following simple
consequence of the first-order stationarity conditions for problem (2-1) holds for any ˛ >
0:

�̂(�) = �
�
�̂
d
;˛

�
; �̂

d
(˛; �) � �̂(�) +

˛

n�
X T(y � X�̂(�)) :(2-4)

We say that a function  : Rd ! R is pseudo-Lipschitz function of order k (and write
 2 PL(k)) if j (x) �  (y)j � L(1 + (kxk2/

p
d )k�1 + (kyk2/

p
d )k�1)kx � yk2

for any x;y 2 Rd . Also recall that a sequence of probability distributions �n on Rd

converges in Wasserstein-k distance to � if and only if
R
 (x)�n(dx) !

R
 (x)�(dx)

for each  2 PL(k).

Theorem 1. Consider a sequence of linear models (1-1) indexed by n, with d = d (n) such
that limn!1 n/d (n) = ı 2 (0;1), and let � = �(n) be such that limn!1 �(n)/

p
n =

�0. Assume xi ∼ N(0; Id ) and wi ∼ N(0; �2) independent and that the empirical distri-
bution d�1

Pd
i=1 ı�0;i

converges in Wk to the law pΘ of a random variable Θ.
Let ˛�, �2� 2 R>0 be the unique solution of the pair of equations

� = ˛
n
1 �

1

ı
P

�
jΘ� + ��Zj � ˛�

�o
;(2-5)

�2� = �2
0 +

1

ı
E

˚�
�(Θ + ��Z;˛�) � Θ

�2	
;(2-6)

where expectation is with respect to Θ and Z ∼ N(0; 1) independent. Then, taking �̂ =

�̂
d
(˛; �), for any  : R2 ! R,  2 PL(k), we have, almost surely,

lim
n;d!1

1

d

dX
i=1

 (�0;i ; �̂
d
i ) = E

˚
 (Θ;Θ+ ��Z)

	
:(2-7)

The proof of this result Bayati andMontanari [2012] consists in introducing an iterative
algorithm that converges rapidly to �̂(�) and can be analyzed exactly. Of course, the
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existence of such an algorithm is of independent interest, cf. Section 4. Alternative proof
techniques have been developed as well, and are briefly mentioned in the next section. All
of these proofs take advantage in a crucial way of the fact that the optimization problem
(2-1) is convex, which in turn is a choice dictated by computational tractability. However,
for ı < 1, the cost function is not strongly convex (since the kernel of X has dimension
n(1 � ı), with high probability), which poses interesting challenges.

Remark 2.1. A first obvious use of Theorem 1 is to derive asymptotic expressions for
the risk of the Lasso. Using the stationarity condition (2-4) and choosing  (x; y) =

[x � �(y; ˛�)]
2, we obtain

lim
n;p!1

1

d
k�̂(�) � �0k

2
2 = E

˚�
�(Θ + ��Z;˛�) � Θ

�2	
:(2-8)

For applications, this prediction has the disadvantage of depending on the asymptotic em-
pirical distribution of the entries of �0, which is not known. One possible way to overcome
this problem is to consider the worst case distribution D. L. Donoho, Maleki, and Mon-
tanari [2011]. Assuming �0 has at most s0 = p" non-zero entries (and under the same
assumptions of the last theorem), this results in the bound

lim
n;p!1

1

d
k�̂(�) � �0k

2
2 �

M (")

1 �M (")/ı
�2
0 :(2-9)

WhereM (") is explicitly given in D. L. Donoho, Maleki, and Montanari [2011] and Mon-
tanari [2012], and behaves asM (") = 2" log(1/")+O(") for small ". This bound is tight
in the sense that there exists sequences of vectors �0 = �0(n) for which the bound holds
with equality.

Remark 2.2. Interestingly, Theorem 1 also characterizes the joint distribution of �̂
d
and

the true parameter vector. Namely �̂di is asymptotically Gaussian, with mean equal to the
true parameter �0;i and variance �2� . This is somewhat surprising, given that the Lasso
estimator �̂ = �(�̂

d
;˛�) is highly non-Gaussian (in particular is �̂i = 0 for a positive

fraction of the entries).
This Gaussian limit suggests a possible approach to statistical inference. In particular,

a confidence interval for �0;i can be constructed by letting Ji (c) = [�̂di � c��; �̂
d
i + c��].

The above theorem implies the following coverage guarantee

lim
n;d!1

1

d

nX
i=1

P
�
�0;i 2 Ji (c)

�
= 1 � 2Φ(�c) ;(2-10)
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whereΦ(x) �
R
e�t2/2dt/

p
2� is the Gaussian distribution function. In other words, the

confidence interval is valid on average Javanmard and Montanari [2014b].
Ideally, one would like stronger guarantees than in (2-10), for instance ensuring cov-

erage for each coordinate, rather than on average over coordinates. Results of this type
were proven in C.-H. Zhang and S. S. Zhang [2014], van de Geer, Bühlmann, Ritov, and
Dezeure [2014], and Javanmard and Montanari [2014a, 2015] (these papers however do
not address the regime n/d ! ı 2 (0;1)).

Remark 2.3. Theorem 1 assumes the entries of the design matrix X to be i.i.d. standard
Gaussian. It is expected this result to enjoy some degree of universality, for instance with
respect to matrices with i.i.d. entries with the same first twomoments and sufficiently light
tails. Universality results were proven in Korada and Montanari [2011], Bayati, Lelarge,
and Montanari [2015], and Oymak and Tropp [2015], mainly focusing on the noiseless
case � = 0 which is addressed by solving the problem (2-1) in the limit � ! 0 (equiva-
lently, finding the solution ofy = X� that minimizes k�k1). Classical tools of probability
theory, in particular the moment method and Lindeberg swapping trick are successfully
applied in this case.

Beyond matrices with i.i.d. entries, there is empirical evidence D. Donoho and Tan-
ner [2009] and heuristic results Tulino, Caire, Verdu, and Shamai [2013] and Javanmard
and Montanari [2014b] suggesting universality or (in some cases) generalizations of the
prediction of Theorem 1.

2.2 Generalizations and comparisons. When the data (yi ;xi ), 1 � i � n contain out-
liers, the sum of square residuals ky�X�k22 in Equation (2-1) is overly influenced by such
outliers resulting in poor estimates. Robust regression Huber and Ronchetti [2009] sug-
gests to use the following estimator instead (focusing for simplicity on the un-regularized
case):

�̂ = arg min
�2Rp

nX
i=1

�
�
yi � h�;xi i

�
;(2-11)

where � : R ! R is often chosen to be convex in order to ensure computational tractabil-
ity. For instance, Huber [1964, 1973] advocated the use of �(x) = �Huber(x; ) defined by
�Huber(x; c) = x2/2 for jxj � c and �Huber(x; c) = cjxj � c2/2 otherwise. Results analo-
gous to Theorem 1 were proven for robust estimators of the form (2-11) in Karoui [2013]
and D. Donoho and Montanari [2016], following earlier conjectures in El Karoui, Bean,
Bickel, Lim, and Yu [2013].

A second possibility for generalizing Theorem 1 is to modify the penalty function
�k�k1, and replacing it by f (�) for f : Rd ! R a convex function. General results
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in this setting were proven in Chandrasekaran, Recht, Parrilo, and Willsky [2012] and
Thrampoulidis, Oymak, and Hassibi [2015] via a different approach that builds on Gor-
don’s minimax theorem Gordon [1988].

Finally, let us emphasize that sparsity of �0 –while motivating the Lasso estimator
(2-1)– does not play any role in Theorem 1, which in fact holds for non-sparse �0 as
well. Given this, it is natural to ask what is the best estimate for any given �0. Under the
assumption of Theorem 1, it is natural to treat the (�i )i�d as i.i.d. draws with common
distribution pΘ. If this is the case, we can consider the posterior expectation estimator

�̂
Bayes

(y;X) � EpΘ

�
�

ˇ̌
y;X

�
:(2-12)

The analysis of this estimator requires introducing two functions associated with the scalar
problem of estimating Θ ∼ pΘ from observations Y =

p
sΘ+Z, Z ∼ N(0; 1):

I(s) � I (Θ;
p
sΘ+Z) ; mmse(s) = E

˚�
Θ � E(Θj

p
sΘ+Z)

�2	
;(2-13)

These two quantities are intimately related since dI
ds
(s) = 1

2
mmse(s) Stam [1959] and

Guo, Shamai, and Verdú [2005]. The following is a restatement of a theorem proved in
Reeves and Pfister [2016],

Theorem 2. Under the assumptions of Theorem 1, define the function �2 7! Ψ(�2) by

Ψ(�2) = I(��2) +
ı

2

�
log(ı�2) �

ı

2
+
ı�2

0

2�2

�
:(2-14)

If, for �2
0 > 0, �2 7! Ψ(�2) has at most three critical point and �2Bayes � argmin�2>0 Ψ(�2)

is unique, then

lim
n;d!1

1

d
E

˚

�̂(y;X) � �



2

	
= mmse(��2

Bayes) :(2-15)

A substantial generalization of this theorem was proved recently in Barbier, Macris,
Dia, and Krzakala [2017], encompassing in particular a class of generalized linear models.

Notice that �Bayes must satisfy the following first-order stationarity condition (which is
obtained by differentiating Ψ( � )):

�2Bayes = �2 +
1

ı
mmse(��2

Bayes) :(2-16)

The form of this equation is tantalizingly similar to the one for the Lasso mean square
error, cf. Equation (2-6). In both case the right-hand side is given in terms of the error in
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estimating the scalarΘ ∼ pΘ from noisy observations Y = Θ+�Z. While Equation (2-6)
corresponds to the error of proximal denoising using `1 norm, the Bayes estimation error
appears in Equation (2-16).

2.3 Decoupling. A key property is shared by the Lasso and other convex estimators,
as well as the Bayes-optimal estimators of Section 2.2. It will also hold for the message
passing algorithms of Section 4 and it is sometimes referred to as ‘decoupling’. Notice that
Equation (2-7) of Theorem 1 can be interpreted as follows. By Equation (2-4), we can use
the estimate �̂ to construct new ‘pseudo-data’ �̂

d
with the following remarkable property.

Each coordinate of the pseudo-data �̂di is approximately distributed as a Gaussian noisy
observation of the true parameter �0;i .

This naturally raises the question of the joint distribution of k coordinates �̂d
i(1), …�̂

d
i(k)

.
Decoupling occurs when these are approximately distributed as observations of �i(1), …,
�i(k) with independent noise. For instance, in the case of Theorem 1, this can be formalized
as

lim
n;d!1

1

dk

dX
i(1);:::;i(k)=1

 (�0;i(1); : : : ; �0;i(k); �̂
d
i(1); : : : ; �̂

d
i(1)) =(2-17)

= E
˚
 (Θ1; : : : ;Θk ; Θ1 + ��Z1; : : : ;Θk + ��Zk)

	
;

where is a bounded continuous function and (Θ`)`�k ∼i id pΘ independent of (Z`)`�k ∼
N(0; 1). In this form, decoupling is in fact an immediate consequence of Equation (2-7),
but other forms of decoupling are proved in the literature. (And sometimes the model of
interest has to be perturbed in order to obtain decoupling.)

3 Principal component analysis

A standard model for principal component analysis assumes that the vectors x1; : : : ;xn

2 Rd are centered Gaussian, with covariance Σ = �0�T
0 + In, for �0 a fixed unknown

vector. Equivalently, if we let X 2 Rn�d be the matrix whose i -th row is the vector xi ,
we have X = u�T

0 + W , where u = (ui )i�n is a vector with i.i.d. entries ui ∼ N(0; 1),
and (Wij )i�n;j �d ∼ N(0; 1).

For the sake of simplicity, we shall consider here the symmetric version of this model.
The data consists in a symmetric matrix X 2 Rn�n, where

X =
�

n
�0�T

0 + W ;(3-1)
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where W is a noise matrix from the GOE(n) ensemble, namely (Wij )i<j �n ∼ N(0; 1/n)

are independent of (Wi i )i�n ∼ N(0; 2/n), and W = W T. We further assume � � 0 and
k�0kn

2/n ! 1 as n ! 1. This normalization is chosen to make the problem nontrivial
when � = Θ(1).

We are asked to estimate �0 2 Rn from a single observation of the matrix X . Spec-
tral methods are –by far– the best studied approach to this problem, and the asymptotic
spectral properties of X have been studied in exquisite detail across probability theory
and statistics Baik, Ben Arous, and Péché [2005], Baik and Silverstein [2006], Féral and
Péché [2007], Johnstone [2001], Paul [2007], Capitaine, Donati-Martin, and Féral [2009],
Benaych-Georges and Nadakuditi [2011, 2012], and Knowles and Yin [2013]. In particu-
lar, letting �̂

PCA
(X) denote the principal eigenvector of X , we have

lim
n!1

jh�̂
PCA

(X);�0ij

k�̂
PCA

(X)k2k�0k
=

(
0 if � � 1,
p
1 � ��2 if � > 1.

(3-2)

In other words, the spectral estimator achieves a positive correlation with the unknown
vector �0 provided � > 1: this phenomenon is known as the BBAP phase transition Baik,
Ben Arous, and Péché [2005].

From a statistical perspective, the principal eigenvector is known to be an asymptoti-
cally optimal estimator if no additional information is available about �0. In particular, it
is asymptotically equivalent to the Bayes-optimal estimator when the prior of �0 is uni-
formly distributed on a sphere of radius

p
n. However, in many problems of interest,

additional information is available on �0: exploiting this information optimally requires
to move away from spectral methods and from the familiar grounds of random matrix
theory.

3.1 Z2-synchronization. In some cases, all the entries of �0 are known to have equal
magnitude. For instance, in the community detection problem we might be required to
partition the vertices of a graph in two communities such that vertices are better connected
within each part than across the partition. Under the so-called stochastic block model
Decelle, Krzakala, Moore, and Zdeborová [2011] and Abbe [2017], the adjacency matrix
of the graph is of the form (3-1) (albet with Bernoulli rather than Gaussian noise) whereby
�0;i 2 f+1;�1g is the label of vertex i 2 [n]. Another motivation comes from group
synchronization Wang and Singer [2013], which is a relative of model (3-1) whereby the
unknowns �0;i are elements of a compact matrix group G . In the special case G = Z2 =

(f+1;�1g); � ), the resulting model is a special case of (3-1).
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Figure 2: Estimation accuracy (h�̂
Bayes

;�0i/n)2 within the Z2-synchronization
problem. Red circles: numerical simulations with the AMP algorithm (form ma-
trices of dimension n = 2000 and t = 200 iterations). Continuous thick blue line:
Bayes optimal estimation accuracy, cf. Theorem 3. Dashed blue line: other fixed
points of state evolution. Red line: Accuracy achieved by principal component anal-
ysis.

The following theorem follows from Deshpande, Abbe, and Montanari [2017] and
Montanari and Venkataramanan [2017] and provides an asymptotically exact characteriza-
tion of optimal estimation in the Z2-synchronization problem, with respect to the metric
in Equation (3-2).

Theorem 3. Consider the model (3-1) and let 
� 2 [0;1) denote the largest solution of


 = �
�
1 � mmse(
)

�
;(3-3)

where mmse( � ) is defined as in Equation (2-13), with pΘ = (1/2)ı+1 + (1/2)ı�1.
Then, there exists an estimator �̂

Bayes
: X 7! �̂

Bayes
(X) such that, almost surely,

lim
n!1

jh�̂
Bayes

(X);�0ij

k�̂
Bayes

(X)k2k�0k2

=
q
1 � mmse(
�) :(3-4)

Further, this accuracy can be approximated within arbitrarily small (constant) additive er-
ror " by a polynomial-time message passing algorithm, cf. Section 4. Finally, no estimator
can achieve a better correlation than in Equation (3-4).
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This prediction is illustrated in Figure 2. Notice that it undergoes a phase transition at
the spectral threshold � = 1. For � < 1 no estimator can achieve a correlation that is
bounded away from zero.

Remark 3.1. Substantial generalizations of the last theorem were proved in several pa-
pers Barbier, Dia, Macris, Krzakala, Lesieur, and Zdeborová [2016], Lelarge and Miolane
[2016], and Miolane [2017]. These generalization use new proof techniques inspired by
mathematical spin glass theory and cover the case of vectors � whose entries have general
distributions pΘ, as well as the rectangular and higher rank cases.

In particularly, Theorem 3 holds almost verbatimly if �0 has i.i.d. entries with known
distribution pΘ such that

R
�2 pΘ(d�) = 1 and

R
�4 pΘ(d�) < 1. One important dif-

ference is that in this more general setting, Equation (3-3) can have multiple solutions,
and Barbier, Dia, Macris, Krzakala, Lesieur, and Zdeborová [2016], Lelarge and Miolane
[2016], and Miolane [2017] provide a way to select the ‘correct’ solution that is analogous
to the one in Theorem 2.

Remark 3.2. As in the linear regression problem, the fixed point Equation (3-3) points at
a connection between the high-dimensional estimation problem of Equation (3-1), where
we are required to estimate n bits of information �0;i 2 f+1;�1g, to a much simpler scalar
problem. The underlying mechanism is again the decoupling phenomenon of Section 2.3.
An alternative viewpoint on the same phenomenon is provided by the analysis of message
passing algorithms outlined in Section 4.

Remark 3.3. Replacing the minimum mean-square estimator EfΘjY g with the optimal
linear estimator bΘ(Y ) = aY in the definition of Equation (2-13) yields the general upper
bound (for EfΘ2g = 1) mmse(s) � 1/(1+ s). Substituting in Equations (3-3) and (3-4)
this yields in turn

lim
n!1

jh�̂
Bayes

(X);�0ij

k�̂
Bayes

(X)k2k�0k2

�

s�
1 �

1

�2

�
+

:(3-5)

We thus recover the predicted accuracy of spectral methods, cf. 3-2. It is not hard to
show that this inequality is strict unless the coordinates of �0 are asymptotically Gaussian.
Figure 2 compares the Bayes optimal accuracy of Theorem 3 with this spectral lower
bound.

While Theorem 3 states that there exists a message passing algorithm that essentially
achieves Bayes-optimal performances, this type of algorithms can be sensitive to model
misspecification. It is therefore interesting to consider other algorithmic approaches. One
standard starting point is to consider the maximum likelihood estimator that is obtained
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by solving the following optimization problem:

maximize hX ;��T
i ;

subject to � 2 f+1;�1g
n :

(3-6)

Semidefinite programing (SDP) relaxations provide a canonical path to obtain a tractable
algorithm for such combinatorial problems. A very popular relaxation for the present
case Goemans and Williamson [1995] and Nesterov [1998] is the following program in
the decision variable Q 2 Rn�n:

maximize hX ;Qi ;

subject to Q � 0 ;

Qi i = 1 for all i 2 f1; : : : ; ng :

(3-7)

The matrix Q can be interpreted as a covariance matrix for a certain distribution on the
vector � . Once a solutionQ� of this SDP is computed, we can use it to produce an estimate
�̂

SDP
2 f+1;�1gn in many ways (this step is called ‘rounding’ in theoretical computer sci-

ence). For instance, we can take the sign of its principal eigenvector: �̂ = sign(v1(Q�)).
There are many open questions concerning the SDP (Equation (3-7)). In particular Javan-
mard, Montanari, and Ricci-Tersenghi [2016] uses statistical physics methods to obtain
close form expression for its asymptotic accuracy, that are still unproven. On the positive
side, Montanari and Sen [2016] establishes the following positive result.

Theorem 4. Let X be generated according to the model (3-1) with �0 2 f+1;�1gn,
and denote by Q� the solution of the SDP (Equation (3-7)). Then there exists a rounding
procedure that produces �̂

SDP
= �̂

SDP
(Q�) 2 f+1;�1gn such that for any � > 1 there

exists " > 0 such that, with high probability

jh�̂
SDP
;�0ij

k�̂
SDP

k2k�0k2

� " :(3-8)

In other words, semidefinite programming matches the optimal threshold.

3.2 The computation/information gap and the hidden clique problem. It is worth
emphasizing one specific aspect of Theorem 3. Within the spiked matrix model (3-1),
there exists a polynomia- time computable estimator that nearly achieves Bayes-optimal
performances, despite the underlying estimation problem is combinatorial in nature: �0 2

f+1;�1gn.
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It is important to stress that the existence of a polynomial-time estimator for the problem
(3-1) is far from being the norm, when changing the distribution pΘ, and the signal-to-
noise ratio �. In certain cases, simple algorithms achieve nearly optimal performances.
In others, even highly sophisticated approaches (for instance SDP relaxations from the
sum-of-squares hierarchy Barak and Steurer [2014]) fail.

Developing a theory of which statistical estimation problems are solvable by polyno-
mial-time algorithms is a central open problem in this area, and a very difficult one. For
certain classes of problems, a bold conjecture was put forward on the basis of statistical
physics insights.

In order to formulate this conjecture in the context of model (3-1), it is useful to state
the following theorem fromMontanari and Venkataramanan [2017] that concerns the case
of a general distribution pΘ of the entries of �0.

Theorem 5. Consider –to be specific– model (3-1), with �0 having i.i.d. entries with
known distributionpΘ. AssumepΘ and� to be independent ofn and known, with

R
�2pΘ(d�) =

1. If
R
� pΘ(d�) = 0, further assume � > 1. Then there exists a polynomial time (message

passing) algorithm that outputs an estimator �̂
AMP

= �̂
AMP

(X) such that

lim
n!1

jh�̂
AMP

(X);�0ij

k�̂
AMP

(X)k2k�0k2

=
q
1 � mmse(
AMP) :(3-9)

where mmse( � ) is defined as in Equation (2-13) and 
AMP is the smallest non-zero fixed
point of Equation (3-3).

Within the setting of this theorem, it is conjectured that Equation (3-9) is the optimal ac-
curacy achieved by polynomial time estimators Barbier, Dia, Macris, Krzakala, Lesieur,
and Zdeborová [2016], Lelarge and Miolane [2016], Lesieur, Krzakala, and Zdeborová
[2017], and Montanari and Venkataramanan [2017]. Together with Remark 3.1, this pro-
vides a precise –albeit conjectural– picture of the gap between fundamental statistical lim-
its (the Bayes optimal accuracy) and computationally efficient methods. This is sometimes
referred to as the information-computation gap. The same phenomenon was pointed out
earlier in other statistical estimation problems, e.g. in the context of error correcting codes
Mézard and Montanari [2009].

The hidden clique problem is the prototypical example of a statistical estimation prob-
lem in which a large information-computation gap is present, and it is the problem for
which this phenomenon is best studied. Nature generates a graph over n vertices as fol-
lows: a subset S � [n] of size jS j = k is chosen uniformly at random. Conditional on S ,
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for any pair of vertices fi; j g, an edge is added independently with probability

P
�
fi; j g 2 E

ˇ̌
S

�
=

(
1 if fi; j g � S ,
1/2 otherwise.

(3-10)

We are given one realization G such a graph, and are requested to identify the set S . In
order to clarify the connection with the rank-one plus noise model (3-1), denote by A the
+/� adjacency matrix of G. This is the n � n matrix whose entry i; j is Aij = +1 if
(i; j ) 2 E and �1 otherwise (in what follows, all matrices have diagonal entries equal to
+1). Then it is easy to see that

1
p
n

A = ��0�T
0 + W � W S;S ;(3-11)

�0 =
1

p
k
1S ; � =

k
p
n
;(3-12)

where W SS is the restriction of matrix W = W T to rows/columns with index in S
and (Wij )i<j ∼i id Unif(+1/

p
n;�1/

p
n). This model has a few differences with re-

spect to the one in Equation (3-1): (i) The noise is Radamacher instead of Gaussian;
(i i) The term W SS of noise is subtracted; (i i i) The distribution of the entries of �0 is
pΘ = (k/n)ı

1/
p

k
+ (1 � (k/n))ı0; hence, for � = k/

p
n fixed, pΘ depends on n. Of

these differences, only the last one is really important for our purposes, and changes some
qualitative features of the problem.

From a purely statistical point of view, the set S can be reconstructed with high prob-
ability provided that k � 2(1 + ") log2(n), by searching over all subsets of k vertices.
On the other hand, a variety of polynomial-time algorithms have been analyzed, including
Monte Carlo Markov Chain Jerrum [1992], spectral algorithms Alon, Krivelevich, and Su-
dakov [1998], message passing algorithmsDeshpande andMontanari [2015], semidefinite
programming relaxations in the Feige and Krauthgamer [2003] and sum-of-squares Barak,
Hopkins, Kelner, Kothari, Moitra, and Potechin [2016] hierarchies, statistical query mod-
els Feldman, Grigorescu, Reyzin, S. S. Vempala, and Xiao [2013]. Despite all of these
efforts, no polynomial-time algorithms is known to be effective with high probability for
k � n1/2�", suggesting the possibility of a large information/computation gap for the hid-
den clique problem. As shown in Deshpande andMontanari [2015], this is consistent with
the general picture emerging from statistical physics (although the hidden clique problem
does not fit in the setting of the conjecture mentioned above).
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4 Message passing algorithms

Message passing algorithms were already mentioned a few times in the previous pages
and provide one natural class of algorithms to deal with random structures. Also, they
are intimately connected to mean field approximations in statistical physics. Given an
undirected graph G = (V;E), we introduce the set of directed edges EE = f(i ! j ) :

(i; j ) 2 Eg (namely, for each edge (i; j ) 2 E, we introduce the two directed edges (i !

j ) and (j ! i)). A message passing algorithm operates on messages (�t
i!j )(i!j )2 EE

2

M EE taking values in a set M, with t a time index. Messages are updated according to local
rules:

�t+1
i!j = Ψ

(t)
i!j

�
�t

k!i : k 2 @i n j
�
;(4-1)

In other words, a message outgoing vertex i at time t+1 is a function of messages ingoing
the same vertex at time t , with the exception of the message along the same edge. Here
all edges are updated synchronously: asynchronous schemes are of interest as well.

Notice that rather than an algorithm, (4-1) describes a general class of dynamical sys-
tems: we did not specify what the updating function Ψ

(t)
i!j are, what is the space M in

which messages live, and not even what is the problem that we are trying to solve. We
only insisted on locality and the ‘non-backtracking information’ condition: these turn out
to be sufficient to lead to some interesting properties of the dynamical system (4-1) when
the underlying graph is a tree or locally tree-like Richardson and Urbanke [2008].

Special forms of the dynamics (4-1) are used for Bayesian inference Koller and Fried-
man [2009], decoding in digital communications Richardson and Urbanke [2008], and
combinatorial optimization Mézard and Montanari [2009]. To the best of my knowledge,
the first appearance an algorithm of the form (4-1) (and its analysis) dates back to Gallager
Ph.D. thesis on low-density parity check codes in the early sixties Gallager [1962]. As an
analytical tool, recursions of this type have been in use in physics at least since Bethe’s
work in the thirties Bethe [1935].

At first sight, message passing algorithms might seem immaterial to the problems dis-
cussed in the rest of this paper: typically these are not associated to a locally tree-like graph
(possibly with te exception of some sparse-graph versions of the hidden-clique problem
Deshpande and Montanari [2015]). Somewhat surprisingly, there exists a natural class of
algorithms whose datum is not a locally tree-like graph but a (dense) random matrix, and
which can be considered a close relative of message passing algorithms. In fact, they can
be thought as the limit of message passing algorithmwhen the average degree of the under-
lying graph diverges (see, for instance, Bayati and Montanari [2011]). These algorithms
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are known as approximate message passing: for the sake of simplicity we will briefly dis-
cuss them in the case in which the data consists of a matrix A ∼ GOE(n). The algorithm
operates on variables �̂

t
2 Rn�k where k is considered as fixad as n ! 1. This state is

updated according to

�̂
t+1

= Aft (�̂
t
) � ft�1(�̂

t�1
)BT

t ;

Bt =
1

n

mX
i=1

@ft

@�̂
t

i

(�̂
t

i ) :
(4-2)

Here ft : Rk ! Rk is a Lipschitz continuous function and we denote by ft (�̂
t
) 2 Rn�k

the matrix that is obtained by applying ft row-by-row to �̂
t
. The i -th row of �̂

t
is denoted

by �̂
t

i and, by convention, B0 = 0. Once again, Equation (4-2) does not specify the
update functions ft , nor the problem we are trying to solve: rather it define a class of
dynamical systems. However, special cases can be developed for Bayesian inference,
statistical estimation, optimization, and so on.

In the Bayesian case, the functions ft ( � ) take the form of conditional expectations
with respect to certain distributions, and the fixed point version of the iteration (4-2) dates
back to the work of Thouless, Anderson, Palmer (TAP) on mean field spin glasses Thou-
less, Anderson, and Palmer [1977]. Iterative solutions of the TAP equations were studied
among others in Bolthausen [2014]. The general (non-Bayesian) formulation was devel-
oped and analyzed in D. L. Donoho, Maleki, and Montanari [2009] and Bayati and Mon-
tanari [2011], with the original motivation being its application to compressed sensing.

Crucially, the recursion (4-2) admits an asymptotically exact characterization in the
limit n ! 1 with t fixed. This type of analysis is known as state evolution.

Theorem6. Consider the AMP iteration (4-2) with ft Lipschitz continuous,A ∼ GOE(n),
and deterministic initialization �̂

0
such that limn!1 f0(�̂

0
)Tf0(�̂0)/n = Σ0 2 Rk�k .

Define the sequenceΣt 2 Rk�k via the recursion:

Σt+1 = E
˚
ft (Σ

1/2
t g)ft (Σ

1/2
t g)

	
;(4-3)

where expectation is with respect to g ∼ N(0; Ik). Then, for any t and any test function
 : Rk ! R that is continuous and with at most quadratic growth at infinity, the following
holds almost surely

lim
n!1

1

n

nX
i=1

 (�̂
t

i ) = E
˚
 (Σ

1/2
t g)

	
:(4-4)
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A theorem of this typewas first proved in the case of the TAP equations for the Sherrington-
Kirkpatrick model in Bolthausen [2014] and then in general in Bayati and Montanari
[2011]. Generalizations have also been proved for matrices with non-i.i.d. entries Javan-
mard and Montanari [2013], non-Gaussian random matrices Bayati, Lelarge, and Monta-
nari [2015], non-separable functions ft Berthier, Montanari, and Nguyen [2017], invariant
matrix ensembles Schniter, Rangan, and Fletcher [2016], non-asymptotic settings Rush
and Venkataramanan [2016], non-deterministic initializations Montanari and Venkatara-
manan [2017].

This type of analysis is used to prove the algorithmic part of Theorem 3, as well as
algorithmic versions of the other theorems in this paper.

5 Context and conclusion

For the greatest part of the last century, mean field theory has been an important tool used
by physicists to understand the behavior of systems with a large number of degrees of
freedom Landau [1937]. Classical mean field theory describes homogeneous states, e.g.
the state of a fluid in which each molecule interacts with the average environment created
by all the other molecules. Starting in the late seventies, a new class mean-field ideas was
developed to deal with heterogeneous states, where all particles look statistically the same,
but typical configurations are highly heterogeneous, as is the case with disordered solids
and spin glasses Kirkpatrick and Sherrington [1978] and Parisi [1979]. This opened the
way to applying the same tools to a variety of probabilistic models without apparent con-
nection to physics, including combinatorial optimization and neural networks (seeMézard,
Parisi, and Virasoro [1987] for seminal papers in this direction).

Over the last few years, this circle of ideas has gone through a spectacular renaissance
for at least three reasons: (i) Mathematical methods have been developed to prove (part
of) physicists’ predictions Talagrand [2007], Panchenko [2013], and Ding, Sly, and Sun
[2015]; (i i) Structural insights from physics have unveiled new computational phenom-
ena; (i i i) New applications of these techniques have emerged within high-dimensional
statistics and machine learning, generating interest across several communities.

This brief overview focused on the last two points, and hopefully will provide the reader
with an entrypoint in this rapidly evolving literature.
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