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1 Introduction

Many Bayesian games involve discontinuities in payoffs as strategies are var-
ied. For example, in auctions, there are typically discontinuities in payoffs
at points where bids are tied. Moreover, at such tied bids, a bidder may
make inferences concerning the value of an object conditional on whether
or not the tie is broken in her favor. These discontinuities make proofs of
existence of equilibrium very difficult, and, in a number of examples lead to
non-existence. This is important because in many settings, such as auctions,
the continuum bidding spaces are a natural and very handy modeling tool,
and so it is disturbing that there seems to be a real difference between games
with finite action spaces (which have equilibria under mild conditions) and
games with continuum type spaces.

We consider Bayesian games in which tie-breaking (or more generally,
“sharing”) is allowed to be “endogenous” in the sense that it depends on the
private information of players. This establishes the correct limits of finite ac-
tion games and eliminates the disturbing non-existence at the limit problems.
To do this, we construct an augmented game in which an announcement of
type is added to the original strategy space. The type announcement is ir-
relevant except at points of indeterminacy of the original game (e.g., at ties
in auctions). We show that under mild conditions such games have an equi-
librium in which the announcement is truthful. Thus, for example, auctions
which fail to have a normal equilibrium do have equilibria if one allows an
endogenous determination of how ties are broken. And, for the right tie-
breaking rule it is incentive compatible for the players to reveal their true
types.

An important corollary to our results concerns a large class of private
value auctions. This class includes single and double discriminatory and uni-
form auctions and allows for multiple unit demands and supplies and for
correlations of demands and supplies. Our results imply that these auctions
have equilibria in the augmented game where tie-breaking is type depen-
dent. However, we show that if distributions over the private valuations are
atomless (in a sense to be made precise) then the tie-breaking rule is never
relevant in equilibrium and so the bidding behavior in the equilibrium of the
augmented game is in fact an equilibrium of the game with standard tie-
breaking rules. We also prove that each auction in our class has an equilib-
rium where trade occurs with positive probability. So, our results are not
vacuous in settings where there exist degenerate no-trade equilibria (as in a
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double auction in which all sellers ask for a very high price, and all buyers
offer 0). As far as we know, our result about positive trade equilibria in e.g.,
double auction settings is completely new to the auctions literature.1

Both the method of proof and the spirit of our existence result for games
with endogenous sharing owe a debt to Simon and Zame [23] (henceforth SZ).
They establish existence of equilibrium for a class of games with complete
information but with discontinuous payoffs. The key to their construction is
to endogenize payoffs at combinations of strategies that lead to discontinuities
in such a way as to recreate the necessary continuity. In location games,
for example, this amounts to allowing a choice of market shares if the two
firms locate in the same place. Our existence result extends this style of
construction to Bayesian games, by allowing the sharing rule to depend not
only on the parameters of the game, but also on the private information of
players.

The construction used in establishing our results about auctions also owes
a debt to Maskin and Riley [14]. The strategy of their proof is to consider
auctions in which, in the event of a tie, a Vickrey auction takes place. For
the auctions they consider, the Vickrey auction is enough to guarantee that
payoffs are preserved in the limit as the finite grid of bids grows fine. They
then argue that these ties could not have been occurring anyway, and so the
equilibrium is in fact a standard one. So, exactly like them, our idea is to
show existence in a game where one does something strange (but incentive
compatible) in the event of a tie and then work backward to show that
in many cases of interest this was irrelevant. Our results for private value
auctions, cover a substantially broader set of cases than those of Maskin and
Riley, essentially because our construction of endogenous sharing allows for
much more general methods of allocating objects at discontinuities than does
Maskin and Riley’s use of the Vickrey auction. Hence, our results are stronger
because our tie breaking method is potentially stranger. They show existence
for single unit one-sided high bid auctions, and for the private value case need
affiliation of types. Most importantly, we do not need affiliated types, and
cover a variety of payment rules, multiple unit demands and supplies, and
double auctions. On the other hand, their results hold for some non-private
value auctions while Theorem 5 does not. It is an open question how far

1Such no-trade equilibria are notoriously difficult to overcome in some other settings.
For instance, see the discussion of positive trade equilibria in market games in Dubey and
Shubik [7] and Peck, Shell, and Spear [17].
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techniques like those in this paper can extend beyond private value auctions.
This paper is also related to the other literature on existence in games

with continuum type spaces, including, for example, Dasgupta and Maskin
[6] and Simon [22]. Many of these papers have been generalized by Reny
[19], and so we focus on the relationship of our paper to Reny’s (see Reny
for an excellent discussion of how his paper in turn relates to the previous
existence literature). Reny’s approach is based on a condition termed better
reply security. Essentially, better reply security requires that when there
is a profitable deviation from a strategy, then some player has a deviation
which is profitable even if other players play a little distance from the base
strategy. Under better reply security plus some other conditions, games have
Nash equilibria. Reny shows that his condition applies in a multiple unit,
private value, pay your bids auction, a case for which we also prove existence
(see his Example 5.2). Our auction result is stated for a substantially broader
class of auctions that Reny’s, although one suspects that his method would
apply to many of the cases we cover that he does not. More importantly,
Reny’s results only hold in situations in which one can argue a priori that
there is a best response in increasing strategies whenever one’s opponents
use increasing strategies. This requires fairly tight restrictions on how values
are related. In our work, these restrictions are unnecessary. See Example 3
below.

Reny, in his discussion of SZ, ([19], page 1050) states that an approach
such as theirs is unlikely to be helpful in, for example, auction settings,
because “One cannot leave some of the payoffs [at discontinuities] unspecified,
to somehow be endogenously determined.” In a sense, the point of this paper
is that, “in fact you can, and in such a way that it is incentive compatible
for players to reveal the information you need to do so.”

The other major difference between our paper, and previous existence
papers is that in games which do not have Nash equilibria, we are able to
exhibit a “close by” game (the augmented game) that does.

Lebrun [12],[13] also shows existence in single unit first price auctions.
His strategy is based on finding conditions such that a set of differential
equations characterizing equilibrium has a solution. This approach allows
for interesting comparative statics results. See also Bajari [3] on this ap-
proach. Using the differential equations approach, Lizzeri and Persico [11]
show existence in first price auctions with a reserve price.

Athey [2] addresses existence in a different way. She considers conditions
on games such that a monotone comparative statics result applies to the best
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bid of a player as his signal varies. Essentially, one imposes a condition under
which, if all of i’s opponents are using an increasing strategy, i has a best
response in increasing strategies. A strength of Athey’s result is that it does
not rest on private values. It does however, require a single dimensional type
space with something akin to MLRP (see again Example 3). Athey provides
a number of examples of auctions in which her conditions are satisfied.

Finally, Ye [28] has some interesting work on existence in double auc-
tions. Unfortunately, he is unable to rule out the no-trade equilibrium. Our
belief is that our positive trade result along with his derivation constitute an
alternative proof of existence in the class of double auctions he studies, one
that does not rely on the machinery used here.

Section 2 presents an example with no sensible equilibrium under stan-
dard tie breaking. The example is not covered by the previous literature on
existence of equilibria even though it has a very natural structure. We show
how, in this example, the limit of behavior in games with finite approxima-
tions on the bid space implies type dependent tie breaking in the game with
continuum strategy space. This leads to the general conjecture that games
with endogenous sharing rules have equilibria. Section 3 contains the rele-
vant notation and definitions. Section 4 presents our central theorems about
existence with endogenous sharing rules. In Section 5, we show how this
result can be used to demonstrate existence of standard equilibria in private
value auctions. Section 6 concludes. Two appendices contain proofs.

2 An Example

Consider a two player auction with the following features.

• Utility for player i is a convex combination ati + (1 − a)q of a private
value ti and a common value q.

• The private value ti takes on value either 0 or 1 with equal probability,
and independently of the other parameters of the auction.

• The common value takes on values 0 and v, again with equal probabil-
ity.

• Bidders each observe a signal taking on three possible values (low,
middle, high) about the common value component. Conditional on
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the low signal, a bidder knows that q = 0. Conditional on the middle
signal, it is equally likely that q = 0 or q = v and so this signal is
uninformative. Conditional on the high signal the bidder knows that
q = v. We will refer to bidders who receive either extreme signal as
“sure,” and bidders who receive the middle signal as “unsure.” A
bidder has a probability m of being unsure.

When a = 0 the setting is one of pure common values, and with a = 1
of pure private values. When 1 > a > 0 there are both private and common
components to an agent’s valuation.2 In the situation where 1 > a > 0, so
that both common and private components are important, higher bids by an
opponent do not always translate into better news about a player’s value. An
opponent’s bid could reflect information about private value, common value,
or both. This invalidates the usual arguments that higher bids translate into
better news that underlie constructions of equilibria in the previous auctions
literature (e.g., Milgrom and Weber [16], Maskin and Riley [14], or Athey
[2]).

Consider a sealed bid Vickrey auction. Each bidder i submits a bid bi.
The high bidder is awarded the object and pays the second highest bid. Ties
are broken by a flip of a fair coin.3

As usual for second price auctions, there is the trivial asymmetric equi-
librium in which every type of player 1 bids b > v + 1, while every type of
player 2 bids 0. With a variety of weak domination or perfection notions,
or an appeal to symmetry, all sure types must bid their value. So, sure
types bid in {0, a, (1− a) v, a+ (1−a)v}. Assume that a and v are such that
a < (1 − a)v, so that these elements are ordered as indicated. In words,
q = v is more important than ti = 1 in terms of payoffs. Assume further that
a < v/2.

Consider the bids of unsure types for whom ti = 0. A bid above (1− a)v
can be ruled out by weak dominance, since (1−a)v is the maximum possible
value of the object for a bidder with ti = 0. A bid of (1−a)v sometimes wins

2Various extensions to the example are possible. See the working paper by Jackson [9].
See Jackson [8] and Pesendorfer and Swinkels [18] and for analyses of efficiency properties
of auctions where such preferences are assumed.

3In a three person version of this game, the non-existence result here extends to any
tie breaking rule that does not use private information. So, this example fails existence
even with SZ style endogenous sharing. For further details of this and other aspects of
this example, see [9].
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when q = 0 (since opponent types who have ti = 1 and know q = 0 bid a) and
so such a bid results in a negative expected utility. A bid in [a, (1− a) v) wins
in only two circumstances: either the opponent is also unsure, in which case
the object has expected utility v/2, or the opponent is sure that q = 0 (and
has t = 1) in which case the utility is 0. For m small enough, the later event
is much more likely than the former, and so these bids also earn negative
expected utility. So, unsure types for whom ti = 0 must bid in [0, a). But
over this range, anytime a bidder wins, either the other player is also unsure,
and so the object has expected utility v/2 > a, or the other player is sure, in
which case the price is 0. So, if one is winning with probability less than one
in the event that the other player is also unsure, one has an incentive to raise
ones bid closer to (but not equal to!) a. Since both players can’t be winning
with probability one conditional on their opponent being unsure and having
ti = 0, there is no equilibrium.

Essentially, we have an openness problem: there is no “largest bid less
than a.” And, if one considers a finite grid of bids, there is a perfectly sensible
equilibrium. To simplify, consider modifying the example so that unsure
types have ti = 0 always. Then, there is an equilibrium of the auction with a
finite grid of bids where sure types bid at the grid points immediately below
a, (1− a)v, and a+ (1− a)v and unsure types bid b∗, where b∗ is the second
highest grid point below a.4 Unsure types do not want to lower their bid,
because at b∗, both bidders strictly prefer to win. They do not want to raise
their bid because winning at the grid point below a involves a disastrous
winner’s curse.

This example illustrates why existence results based on finite approxima-
tions are problematic for discontinuous Bayesian games. While the above
is an equilibrium for each finite grid, the limit of these behaviors is not an
equilibrium of the auction with continuum bid space. In particular, in the
limit, both unsure types (with ti = 0) and sure types who know q = 0 and
have ti = 1 bid a, and hence the allocation changes to one where unsure
types sometimes win against sure types.

Consider the following modification to the auction with continuous bid-
ding spaces. In the event of a tie, the players simultaneously announce their
signal and type. In this example, only the announced signal will turn out to
matter. If both bidders announce that they are sure or both unsure, the ob-

4When one includes unsure types with ti = 1, the equilibrium is as described for the
other types, while with ti = 1, unsure bidders follow a mixed strategy.
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ject is randomly assigned. If one player announces she is sure and the other
player announces that he is unsure, then the object goes to the player who
said she was sure. In this limit game, it is an equilibrium for unsure types to
bid a, and for all players to announce their types truthfully in the event of a
tie. The only time (given equilibrium play) that the announcements matter
is when there is a tie at a. In this event, the announcement game has the
effect of recreating what was going on in the limit of the auction with finite
bid spaces. The sure player is given the object and the unsure player avoids
the selection problem. And, any allocation that a player can achieve by a
false announcement in the continuum game is one he could have come arbi-
trarily close to achieving by deviating late in the sequence of finite games,
and so players will not wish to make false announcements.

Generously interpreted, this example says that while (a non-weakly domi-
nated) equilibrium does not exist in this auction with the standard tie break-
ing rule, such an equilibrium exists if players can “talk” in the event of a tie.

The heart of this paper is to show that this construction is general. Con-
sider a Bayesian game satisfying some regularity conditions on beliefs, pay-
offs, and strategy spaces, but allowing for discontinuities, and more generally,
ambiguity at some points in the strategy space about the allocation. Fix a
sharing rule at points of ambiguity (so, in an auction, specify a tie breaking
rule). For each finite grid on strategies, there is an equilibrium with this
sharing rule. Now, consider the limit of this equilibrium as the grid becomes
fine. We present an augmented game differing from the original game only in
that players make announcements whose sole use is to affect the manner in
which any given ambiguity in outcome is resolved. This augmented game al-
ways has an equilibrium where announcements are incentive compatible and
which replicates what was happening in the limit of the games with increas-
ingly fine finite strategy spaces. Moreover, we can find such an equilibrium
that satisfies a perfection notion.

3 Model and Definitions

In this section, we introduce a class of Bayesian games that allows for dis-
continuities in payoffs. Obvious examples include auctions, wars of attrition
(essentially all pay auctions), and various research and development models.
We then show how to extend these games to include a type announcement
and discuss the various concepts that will be useful in what follows.
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3.1 A Class of Bayesian Games

Players

N = {1, . . . , n} is the set of players.

Types

Θi is the set of types for player i, a compact metric space. Θ = Θ1 ×
· · · ×Θn.

Uncertainty

P is a (Borel) probability measure on Θ that describes the uncertainty
over types. The marginal of P on Θi is Pi. We assume that P is absolutely
continuous with respect to P1 × · · · × Pn, with continuous Radon-Nikodym
derivative f(θ).

This condition is satisfied automatically if Θ is finite or if types are in-
dependent, but is nonetheless restrictive. To see a case that is ruled out, let
Θ1 = Θ2 = [0, 1] and let P be uniform on (θ, θ). Thus, types are perfectly
correlated, and so P is not absolutely continuous with respect to P1 × P2,
the uniform distribution on [0, 1]2. On the other hand, types can be “almost
perfectly correlated” in the sense that they could be distributed uniformly
on an arbitrarily small neighborhood of (θ, θ).

Strategies

Si is the set of pure strategies for player i, a compact metric space. S =
S1 × · · · × Sn.

Outcomes

O : S →→ [0, 1]K is the outcome correspondence. O is assumed to be
upper hemi-continuous and non-empty, convex and compact valued.

Utility functions

ui : [0, 1]K × S × Θ → [0, 1] is the utility function for player i. ui is
continuous for every i.

When we refer to a game in the sequel, we mean one with the above
features.

There is an extra layer of definition here relative to standard definitions of
games, as we define an outcome correspondence and have payoffs depend on
outcomes and strategies rather than simply on strategies. This is consistent
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with our interest in existence of equilibrium in games such as auctions, where
tie breaking involves decisions over allocations of objects and payments and
only implicitly over utilities. The auctioneer often cannot observe the true
preferences of the players and can only define sharing rules in terms of the
allocations. In equilibrium allocations implicitly determine utilities.

Examples

The following are three examples of games meeting our conditions. Ex-
ample 1 is provided simply to see the formalization in action for a familiar
example. Example 2 is another example (along with the one of Section 2) in
which existence without endogenous tie breaking fails and so existing exis-
tence theorems do not apply, but to which ours does. Example 3 is a game
to which no existing existence theorem applies, but which falls into the class
for which we show existence (with standard tie breaking) in Section 5. See
that section for a number of examples for which our techniques allow one to
prove the existence of standard equilibria in private value auctions.

Example 1 Consider a standard single unit private value auction. Player i
has value θi for the object, and submits bid si. The various θi are i.i.d.

In this example, the outcome O(s) can be interpreted as specifying the
probability with which the object is given to each player as a function of
bids. So, o ∈ O(s) is an n-dimensional vector o ∈ [0, 1]n such that

∑
oi ≤ 1

(allowing for the possibility of a reserve price so that the object is not given
away). O(s) is singleton valued whenever there is a unique highest bid si > sj
for each j 6= i, and then if si is at least the reserve price oi = 1 and oj = 0 for
j 6= i. To make O upper hemi-continuous we allow that in the event of a tie
at the highest bid, the allocation can be made with any probability among
the tied bidders.

Note that O does not specify payments or values for the object, simply
who gets it. Player i’s utility function can incorporate the payment and
valuation. So ui(o, s, θ) = oi (θi − si) . Note that ui is continuous in o, θ and
s. The only discontinuity is of o in s.

Example 2 Maskin and Riley [14] consider the following example of an
auction with negative dependence on types. Two buyers have type either
0 (probability 2/3) or 1 (probability 1/3), drawn independently. Player i’s
utility for the object is 3 + si − 2sj . A first price sealed bid auction is held.

Maskin and Riley show that there is no equilibrium for this auction, even
if ties are broken by holding a subsequent Vickrey auction among the tied
bidders. As established in Theorem 1 below, there does exist an equilibrium
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of this auction if tie-breaking is endogenous.
Example 3 Consider a two player private value first price auction. Values are
uniformly distributed over {(v1, v2)|v1 ≥ 0, v2 ≥ 0, v1 + v2 < 12} . This game
has no Nash equilibrium in which bids are increasing in values. To see why
not, assume such an equilibrium exists. Suppose b2(v) > v for some v. Then,
since there is a positive probability conditional on v2 = v that v1 < v, one of
players 1 and 2 is with positive probability winning with a bid above value,
and so has a profitable deviation. Hence, b2(v) ≤ v for all v. Hence, when
v1 = 12−ε,and so v2 ≤ ε, b2 ≤ ε. So, b1(12−ε) ≤ ε. As this holds for all ε > 0,
the only possible equilibrium in increasing strategies is b1(v) = b2(v) = 0 for
all v, which is clearly absurd.

As we show in Section 5 this game has an equilibrium. However, because
this equilibrium is not in non-decreasing strategies, neither the techniques of
Reny nor of Athey can be made to apply here. And, while this example is
stylized for expositional simplicity, the broader point remains valid. When
values are anything but affiliated, existing methods of analysis are in trouble.

3.2 Bayesian Games With Endogenous Tie Breaking

Augmented Strategies

Let Zi = Si × Θi. Players choose a strategy in the Bayesian game and
make a (possibly false) announcement of their own type.

Sharing Rules

A sharing rule is a function o : Z → [0, 1]K such that o(s, θ) ∈ O(s) for
each (s, θ) ∈ Z.

While true types are unobservable, we allow the mechanism to ask for
announcements of types and the sharing rule to depend on these announce-
ments. Note that the announcement of types does not affect which outcomes
are feasible, but may be used in the selection of an outcome.

Distributional Strategies

A distributional strategy for player i is a probability measuremi on Zi×Θi

with marginal Pi on Θi.
See Milgrom and Weber [16] for details.

Equilibrium

11



Following Milgrom and Weber [16], we can define the payoff to player i
as a function of the profile of distributional strategies (m1, . . . ,mn) and the
sharing rule o as

πi(o,m1, . . . ,mn) =

∫
ui(o(z), s, θ)dm1(z1|θ1) . . . dmn(zn, |θn)dP (θ).

The pair m, o form an equilibrium if

πi(o,m1, . . . ,mn) ≥ πi(o,m−i, m̂i)

for each i and distributional strategy m̂i for player i.
An equilibrium is thus a Bayesian equilibrium where the allocation rule

has been endogenously determined.
We will prove the existence of equilibria where the announcement of types

is truthful and thus where o is incentive compatible in the following sense.

Incentive Compatibility

Let D = {(s, θ′, θ) ∈ Z×Θ | θ′ = θ)} and Di = {(si, θ′i, θi) ∈ Zi×Θi | θ′i =
θi)} be the diagonals of Z × Θ and Zi × Θi. Thus, these are the sets where
announced types correspond to true types.

An equilibrium m, o has an incentive compatible sharing rule if mi(Di) =
1 for each i (or equivalently m(D) = 1).

The fact that incentive compatibility of o is defined relative to an equi-
librium m is important. A given type is interested in inferring the types of
other players (given that ui can depend on θ−i as well as θi). This inference,
of course, depends on the distributional strategies being played.

For the actual operation of the game, the sharing rule can be run at a
stage after s has been submitted. So players can be asked to announce their
types only in situations where a realized s has led to the necessity of selecting
an outcome or breaking a tie.

Tie-Breaking

For certain results about measurability, we refer to a class of games where
O is derived from tie-breaking.

Let us write outcome o as a vector (o1, . . . , on) ∈ [0, 1]K , where ui(o, s, θ)
depends only on oi, s, θ. (Taken alone, this is without loss of generality,
simply by taking the n-fold product of o and letting K be nK ′ where K ′ was
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the original dimension of o. However, it is restrictive in conjunction with
what follows.)

An outcome correspondence O is derived from tie breaking if for every s,
o ∈ O(s), o′ ∈ O(s) and o′i 6= oi imply that si = sj for some j 6= i.

Thus, an outcome correspondence is derived from tie-breaking if there is
only discretion in i’s outcome when i has submitted the same strategy as
some other individual. For example, in an auction where each bidder can
buy at most one object, *if i’s bid has not tied with any other bid then i
has either won an object or not. Only when i’s bid is exactly tied with some
other bid is there ambiguity about whether i should receive an object.

3.3 Weakly Perfect Equilibria5

As discussed in Section 2, it is important to exclude degenerate equilibria
such as the one in a Vickrey auction where one bidder bids an amount greater
than any possible value, and other bidders all bid zero. Such equilibria can
be ruled out by domination arguments. However, looking for equilibrium in
undominated strategies can be a problem with continuous action spaces. To
see why, consider the following example.

Example 4 Consider a complete information, two person, first price auction
in which both players have value v = 1 with probability 1. This auction has
a unique Nash equilibrium (regardless of the tie breaking rule) where both
players bid 1. These strategies always lead to a payoff of 0 and so are weakly
dominated by any lower bid.

This equilibrium is quite natural (it is equivalent to a Bertrand equilib-
rium) and one that we wish to admit in an existence result. So, we cannot
simply look for equilibria where no player ever plays a weakly dominated
strategy. However, note that in the example, the strategies are the limit of
ones nearby that are not weakly dominated.

In order to establish a general existence result, we need to allow for such
situations and consider a notion of equilibrium that rules out “clearly” dom-
inated behavior, but not behavior that might be the limit of reasonable play.
The following extension of Selten’s trembling hand perfect equilibrium con-
cept [21] accomplishes this.

5Most of what follows can be absorbed without a detailed understanding of weak per-
fection. The reader interested in getting to the heart of the paper can thus skip this
section, at least on a first reading.
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Consider a finite grid S∗i of strategies for each i. Given ε ≥ 0, let

Cε
i (S

∗
i ) = {mi | mi({si} × E) ≥ εPi(E) ∀si ∈ S∗i and closed E ⊆ Θi}.

Thus Cε
i (S

∗
i ) is the set of distributional strategies for i for which (almost)

every type plays every strategy in S∗i with probability at least ε.

We say that o,m is an ε-constrained equilibrium of the game with strategy
space S∗ if mi ∈ Cε

i for each i and πi(o,m) ≥ πi(o,m−i, m̂i) for every m̂i ∈
Cε
i .

We say that o,m is a weakly perfect equilibrium (of the game with strat-
egy space S) if it is an equilibrium, and there exists a sequence of finite
grids {Sr} → S (in Hausdorff distance), a sequence εr → 0, and a sequence
{or,mr} of εr-constrained equilibria of the game with strategy space Sr, such
that mr weakly converges to m and ormr weakly converges to om.6

Thus, a weakly perfect equilibrium is an equilibrium that is the limit
of a sequence of equilibria of approximating constrained games, where the
constrained games have finite strategy spaces and interior mixed strategies.

If Si is finite for each i and Θi is a singleton, then this is trembling hand
perfection. The added complications come from handling the continuum
strategy and type spaces.

In finite games, a weakly perfect equilibrium uses only strategies that are
not weakly dominated. With a continuum of pure strategies, however, weak
perfection does not rule out the use of weakly dominated strategies. This is
easily checked with regard to Example 3 of a complete information auction
where the unique equilibrium is for both players to bid 1. One might conjec-
ture that the definition of weak perfection would allow for strategies that are
weakly dominated provided they are the limit of undominated strategies, but
would rule out strategies that are not the limit of undominated strategies.
This conjecture (and in fact even weaker conjectures) are false. To see why,
consider the following example.

Example 5 There are two players with strategy spaces Si = [0, 1]. There
is complete information, so Θ is a singleton. We suppress reference to θ for
the remainder of the example. The outcome space is [0, 1]. Preferences are
represented by u1(o, s) = o and u2(o, s) = s2. Thus, player 2 prefers to play
higher strategies, regardless of what player 1 does or what the outcome is,

6Here, ormr denotes the measure defined by νr(E) =
∫
E
or(z)dmr(z, θ) where E ⊂

Z ×Θ is Borel.
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while player 1 only cares about the outcome. The outcome correspondence
is given by O(s) = [0, 1] if s1 = s2 = 0 and O(s) = {0} otherwise.

Consider the selection o where o(s) = 1 if s1 = s2 = 0, and the strategy m,
where m has each player choose 1 with probability 1. Here, o,m is a weakly
perfect equilibrium. To see this, set the grids Sri = {1/r, 2/r, ..., (r − 1)/r}
and let εr = 1/r2. Let or = o for each r, and let mr

i put εr weight on each
strategy other than (r − 1)/r and the remaining weight on (r − 1)/r. This
is an equilibrium of the εr constrained game, and so o,m is weakly perfect.
This is despite the fact that player 1’s only undominated strategy is s1 = 0.

The fact that s1 = 0 is not identified is due to the fact that it is a single
strategy (at a point of discontinuity) out of a continuum, that only performs
better than other strategies against a single strategy of player 2. In order
to push player 1 to play s1 = 0, one would need a notion of perfection that
was much stronger, involving, e.g., a continuum of approximating games.7

However, such a strengthening would lead to non-existence in situations like
Example 4.

Despite the fact that weak perfection does not rule out the use of certain
dominated strategies in Examples 4 and 5, it turns out that many weakly
dominated strategies are eliminated by weak perfection. In particular, as-
sume that (i) each pure strategy in a closed neighborhood E ⊆ Si is weakly
dominated for a given type θ (ii) a weakly dominating strategy exists for
each sufficiently fine grid on strategies, and (iii) the set of strategies for the
opponents on which strategies in E perform strictly worse than their domi-
nator is open. Then, no strategy on the interior of E will be used by i in a
weakly perfect equilibrium. Conditions (ii) and (iii) guarantee that for fine
grids, payoffs under the perturbed games generated by weak perfection will
reflect the weak dominance of elements in E. Condition (i) takes care of the
fact that convergence is weak.

So, in the continuum, strategies that are “robustly” weakly dominated, in
the sense of (i)-(iii) above, are ruled out by weak perfection. This eliminates
the degenerate equilibrium in the Vickrey auction, without eliminating the
natural equilibrium in Example 3. To see a proof that relies on these features,
see the proof of Lemma 4.

7We could build a richer version of the example in which O(s) blows up at an uncount-
able number of places (say whenever s1 = s2). No choice of the approximating grid would
then take care of the issue.
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4 Existence of Equilibrium

In this section, we establish our main result: augmented games have equi-
libria. To establish this for the case of infinite type spaces we use an extra
condition.

Payoffs that are Affine in Outcomes

Payoffs are affine in outcomes if for each i there exist continuous functions
vi : S ×Θ→ [0, 1]K and wi : S ×Θ→ [0, 1] such that

ui(o, s, θ) = vi(s, θ) · o+ wi(s, θ).

In auctions, where outcomes may be thought of as probabilities that an
agent is awarded an object or objects, payoffs are naturally affine in out-
comes. So, for example, recall that in Example 1, ui(o, s, θ) = oi(θi − si),
so vi(s, θ) = θi − si. Note that, because von Neumann-Morgenstern utility
functions are linear in probabilities, affineness does not rule out risk aversion
(or risk loving) on the part of bidders: we could equally well have taken
ui(o, s, θ) = oiU (θi − si) for any continuous U . Because the functions vi and
wi may depend on s, many relevant applications have a similarly natural
interpretation of the outcomes as probabilities over different configurations
of transactions.

The condition that payoffs are affine is central to the proof. As we use
finite approximations of the strategy sets to get existence in the continuum
strategy game, we need to keep track of payoffs at the limit to make sure
that we are selecting outcomes correctly at strategy combinations where O(s)
is multi-valued. Without the affine assumption, it is possible to start with
some simple exogenous selection from O, o, have a sequence of equilibria
o,mr of the finite approximations, so that omr weakly converge to some
limit om, and yet have the corresponding utilities fail to converge to the
limit utilities.8 If utility functions are affine in outcomes (and continuous

8To see a simple example: let S = [0, 1], and let mr place 1/2 weight on s = 1/2− 1/r
and 1/2 weight on s = 1/2 + 1/r. So mr weakly converges to m, where m puts probability
1 on s = 1/2. Let o(s) = 0 if s < 1/2, o(s) = 1/2 if s = 1/2, and o(s) = 1 if s > 1/2.
However, let u(o) =

√
o. Then

∫
u(o(s))dmr = 1/2 fails to converge to

∫
u(o(s))dm =√

1/2. The role of affiness is seen by noting that it is the case that
∫
v(s)o(s)dmr converges

to
∫
v(s)o(s)dm for any continuous v.
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in other variables) then weak convergence of omr implies the corresponding
convergence of utilities.

Theorem 1 Every game with payoffs that are affine in outcomes has a
weakly perfect equilibrium with an incentive compatible sharing rule. If O
is derived from tie-breaking, then the sharing rule can be chosen to be Borel
measurable.

We establish Borel measurability only in the special setting of tie-breaking
where the discontinuities in the outcome correspondence come from ties in
the strategies. While this is a restrictive assumption, it allows for an easy
proof of measurability.9

Let us first outline how Theorem 1 is proved and where the problem
arises. We then explain why the tie-breaking condition solves it.

The outcome selection o in the equilibrium of the augmented game is
determined from the limit of a sequence of equilibria of games with a finite
grid of strategies. The difficulty is that this limit is only determined by weak
convergence. So, outcomes are not completely tied down at the limit. And,
if the outcome for even a single strategy z is misspecified, then players may
wish to deviate from the proposed equilibrium. Thus, one has to identify
such problem z’s and correct o at those points. We correct the outcome
selection o at each problem point z by reconstructing the limit of what the
finite game specifies at z. However, even though the set of problem points is
Borel, there is no guarantee that this pointwise correction does not create a
selection that is not Borel measurable.

Under the condition that O is derived from tie breaking, problem points
arise only at tied strategies. The belief of a given player regarding other
player’s strategies can have at most a countable set of atoms, and only at
those atoms can there be a problem. Thus, we end up patching together a
countable set of measurable functions

While Borel measurability is desirable, even when o is not Borel measur-
able it is still integrable with respect to the equilibrium strategies and can
be evaluated with respect to pure strategy deviations. Also, there is no diffi-
culty implementing the allocation rule, since this can be done after the type
announcements have been made. However, (and we thank Simon and Zame

9Simon and Zame [24] establish Borel measurability of the allocation rule without
requiring that O is derived from tie-breaking. We understand that their result is based on
a new theorem on measurable selections from correspondences.
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for pointing this out), there is a question whether it is enough to check pure
strategy deviations in a setting where the payoffs to some mixed strategy
deviations are potentially undefined.

To this, we note the following. While the integral over payoffs following a
mixed strategy deviation may be undefined, payoffs are, point by point, less
than or equal to the payoffs to the equilibrium strategy. With nonmeasurable
sets, there exist pairs of lotteries over which it is unclear that an agent should
have a well defined preference ordering. But, it seems clear that an agent
should weakly prefer a lottery which gives him 1 always over one which gives
him at most 1 and sometimes less, even if the set of events on which it
gives less than 1 is not measurable. Essentially, the second lottery is weakly
dominated in its realizations.

In Section 5 we show that in a broad class of private value auctions there
is no need to worry about the selection of the outcome function in any case.

Games with Finite Type Spaces

Consider a game where Θ is finite and let T = #Θ. Let U : S →→
[0, 1]NT be defined by

U(s) = {u ∈ [0, 1]NT | ∃o ∈ O(s) s.t. u = (ui(o, s, θ))i∈N,θ∈Θ}.

U(s) is the set of vectors of utility realizations (across i and θ) correspond-
ing to the outcomes o ∈ O(s). Given the continuity of ui, it follows from
the properties of O that U is a compact valued and upper hemi-continuous
correspondence.

Theorem 2 Every game with a finite Θ and convex-valued U has a weakly
perfect equilibrium with an incentive compatible sharing rule. If O is derived
from tie-breaking, then the sharing rule can be chosen to be Borel measurable.

The strengthening of Theorem 2 relative to Theorem 1 is that it does not
require payoffs to be affine in outcomes, but only that U is convex-valued.

Symmetric Games

A game is symmetric if Θi = Θj, Si = Sj, ui = uj, for each i and j, P is
symmetric, and O is symmetric.10

10Given a permutation (bijection) σ : N → N, for any n-dimensional vector x let xσ be
such that xσσ(i) = xi; and for E ⊂ Θ, let Eσ = {θσ|θ ∈ E}. P is symmetric if for each E

and permutation σ, P (E) = P (Eσ). O is symmetric if for each permutation σ, o ∈ O(s)
implies oσ ∈ O(sσ). When we say ui = uj we mean that ui(o, s, θ) = uj(o

σij , sσij , θσij )
for all o, s, θ, where the permutation σij switches only i and j.
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An equilibrium is symmetric if mi = mj for each i and j and o is sym-
metric.

Theorem 3 Every symmetric game with payoffs that are affine in outcomes,
or a finite type space and U that is convex-valued, has a symmetric weakly
perfect equilibrium with an incentive compatible sharing rule. If O is derived
from tie-breaking, then the sharing rule can be selected to be Borel measurable.

The results in the sequel can be extended to symmetric equilibrium in
the same manner, when the underlying auctions are symmetric.

5 Existence in Private Value Auctions

In this section, we show that our results showing the existence of equilibrium
with endogenous sharing rules imply that for a large class of private value
auction there exist equilibria with any standard tie breaking rule (such as an
equally weighted randomization across tied bids).

5.1 A General Auction Model

We begin by presenting a general model of private value auctions. The model
includes auctions in which both demands and supplies may be for multiple
units, values may be correlated (but not perfectly) and in which the supply
and number of active bidder is stochastic.11 In addition, the model is broad
enough to include double auctions, all pay auctions, auctions in which players
are treated asymmetrically, and combinations thereof.

Players and Endowments

There are n + 1 players. There exists m < ∞ such that each player
i ∈ {0, 1, . . . , n} has an endowment of ei ∈ {0, 1, . . . ,m} indivisible objects.
Objects are identical. Let e = (e0, e1, . . . , en).

Valuations

Player 0 is non-strategic (which allows for an exogenous supply of objects
to be auctioned, as for example in a one sided auction) and has no value for

11So the model subsumes the auctions for which Swinkels [25], [26] establishes asymptotic
efficiency results, except that it does not allow for atoms in values.
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the objects. Each player i ≥ 1 desires at most m objects, and has valuations
which are represented by vi = (vi1, . . . , vim) . The interpretation is that i has
marginal value vih for an hth object, and so receives value

∑H
h=1 vih from

having H objects. Players have non-increasing marginal valuations so that
vih ≥ vi,h+1 for each h < m. Let v = (v1, . . . , vn).

For h ≤ ei, say that vih is a sell value. For h > ei, say that vih is a buy
value. We assume that there is v̄ < ∞ such vih ∈ [−1, v̄] for buy values,
and vih ∈ [0, v̄ + 1] for sell values. The different supports of buy and sell
values allow a player to be uninterested in selling or buying beyond any
given number of units.12

Types and Uncertainty

A player’s type θi is ei, vi. The vector (e, v) lies in Θ ≡ {0, 1, . . . ,m}n+1×
[−1, v̄ + 1]mn, with the restriction that buy values are in [−1, v̄], sell values
are in [0, v̄ + 1], and marginal values are non-increasing. The vector (e, v) is
drawn according to a probability measure P on Θ. The marginal of P onto
(ei, vi) is Pi. P0 is the marginal of P onto e0. As before, it is assumed that
P is absolutely continuous with respect to

∏n
i=1 Pi, with continuous Radon-

Nikodym derivative f(θ). This puts no restriction on how i’s endowment
and various values are related, but does impose that the various player’s
endowments and values are “not too dependent.” In particular, note well
that it does not impose any sort of affiliation among different player’s values.
So, for example, Example 3 is within our setting.

Values are atomless in the sense that Pi ({vih = a}) = 0 for all i, h and a.
This rules out that there is a positive probability that player i values an object
at some particular a. This is stronger than assuming that Pi is atomless as we
are assuming that no component h has an atom. However, the assumption
does not put any other restrictions on Pi. So for, example, Pi need not
satisfy any sort of full support condition and could have arbitrary correlation
structures among the various vih, and between values and endowments.

Strategies

Player 0 announces a reserve price vector b0 = (b01, . . . , b0m) ∈ [−1, v̄+ 1]
(arranged in non-increasing order), where v̄+ 1 ≥ b0h ≥ 0 for h ∈ {1, . . . , ei}
and where b0h = −1 for h > ei (which will imply that 0 cannot be a net
buyer) before the other players bid. Essentially, 0 will not part with his

12So, for example, m can be chosen very large to allow player 0 to have a large supply
available for sale, but this in no way imposes that any given player is interested in buying
more that say 2 objects. Values vih for h > 2 can be packed in [−1, 0).
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hth object unless he receives at least b0h for it. Each player i ∈ {1, . . . , n}
observes (ei, vi) and the reserve price vector.13 Player i then submits bi =
(bi1, . . . , bim) ∈ [−1, v̄ + 1]. Player i’s bids are arranged in descending order,
bih ≥ bi,h+1, h = 1, 2, . . . ,m− 1. Let B be the set of such bids. Players other
than 0 bid simultaneously.

Transformed Bids and the Allocation of Objects

To allow for auctions that treat players asymmetrically, we work with
transformed bids instead of the bids themselves in determining the winners.
This allows for auctions such as the PCS auctions (see, e.g., Cramton [5])
which subsidized bids by minority owned firms.

For each i ∈ {0, 1, . . . , n}, let gi(bi) ≡ (gi1(bi1), . . . , gim(bim)), where gi
maps B into B. Also, let each gih be a continuous and strictly increasing
function, mapping [0, v̄] onto [0, v̄].14 For auctions which treat all players
identically, gih can be taken to be the identity for all i and h.

An allocation is a specification of the probabilities that each bidder re-
ceives various numbers of objects. Before giving a formal definition, let us
verbally describe how objects may be allocated. We consider any allocation
rule for the base auction that does not rely on private information and such
that (a) if gih (bih) > gjh′ (bjh′) , then i gets an hth object before j gets an h′th

and (b) the right number of objects are given away.15 The inclusion of b0 in
this construction allows for reserve prices. So, in auctions that treat players
symmetrically, one object is awarded to each player (in the case of a seller,
being “awarded” an object means that she does not sell that object) for each
bid she made that is unambiguously among the

∑n
i=0 ei highest. In the event

that for some b, there are less than k bids above b but more than k bids of b,
some form of randomization takes place. There are several interpretations of
what “fair” randomization might mean. For instance, as in Swinkels [25] one
could allocate an object with equal probability to each player with an unfilled
bid at b and repeat until the objects are gone. Another sensible procedure is

13Secret reserve prices are handled by having player 1 have the only positive endowment.
14To handle situations where bids are subsidized by a given proportion or addition, we

can work with a subset of the strategy space having such subsidies and set the strategy
space large enough relative to the support of values so that we can still have fih(0) = 0
and fih(v̄) = v̄.

15In many real world situations, such as the PCS auctions, the actual implementation is
that if one bids x, one pays based on some percentage of x.We instead have payments based
on x, but whether one wins based on a scaling up of x. This simplifies the development
that follows, and comes to the same thing.
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to allocate objects with likelihood in proportion to the number of bids at b
submitted (as a single bidder may have more than one bid tied at b). For our
results, any tie breaking rule which does not depend on private information
will work, e.g., giving the objects to the people whose names come earliest
in the alphabet.

This is formalized as follows. An allocation is a vector o = (oeih) ∈
[0, 1](m+1)n+1(n+1)m, with the interpretation that oeih is the probability that
i receives exactly h objects when the endowment vector is e. The outcome
correspondence depends on the (non-augmented) strategy vector b, and is
represented as O(b) which is the set of all o such that for every e:

• oeih > 0⇒
∑m

w=h′ oejw = 1 for all j, h′ such that gjh′ (bjh′) > gih (bih) ;

and,

•
∑n

i=0

∑m
h=1 hoeih =

∑n
i=0 ei.

The first condition states that if j’s h′th bid exceed i’s hth, and i ever gets
an hth object under o, then j always gets at least h′ objects. The second is
the condition that the right number of objects are allocated (in expectation).
In Appendix B, we verify that the outcome correspondence O is upper hemi-
continuous, nonempty, and convex and compact valued.

Ties

Fix a selection o from O. Say that i’s hth bid is involved in a tie given bid
vector b and endowment e if

∑m
h′=h oeih′(b−i, b

′
i) = 1 for any b′i with b′ih > bih,

while
∑m

h′=h oeih(b−i, b
′
i) = 0 for any b′i with b′ih < bih.

This implies, for example, that there is a tie if there is one object, two
bidders, and g1(b1) = g2(b2). However, there is not a tie if there is one object

left at b̂, bih = bih+1 = b̂, but no other player bids at b̂. Nor is there a tie if
two players make the same bid, but all the objects are allocated to strictly
higher bids or there are enough objects that both players receive an object.

Payments and Utility Functions

The payment a player makes (or receives) depends continuously on the
vector of submitted bids and the number of objects won (or sold). The
payments are modeled by the continuous and weakly increasing function
Ci = (Ci0, Ci1, . . . , Cim) : {0, . . . ,m}n+1 × Bn+1 → [−v̄, v̄]m+1, such that i’s
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payment if the bid profile is b, the endowment vector is e ∈ {0, . . . ,m}n+1

and he receives h objects is Cih(e, b). Typically, Cih(e, b) will have the sign
of h− ei.

Player i has a continuous and strictly increasing von Neumann-Morgenstern
utility function Ui over her net payoff.16 We assume that Ui has a first deriva-
tive, and that this derivative is bounded from 0 and∞, so that in particular,
there is Λ <∞ such that U ′(x)/U ′(y) < Λ for all x and y. Thus, i’s expected
utility given an outcome function o, a bid profile b, valuation vector vi, and
endowment profile e is

ui(o, b, vi, e) =
m∑
h=1

oeih(b)Ui

(
h∑

h′=1

vih′ − Cih(e, b)

)
.

Given s = b and θi = (ei, vi), it is clear that ui(o, s, θ) = ui(o, b, vi, e) is affine
in outcomes.

Payments at Ties

Any time that i’s hth bid is involved in a tie at b for endowment e, we
require that Cih(e, b)−Ci,h−1(e, b) ≤ bih if bih is a buy bid. That is, if i’s hth

bid is on the threshold between winning and losing, then i pays at most bih for
an hth object. If bih is a sell bid involved in a tie, then Cih(e, b)−Ci,h−1(e, b) ≥
bih. Rewriting this as (−Ci,h−1(e, b))−(−Cih(e, b)) ≥ bih, this is the statement
that the revenue from selling an hth object is at least bih.

Existence of Equilibria in Augmented Auctions

Let ΦA be the set of auctions satisfying the conditions given above. By
Theorem 1 each A ∈ ΦA has a weakly perfect equilibrium with an endogenous
sharing rule.17 Given that O is single-valued except at ties, announced types
affect the outcome only at ties.

Example 6 The following are some examples of auctions in ΦA. Unless
otherwise stated, gih(bih) = bih for all i and h, tie breaking is standard, and
player 0 submits e0 bids of 0 and m− e0 bids of −1.

(1) A standard first price single unit auction.

16To fit with the first part of the paper, note that we could have let Ui map into [0, 1].
In particular, this would have required us to rescale and add a constant, which does not
affect equilibrium behavior.

17As player 0 is non-strategic and announces b0 before the other players, simply fix 0’s
strategy space to be a singleton.
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m = 1. Pr({e = (1, 0, . . . , 0)}) = 1, Ci1(e, b) = bi1, Ci0(ei, b) = 0, b01 =
0, oi(b) = 0, for i /∈ W, where W ≡ {i ∈ {0, . . . , n}|bi1 is maximal}
is the set of bidders who submitted the highest bid. oi(s) = 1/#W if
i ∈ W .

(2) A standard first price single unit auction with a known reserve price.

As in (1), except b01 = r, where b01 is announced before bids are chosen

(3) A single unit Vickrey auction.

As in (1), except that Ci1(e, b) = b2, where b2 is the second highest bid
submitted.

(4) An all pay single unit auction (and thus, various implementations of
the war of attrition).

Pr({e = 1, 0, . . . , 0}) = 1, Ci0(e, b) = Ci1(e, b) = bi. oi as above.

(5) An all pay auction in which player 1 has an innate advantage.

Pr({e = (1, 0, . . . , 0)}) = 1, Ci0(e, b) = bi1, Ci1(e, b) = bi1 + d, gi(bi) =
bi, i 6= 1, g1(b1) = b1 + 5.

This might model, for example, a research and development situation
in which firms decide how much to spend, bi, during the research phase,
the winner gets the patent, the winner needs to spend a development
cost d, and firm 1 has a lead in the technology under consideration.

(6) A standard double auction.

Players 1 through nb are potential buyers having ei = 0. Players nb + 1
through n = nb + ns are potential sellers having ei = 1. Let p =(
b
′
+ b

′′)
/2, where b′ is the nths highest bid, and b′′ the ns + 1th. Then,

Ci0(e, b) = −pei, while Ci1(e, b) = p(1− ei).

(7) A generalized double auction.

Players 0 through n draw a realization of (ei, vi), and submit bid vec-
tors. Objects are allocated to the

∑n
i=0 ei highest bidders, with ties be-

tween buy bids and sell bids broken in favor of buyers (so that trade oc-
curs), and ties among buyers or among sellers broken randomly. Given
the allocation, determine who is in the position of a net seller or net
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buyer. For each net seller, let b̂i be formed by replacing the last m− ei
elements of bi by −1. For each net buyer, let b̂i be formed by replacing
the first ei elements of bi by v̄ + 1. Let p = g

(
b
′
, b
′′)
, for some weakly

increasing and continuous function such that b′ ≥ g(b, b) ≥ b, where

b′ is the (
∑n

i=0 ei)
th

highest bid given b̂, and b′′ the (
∑n

i=0 ei) + 1th.
Cih(e, b) = p (h− ei) .
The point of the construction of b̂ from b is to clear the order books of
sell bids by net buyers and buy bids by net sellers before setting the
price. The problem if a player can act on both sides of the market at
once is that a player who is fairly sure he will end up as a net seller
may wish to distort his buy bids upward in an attempt to affect the
market price. This introduces complexities to the analysis that we have
not been able to overcome.

(8) A double discriminatory auction.

Players 0 through n draw a realization of (ei, vi), and submit bi. If a
player ends up as a net buyer with h objects, he pays

∑h
h′=ei+1 bih′ . If i

ends up as a net seller, he receives
∑ei

h′=h+1 bih′ . The auctioneer pockets
the difference.

Weak Perfection

We work with weakly perfect equilibria. For each of the examples above,
weak perfection implies that (with probability 1) i bids at least vih for h ≤ ei,
and at most vih for h > ei. The precise argument for this turns out to differ
depending on the specifics of the auction. In the discriminatory and uniform
price auctions, strategies which put weight on bids above value are weakly
dominated by a strategy which moves this weight to the value instead. In the
all pay auction, and the research and development auction, strategies which
put weight above v need not be weakly dominated by those which but weight
on v instead. So for example, in an all pay auction with vi1 = 11 and an
opponent who always bids 12, 13 is a better bid than 11. In these auctions,
bidding 13 is weakly dominated by bidding 0. As discussed in Example 6.7,
a uniform price double auction in which a player can act on both sides of the
market simultaneously may not meet this condition.

So, we will simply assume:

No Dumb Bids (NDB) C is such that it in any weakly perfect equilibrium,
with probability 1, i bids at least vih for h ≤ ei, and at most vih for h > ei.
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Under NDB and weak perfection, buy bids are weakly below value and
sell bids weakly above value. This implies that bih ≤ v̄ for h > ei and bih ≥ 0
for h ≤ ei. Hence, a buy bid below 0 by a buyer or a sell bid above v̄ means
“not interested.” In particular, given the assumption that b0h ≥ 0 for h ≤ ei,
it follows that are always at least

∑n
i=0 ei bids at or above 0. Similarly, there

are never more that
∑n

i=0 ei bids above v̄. So, the market always “clears”
somewhere in [0, v̄].

Since NDB is not an easily interpretable condition on primitives, we offer
the following lemma which establishes two sets of conditions under which
the NDB holds. The first condition is the generalization of what drives the
weak domination of bids above value in discriminatory and uniform auctions.
Hence, it covers all examples except 6.4 and 6.5. The second, which applies
only to one sided auctions in which each player wishes to purchase a single
unit, applies to examples 6.4 and 6.5.18

Lemma 4 Suppose that C is such that if i is a net buyer (seller), then his
sell bids (buy bids) do not affect his payment. If C satisfies one of

(a) If bih is involved in a tie then, Cih(e, b)− Ci,h−1(e, b) = bih

(b) Pr(ei = 0, i 6= 0, vih < 0, h > 1) = 1. Ci0(e, b) ≥ 0. Ci1(e, b) ≥ bi1.
Ci0(e, b) = Ci1(e, b) = 0 whenever bi1 = 0.

Then NDB is satisfied.

Theorem 5 below states that equilibria will not involve ties between buyers
or between sellers (but may involve ties between a buyer and a seller). To
see why a condition like NDB matters, consider the following example.

Example 7 Consider a one sided first price auction in which 1’s value is
uniform on [2, 3], and 2’s value is uniform on [4, 5]. Then, it is an equilibrium
of the augmented game for each player to bid 4 with probability 1, with the
object always allocated to player 2. In this equilibrium, ties are probability 1,
and it is clear that there is no nearby equilibrium with a standard tie breaking
rule. Note further that an equilibrium such as is described here could have

18Condition (b) is restrictive because we are not sure what multiple unit all pay auction
should look like.
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arisen even from the limit of discrete games with standard tie breaking. In
particular, let br and cr be the two consecutive bids in approximation r which
are just below 4. Then, in the discrete game with standard tie breaking, it
is an equilibrium (in weakly dominated strategies) for player 1 to bid br and
player 2 cr. This yields as its limit a situation in which both players bid 4,
but the tie is always resolved in favor of player 2. So, it is key to our result
that we work with some version of weak dominance or perfection.

Although there is no equilibrium near this one with standard tie breaking,
there is one if the auctioneer can recognize and favor player 2.While this takes
more information than the standard auction (and requires the auctioneer to
understand a great deal about the value structure of the players he is facing),
it does not require any sort of announcement game such as was needed in our
example of a two dimensional auction. So, this example satisfies existence
under a game form strictly more complicated than is needed for standard
auctions, but less complicated than for our general theorem.

5.2 Analysis of the Auction Model

We are now ready to state our main theorem of this section.

Theorem 5 Let A ∈ ΦA be a (non-augmented) auction satisfying NDB and
having a tie breaking rule o which does not depend on private information
and under which ties between buyers and sellers result in trade. Then, A has
a weakly perfect equilibrium with the tie breaking rule o.

The proof of Theorem 5 appears in Appendix B. The idea is as follows.
Begin with an auction with a standard exogenous tie-breaking rule. Theorem
1 establishes that there is a weakly perfect equilibrium with an endogenous
incentive compatible sharing rule. First, we show that in this equilibrium
ties where the object is transferred depending on a type announcement are a
zero probability event. This follows in two parts. First, at a tied bid, there
is only a single (atomless) valuation for which a player is indifferent between
obtaining or not obtaining the object. If there were a positive probability
of a tie where a player did not get the object with probability either 0 or
1 for almost every valuation, then the player could improve by increasing
or decreasing the bid slightly depending on his value. Second, under NDB
players offer at or above their sell values and bid at or below their buy values.
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So, if a player is happy to have probability 0 of obtaining an object at a tie
then the player must be selling the object, and if the player is happy to have
probability 1 of obtaining an object at a tie then the player must be buying
the object. Therefore, if there are tied bids that occur with positive prob-
ability, they must be between a buyer and a seller with the transfer taking
place for certain (which is then not in fact a “tie” under our definition). So,
consider changing the allocation rule at ties in the augmented game to the
standard tie breaking rule. Given that ties occur with zero probability, it fol-
lows that payoffs are unchanged relative to equilibrium strategies. Consider
any deviating strategy. If it only uses bids outside of B̂−i (the set of atoms
in the induced distribution over bids by i’s opponents) then its payoffs are as

before. If it uses bids in B̂−i, then the strategy may now have a different pay-
off. However, because of the assumption of private values, it turns out that
if the strategy is a profitable deviation, then (approximately) the strategy in

which buy offers in B̂−i are moved to slightly higher bids and sell offers to
slightly lower offers must also be profitable. But, this altered strategy can
be chosen to involve ties with probability zero, and so would also have been
a profitable deviation in the original augmented game, a contradiction.

5.3 No Trade Equilibria

There is a major weakness in the existence result as currently stated. In
particular, while we have shown existence of an equilibrium, we have not
shown that this equilibrium involves trade.19 Consider, for example, the
double auction of Example 6.6. It is a weakly perfect equilibrium in this
auction for sellers to always bid v̄, and buyers 0. Buyers know that sellers
are never making serious bids and sellers know that buyers are never making
serious bids, and thus their own non-serious bids are best responses. Weak
perfection is satisfied since a seller could imagine a buyer bidding at v̄ and
a buyer could imagine a seller offering at 0. So, it could be that Theorem 5
has only proven that this degenerate equilibrium exists. We now show that
in fact a non-degenerate equilibrium exists.

Consider first the case that the non-strategic player 0 in our auction model
is active in the sense that Pr ({e0 > 0}) > 0 and that when e0 > 0, 0 sets a
reserve price for at least one of his units so that there is a positive probability

19We are grateful to Mark Satterthwaite for pointing this out.
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that some buyer prefers paying the reserve price to autarchy. Then, there is
clearly trade in equilibrium (otherwise the buyer should deviate).

So, let us turn to establishing existence of equilibria involving trade when
player 0 is not active. Our next theorem exhibits a class of auctions each
of which has at least one weakly perfect equilibrium (with endogenous tie-
breaking) involving a positive probability of trade. This implies the existence
of a positive trade equilibrium in the associated standard auctions. We use
the following assumptions.

Conditions for positive trade

The first assumption we use is that in addition to P being absolutely con-
tinuous with respect to

∏
i Pi (with continuous Radon-Nikodym derivative),

the converse holds as well.

Somewhat Independent Priors (SIP). f(θ) > 0 for all θ ∈ Θ, where f
is the Radon-Nikodym derivative of P with respect to

∏
i Pi.

Given that f is a continuous function and Θ is compact, f(θ) > 0 implies
that there exists ∞ > M > M ′ > 0 such that M > f(θ) > M ′ for all θ ∈ Θ.
The new content in SIP, is of course, the existence of M ′.

SIP rules out that the support of i’s beliefs about his opponents varies
in his type, although his beliefs within that support can vary greatly. In the
Appendix (see Lemma 9) we show that the fact that types are not perfectly
correlated translates into the same feature for bids.

The following condition ensures that there is some possibility of serious
competition.

Competition for Gains from Trade (CGT). There is a positive proba-
bility of a realization of (e, v) such that either (1) there are m+ 1 buy values
above a sell value or (2) there are m+ 1 sell values below a buy value.

In a standard double auction, this simply means that sometimes there
are two sellers both of whom have value lower than a single buyer, or vice
versa. Hence, we are ruling out the case of a double auction with one buyer
and one seller.

Say that an equilibrium is non-degenerate if there is a positive probability
of trade. That is, there is a positive probability that some player ends up
with a number of objects different from his endowment.
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Theorem 6 Each auction in ΦA that satisfies SIP, CGT, and NDB has a
non-degenerate weakly perfect equilibrium.

The proof is based on a fairly simple idea. Consider a sequence of modified
auctions in which we add an n+ 1th player who 1/t of the time has en+1 = 1
and makes a sell offer which is uniform on [0, v̄], 1/t of the time has en+1 = 0
and makes a buy offer which is uniform on [0, v̄] and the remainder of the
time has en+1 = 0 and makes no bids, where all of this is independent of
(e, v). Of course, this rules out no trade as part of an equilibrium since
somebody should behave in a way to trade with n+1 when he is active. More
importantly however, is that no matter how large is t, once some buyers are
acting to take account of the possibility of player n + 1, sellers will change
away from the no-trade equilibrium to take account of these buyers. Buyers
in turn now have even more of an incentive to make serious offers. The key
to the proof is to show that this implies a positive level of trade which is
independent of t. But, as t→∞, this generates a positive trade equilibrium
of the original game.

By using the equilibrium established in Theorem 6 as the starting equi-
librium in the proof of Theorem 5, and recalling our discussion of auctions
in which player 0 is active, we obtain the following corollary.

Corollary 7 Let A ∈ ΦA be a (non-augmented) auction satisfying NDB and
having a tie breaking rule o which does not depend on private information and
under which ties between buyers and sellers result in trade. Assume either
that player 0 is active (as will be true in any one sided auction), or that
SIP and CGT are satisfied. Then, A has a non-degenerate weakly perfect
equilibrium with the tie breaking rule o.

6 Conclusion

An important question for further work is to establish the limits of the type
of construction we used in the private values case. That is, how gener-
ally does our existence result in augmented games also imply existence in
standard games? The example in Section 2 shows that for certain atomic
uncertainty structures there are auctions that only have equilibria with en-
dogenous tie-breaking and not with a standard tie-breaking rule. As settings
with both private and common components to valuations are quite natural,
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and as results on limit efficiency of equilibria in such settings (see Pesendorfer
and Swinkels [18]) depend on the existence of equilibria with exogenous tie-
breaking, it is important to establish such existence. The example in Section
2 has a rather degenerate uncertainty structure. One might then conjecture
that this type of auction “typically” has an equilibrium, and that such a
result could be proven by the same sort of “ties turn out not to matter”
argument used here for the private values case.20

In cases where there are no equilibria with standard sharing rules, we are
stuck with using incentive compatible endogenous ones. The sharing rule
generated in our construction can potentially be very complicated, requiring
the game designer to have a deep knowledge of the underlying structure
of the game. It would be worth understanding for which classes of games
various simple “all purpose” sharing rules suffice. For example, one might, in
an auction setting, consider games in which players do not announce types,
which may lie in a very complicated space, but rather some information about
where they would like to be ranked conditional on being in a tie.

7 Appendix A: Existence Proofs

The following lemma is useful in the proof of Theorem 1.

Lemma 8 Let T be a compact measure space, and µr a sequence of positive
measures on T that weakly converge to µ. If E is a closed subset of T , then∫

E

g dµ ≥ lim supr

∫
E

g dµr

for any bounded and continuous g : T → R+.

Proof of Lemma 8

lim supr

∫
E

g dµr = lim supr

∫
(1− IEC )g dµr,

where IEC is the indicator function of the complement of E, EC . Since E is
closed, it follows that IECg is lower semi-continuous. By Lemma 1 in SZ

lim infr

∫
IECg dµ

r ≥
∫
IECgdµ.

20See Goeree and Offerman [10] for an interesting example of an auction in this class
that does have a well behaved equilibrium.
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Thus, ∫
−IECgdµ ≥ lim supr

∫
−IECg dµr.

Since by weak convergence
∫
g dµr →

∫
g dµ, it follows that∫

(1− IEC )gdµ ≥ lim supr

∫
(1− IEC )g dµr,

which establishes the lemma.

Proof of Theorem 1

The proof follows the same general outline as the proof of the main theo-
rem in SZ. The specifics differ significantly as the Bayesian aspect of the game
introduces significant complications. We first present the proof of existence,
and then discuss the modification to weak perfection.

Let f = dP
d
∏
i Pi

, which by assumption exists and is continuous. We can

replace dm1(z1|θ1) . . . dmn(zn, |θn)dP (θ) in the definition of πi so that

πi(o,m1, . . . ,mn) =

∫
u(o(z), s, θ)dm1(z1|θ1) . . . dmn(zn, |θn)f(θ)dP1(θ1) . . . dPn(θn)

=

∫
u(o(z), s, θ)f(θ)dm1(z1, θ1) . . . dmn(zn, θn).

Step 1: In this step, we approximate the game by a finite grid of strategies
and find an equilibrium for each finite grid.

Fix a Borel measurable selection o from O. For each r ∈ {1, 2, . . .} pick
a finite subset Sri ⊂ Si such that the Hausdorff distance between Sri and Si
is less than 1

r
. Consider the game where the strategy space is Sri and the

outcome is determined according to o. By Theorem 1 in Milgrom and Weber
[16], this game has an equilibrium (mr

1, . . . ,m
r
n) in distributional strategies.

For any z ∈ S ×Θ, let sz and θz be the strategy and type announcement
profile in S×Θ specified by z (so z = (sz, θz)). Extend each game described
above to the strategy space Zr

i = Sri × Θi, by setting o(z) = o(sz) for any
z ∈ Z. Extend mr defined on S × Θ to a corresponding measure mr on
Z × Θ to have players truthfully announce their types in the strategy z
(i.e., mr

i (Di) = 1 for each i).21 It follows that mr is an equilibrium of the

21To do this, set mr
i (E) = mr

i ((E ∩Di)Zi
) where (E ∩Di)Zi

is the projection of E ∩Di

onto Zi.
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game with strategy space Zr and outcome function o, since the extended o
is independent of the announcement of θz.

Step 2: In this step we define the limit of the outcomes corresponding to
the equilibrium strategies mr.

Select a subsequence so that mr
i converges weakly to a distributional

strategy mi on Zi ×Θi for each i.22

Note that mr
i (Di) = 1 for all i implies that mi(Di) = 1 for all i (since Di

is closed apply Theorem 2.1 (iii) in Billingsley [4]). Incentive compatibility
will be satisfied if we can find ô for which m, ô is an equilibrium.

For each Borel set E ⊆ Z ×Θ, define

µr(E) =

∫
E

o(z)dmr(z, θ).

Taking a further subsequence (noting that µr is a K dimensional vector-
valued measure), µr converges weakly to some µ.

Step 3: In this step we find õ so that omr (i.e., µr) weakly converges to õm
(so this implies that dµ = õdm).

By Lemma 2 in SZ,23 there is a Borel measurable selection o′ as a function
of z, θ from O such that for any Borel set E ⊆ Z ×Θ,

µ(E) =

∫
E

o′(z, θ)dm(z, θ).

Define õ as a function of z by õ(z) = o′(sz, θz, θz). Given that m(D) = 1, it
follows that

µ(E) =

∫
E

õ(z)dm(z, θ). (1)

Step 4: One would like õ, m to be an equilibrium, as it is defined from
limits of equilibria o,mr. However, since õ was defined by means of weak
convergence, it is possible for õ to vary on sets of m−measure 0. This is a
potential problem, as even having an incorrect outcome for a single strategy

22To see that mi is a distributional strategy, note that since the marginal of mr
i on Θi

is Pi, it follows that
∫
fdmr

i =
∫
fdPi for any bounded continuous f : Θi → R and any

r. So by weak convergence
∫
fdmi =

∫
fdPi for any bounded continuous f : Θi → R.

Theorem 1.3 in Billingsley [4] then implies that the marginal of mi on Θi is Pi.
23To be careful, write O to be a correspondence O′ on Z × Θ where O′(z, θ) = O(sz)

for any (z, θ), and then apply Lemma 2 in SZ.
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can attract players to deviate to that strategy. So, we need to identify the
z’s where õ is misspecified and correct it at those points. Hi is the set of
these points, and is constructed as the set of zi such that a neighborhood of
types of player i prefer to deviate to play zi rather than play according to
mi. (Given the continuity of beliefs and the continuity of ui in θ, if there are
no deviations of this form, then there are no attractive deviations; so these
are the only problem points we need to worry about.) The main point of
Step 4 is to show that mi(Hi) = 0. In Step 5 this will allow us to correct õ
at these points without disturbing the expected utility to the m (which will
turn out to be the equilibrium strategies).

As this step is perhaps the most complicated of the proof, let us spend
some time explaining it more carefully. On one level, the fact that the set of
points where õ is misspecified is of zero measure seems obvious. If there are an
mi-positive measure of strategies in the limit that are improving deviations
for i for a positive measure of his types, then, since õ should be tied down
on positive measure sets by weak convergence, i should have deviated to an
attractive strategy far enough along the sequence. The difficulty is that weak
convergence of omr to õm does not tell us that omr

−im̂
r
i weakly converges to

õm−im̂i for deviating strategies m̂r
i weakly converging to a deviation m̂r. So

we need to construct deviations as continuous variations of the original mr
i

and mi. We show that if Hi is of positive measure, then we can construct
improving deviations m̃r

i that converge to a deviation m̃i, and such that these
deviations can be rewritten as continuous deformations of the corresponding
mr
i ’s and mi. Since expectations of continuous functions are well behaved

under weak continuity, this then reaches a contradiction.
Let N

ε
(θi) denote the closed ε neighborhood of θi. Let

Hk
i (θi) =

{
zi |

∫
Z−i×N

1/k
(θi)×Θ−i

ui(õ(z̄i, z−i), szi , sz−i , θ)f(θ)dm−i(z−i, θ−i)dPi(θi)

>

∫
Z×N1/k

(θi)×Θ−i

ui(õ(z), sz, θ)f(θ)dm

}
.

So, Hk
i (θi) is the set of strategies to which i would find it profitable to deviate

conditional on θi being in the neighborhood N
1/k

(θi). Note that Hk
i (θi) is

a Borel set for each θi and k. Let Hi be the union of Hk
i (θi) over k and

θi ∈ ΘD
i where ΘD

i is a countable dense subset of Θi (recall that Θi is a
compact metric space). So Hi is the set of problem points.
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Let us show that mi(Hi × Θi) = 0 for each i. Suppose to the contrary
that mi(Hi × Θi) > 0 for some i. It follows that for some k and θi ∈ ΘD

i ,
mi(H

k
i (θi)×Θi) > 0.

Let mZi be the marginal of mi on Zi. It follows from the definition of
Hk
i (θi) that

1∫
Hk
i (θi)

dmZi

∫
Hk
i (θi)

[∫
Z−i×N

1/k
(θi)×Θ−i

ui(õ(z), sz, θ)f(θ)dm−idPi

]
dmZi

>

∫
Z×N1/k

(θi)×Θ−i

ui(õ(z), sz, θ)f(θ)dm. (2)

Changing the order of integration (appealing here and in what follows to
Fubini’s theorem) (2) becomes

1∫
Hk
i (θi)

dmZi

∫
N

1/k
(θi)

[∫
Hk
i (θi)×Z−i×Θ−i

ui(õ(z), sz, θ)f(θ)dm−idmZi

]
dPi

>

∫
Z×N1/k

(θi)×Θ−i

ui(õ(z), sz, θ)f(θ)dm. (3)

By the definition of the marginal mZi we rewrite (3)

1∫
Hk
i (θi)×Θi

dmi

∫
N

1/k
(θi)

[∫
Hk
i (θi)×Z−i×Θ

ui(õ(z), sz, θ
′
i, θ−i)f(θ′i, θ−i)dm(z, θ)

]
dPi(θ

′
i)

>

∫
Z×N1/k

(θi)×Θ−i

ui(õ(z), sz, θ)f(θ)dm. (4)

Given the regularity of the measure mi (e.g., see Billingsley [4] Theorem
1.1.) for any ε > 0 we can find a closed set Qε

i and an open set F ε
i , where

Qε
i ⊆ Hk

i (θi) ⊆ F ε
i such that mi(F

ε
i − Qε

i ) < ε. By Urysohn’s Lemma there
exists a continuous hε : Zi → [0, 1] such that hε(zi) = 1 if zi ∈ Qε

i and
hε(zi) = 0 if zi /∈ F ε

i . ¿From (4) it follows that for small enough ε,

1∫
Zi×Θi

hε dmi

∫
N

1/k
(θi)

[∫
Z×Θ

hε(zi)ui(õ(z), sz, θ
′
i, θ−i)f(θ′i, θ−i)dm(z, θ)

]
dPi(θ

′
i)

>

∫
Z×N1/k

(θi)×Θ−i

ui(õ(z), sz, θ)f(θ)dm. (5)
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Given the weak convergence of omr to õm from Step 3, and the affinity
of ui in o, and the continuity (on compact spaces) of ui, f, and hε, it follows
that ∫

Z×Θ

hε(zi)ui(o(z), sz, θ
′
i, θ−i)f(θ′i, θ−i)dm

r(z, θ)

=

∫
Z×Θ

hε(zi) (vi(sz, θ
′
i, θ−i)o(z) + wi(sz, θ

′
i, θ−i)) f(θ′i, θ−i)dm

r(z, θ)

→
∫
Z×Θ

hε(zi) (vi(sz, θ
′
i, θ−i)õ(z) + wi(sz, θ

′
i, θ−i)) f(θ′i, θ−i)dm(z, θ).

=

∫
Z×Θ

hε(zi)ui(õ(z), sz, θ
′
i, θ−i)f(θ′i, θ−i)dm(z, θ). (6)

Viewing the inside integral on the left hand side of (5) as a function of θ′i,
it follows from (6) and the Dominated Convergence Theorem that for large
enough r we can rewrite (5) as

1∫
Zi×Θi

hε dmr
i

∫
N

1/k
(θi)

[∫
Z×Θ

hε(zi)ui(o(z), sz, θ
′
i, θ−i)f(θ′i, θ−i)dm

r(z, θ)

]
dPi(θ

′
i)

>

∫
Z×N1/k

(θi)×Θ−i

ui(õ(z), sz, θ)f(θ)dm. (7)

Let m̃r
i be the distributional strategy for i defined by

m̃r
i (E) =

∫
(zi,θ

′
i,θi)∈E×Θi

hε(zi)dm
r
i (zi, θi)dPi(θ

′
i)∫

Zi×Θi
hε dmr

i

.

Then, ( 7) can be rewritten as∫
N

1/k
(θi)

∫
Z×Θ−i

ui(ō(z), sz, θ
′
i, θ−i)f(θ′i, θ−i)dm̃

r
i (zi, θ

′
i)dm

r
−i(z−i, θ−i)

>

∫
Z×N1/k

(θi)×Θ−i

ui(õ(z), sz, θ)f(θ)dm. (8)

That is, far enough along the sequence, m̃r
i does strictly better than i’s equi-

librium payoff conditional on θi ∈ N
1/k

(θi). It remains to show that this

implies a profitable deviation late in the sequence. But, since N
1/k

(θi) is
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closed, vi, wi and f are bounded and continuous, and vi and f are nonnega-
tive24, it follows from Lemma 8 that∫

Z×N1/k
(θi)×Θ−i

ui(õ(z), sz, θ)f(θ)dm

=

∫
Z×N1/k

(θi)×Θ−i

(vi(sz, θ)õ(z) + wi(sz, θ))f(θ)dm

≥ lim supr

∫
Z×N1/k

(θi)×Θ−i

(vi(sz, θ)o(z) + wi(sz, θ))f(θ)dmr. (9)

For r sufficiently far along the sequence, combining (8) and (9) thus leads to
a contradiction of the fact that mr is an equilibrium. Hence, our supposition
was incorrect and mi(Hi ×Θi) = 0.

Step 5: Next, let us correct õ at the problem points.
For any i and zi = (si, θi) ∈ Hi, select a sequence of sri ∈ Sri such that sri

converges to si, on a subsequence where mr
−i weakly converges to m−i. Let

δs
r
i denote the Dirac measure on sri . For any Borel set E ⊆ S × Θ−i × Θ−i,

define

µrsi(E) =

∫
E

o(s)dmr
−i(s−i, θ

′
−i, θ−i)dδ

sri .

Taking a further subsequence, µrsi converges weakly to some µsi . By Lemma
2 in SZ, there is a Borel measurable selection25 osi from O which is a function
of (s, θ′−i, θ−i) such that for any Borel set E ⊆ S ×Θ−i ×Θ−i,

µsi(E) =

∫
E

osi(s, θ
′
−i, θ−i)dm−i(s−i, θ

′
−i, θ−i).

Given that mj(Dj) = 1 for each j, following an analogous argument to that
in Step 3, we can redefine osi as a function of si, z−i rather than (s, θ′−i, θ−i).

We are now prepared to correct õ at the problem points in each Hi and
define ô such that m, ô is an equilibrium. Note that we cannot simply fix õ
by repairing it whenever zi ∈ Hi for some i as we might encounter z such
that zi ∈ Hi and zj ∈ Hj for i 6= j. However, since each Hj is a measure 0
set under mj, from any agent i’s perspective even conditional on a particular

24f is bounded since Θ is a compact space.
25To apply the lemma, extend O to be defined on S × Θ−i × Θ−i by setting

O(s, θ′−i, θ−i) = O(s).
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strategy zi, the set Hj is a measure 0 event. So we need only correct things
at the points where we fall in a single Hi at a time and can ignore the other
points. Let

Ai = {z | zi ∈ Hi, zj /∈ Hj ∀j 6= i}.

As each Hi and Hj is a Borel set, so is Ai. Define the selection ô of O as
follows. Let ô(z) = osi(si, z−i) if z = (s, θ) ∈ Ai, and let ô(z) = õ(z) if
z ∈ ∩iACi .26

Step 6: We verify that m, ô is an equilibrium.
Suppose the contrary. Given the continuous type distribution (i.e., the

continuity of f), there exists i, zi, k and θi ∈ ΘD
i such that mi|N1/k

(θi)
zi is a

better response than mi to m−i and Pi(N
1/k

(θi)) > 0, where mi|N1/k
(θi)
zi is

the distributional strategy that plays zi if θi ∈ N
1/k

(θi) and according to mi

otherwise.

Case 1: zi /∈ Hi.
In this case, it follows from the definition of ô that ô(z) = õ(z) for

m−i,mi|N1/k
(θi)
zi a.e. (z, θ). The same is true for m almost every z, θ, since

mj(Hj × Θj) = 0 for each j by Step 4. Thus, since zi /∈ Hi it follows from
the definition of Hi that mi|N1/k

(θi)
zi cannot be a better response than mi to

m−i.

Case 2: zi ∈ Hi.
Let si be such that zi = (si, θ

′
i). By supposition,∫

Z−i×Θ−i×N
1/k

(θi)

ui(ô(zi, z−i), si, s−i, θ)f(θ)dm−idPi

>

∫
Z×Θ−i×N

1/k
(θi)

ui(o(z), s, θ)f(θ)dm.

By the condition that payoffs are affine, this implies that∫
N

1/k
(θi)

[∫
Z−i×Θ−i

(vi(si, s−i, θ)ô(zi, z−i) + wi(si, s−i, θ)) f(θ)dm−i

]
dPi

>

∫
Z×Θ−i×N

1/k
(θi)

(vi(s, θ)ô(z) + wi(s, θ)) f(θ)dm. (10)

26As we do this pointwise, it is here that the measurability issue arises.
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By the definition of ô in Step 5, we know that∫
N

1/k
(θi)

[∫
Z−i×Θ−i

(vi(si, s−i, θ)ô(zi, z−i) + wi(si, s−i, θ)) f(θ)dm−i

]
dPi =

∫
N

1/k
(θi)

[∫
Z−i×Θ−i

(vi(si, s−i, θ)osi(si, z−i) + wi(si, s−i, θ)) f(θ)dm−i

]
dPi.

So given the continuity of vi, f , and wi, for large enough r it follows from
the weak convergence of µsri to µsi (in Step 5) that we can rewrite (10) as∫

N
1/k

(θi)

[∫
Z−i×Θ−i

(vi(si, s−i, θ)o(si, z−i) + wi(si, s−i, θ)) f(θ)dmr
−i

]
dPi.

>

∫
Z×Θ−i×N

1/k
(θi)

(vi(s, θ)ô(z) + wi(s, θ)) f(θ)dm. (11)

Since Pi(N
1/k

(θi)) > 0 and m(Ai) = 0 it follows that∫
Z×Θ−i×N

1/k
(θi)

(vi(s, θ)ô(z) + wi(s, θ)) f(θ)dm

=

∫
Z×Θ−i×N

1/k
(θi)

(vi(s, θ)õ(z) + wi(s, θ)) f(θ)dm. (12)

Since N
1
k is closed, it follows from Steps 1 and 3 and Lemma 8 that for large

enough r ∫
Z×Θ−i×N

1/k
(θi)

(vi(s, θ)õ(z) + wi(s, θ)) f(θ)dm.

≥
∫
Z×Θ−i×N

1/k
(θi)

(vi(s, θ)o(s) + wi(s, θ)) f(θ)dmr. (13)

Combining (11), (12), and (13) we find that∫
N

1/k
(θi)×Z×Θ−i

ui(o(s), s, θ)f(θ)dmr
−idδ

sri dPi

>

∫
Z×Θ−i×N

1/k
(θi)

ui(o(s), s, θ)f(θ)dmr.

This contradicts the fact that mr is an equilibrium as defined from Step 1.
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Step 7: We verify that if O is derived from tie breaking, then the construc-
tion of ô in Step 5 is made in a Borel measurable way.

For any si, let

Ti(si) = {(s−i, θ−i) ∈ Z−i | sj = si for some j 6= i}.

This is the set of strategies of that can conceivably tie when i uses plays si.
Fix any i. Note that {sj|mj({sj}×Θj ×Θj) > 0} is a countable set for each
j. Thus, Xi = {si|m−i(Ti(si)×Θ−i) > 0} is a countable set.

We claim that if zi = (si, θi) ∈ Hi, then si ∈ Xi. Suppose the contrary.
Then zi ∈ Hk

i (θi) for some k and θi and si /∈ Xi. Thus, m−i(Ti(si)×Θ−i) = 0
and so from the definition of O being derived from tie breaking, it follows
that õi(z) = oi(s) for m−i-a.e. z−i = (s−i, θ−i). Then, an argument similar
to that of case 2 in Step 6 reaches a contradiction.

Thus, by the definition of ô in Step 5 for any measurable set of outcomes
E, we can write

ô−1(E) =
(
∪i[∪si∈Xi(o−1

si
(E) ∩ Ai)]

)
∪ [õ−1(E) ∩ (∩iACi )].

Given that Xi is countable, Ai is Borel, osi and õ are Borel measurable for
each i and si, it follows that ô−1 is a Borel set.

Step 8: To complete the proof, we discuss the modification to prove existence
of a weakly perfect equilibrium.

In Step 1, select εr so that (maxi |Sri |)εr → 0, and then let mr
i be a

εr-constrained equilibrium.27 In Step 4, m̃r should be modified to place εr

weight on each strategy, and in Steps 5 and 6, δs
r
i should be taken to be the

strategy placing all available weight on sri subject to being in Cεr

i . The rest
of the proof is unchanged.

Proof of Theorem 2 Let ui(o, s) denote the #Θ-dimensional vector (ui(o, s, θ))θ.
Let

Ô(s) = {(u1(o, s), . . . , un(o, s)) | o ∈ O(s)}.
27To establish existence of a constrained equilibrium one can extend Milgrom and We-

ber’s theorem to constrained distributional strategies (on a finite strategy space). To do
this, note that by Lemma 8 the set Cεi is closed. Thus, Cεi is compact and convex (follow-
ing the arguments of Milgrom and Weber), and the remainder of their proof proceeds as
stated. Alternatively, following standard perfection style arguments instead of constrain-
ing the strategies, one can alter the payoffs so that payoffs are those that would occur if
each opponent’s strategy trembles. One could then apply their theorem to the game with
altered payoffs and then convert the equilibrium strategies to lie in Cεi .
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For s and θ, let v̂i(s, θ) be the vector such that vi(s, θ)θ = 1 and vi(s, θ)θ′ = 0
for θ′ 6= θ. Thus,

ui(o, s, θ) = vi(s, θ) · ui(o, s).

As, Ô(s) = U(s) is upper-hemicontinuous, compact and convex valued, we
can apply Theorem 1 to establish the existence of an equilibrium m, ô, where
ô is incentive compatible and a selection from Ô. By the definition of Ô, one
can find a selection o from O such that ô(s) = (ui(o(s), s, θ))i,θ. It follows
that m, o is an equilibrium and o is incentive compatible.

Let us show that if ô is Borel measurable, then we can choose o to be
Borel measurable. Let

F (s) = {o | max
i,θ
|ô(s)iθ − ui(o, s, θ)| = 0}.

Given the continuity of ui this correspondence is closed-valued. This corre-
spondence is also measurable given the continuity of ui in o and the mea-
surability of ô and ui in s (see Corollary 14.82 in Aliprantis and Border [1]).
Thus by the Kuratowski-Ryll-Nardzewski theorem, (see [1]) there exists a
Borel measurable selection from F .28

Proof of Theorem 3 We describe the modifications to the proof of Theorem
1 to verify that a symmetric equilibrium exists.

In Step 1, pick ō to be symmetric and measurable. To see that this
can be done, pick an arbitrary measurable selection o from O. For each
permutation σ over players we have a corresponding oσ. Let ō(s) =

∑
σ
oσ(s)
k

for each s, where k is the number of permutations σ. By the convexity of
O(s), ō(s) ∈ O(s). By construction ō is symmetric and measurable.

Next, in Step 1 we need to show that we can find m̄r that is a sym-
metric equilibrium. This follows from a simple extension of Theorem 1 in
Milgrom and Weber [16]. To be precise, write π(ō, m̄i, m̄j) to be the payoff
to any player when that player plays m̄i and the other players each play
m̄j. Fixing ō, by the arguments in Milgrom and Weber π is a continu-
ous (linear) function from a compact convex metric space. Let M(m̄j) =
argmaxm̄iπ(ō, m̄i, m̄j). By Berge’s theorem, this is upper-hemicontinuous
and compact valued. Given the linearity of π in m̄i it also follows that M is

28Note in the case where ô is not measurable, we can still apply this reasoning to Step 3
of the proof to ensure that we find a corresponding Borel measurable õ, and so it we will
have an outcome function that is measurable up to the patching in Step 5.
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convex valued. So, by Glicksberg’s Theorem there exists a fixed-point of M .
Such a fixed point is a symmetric equilibrium.

In Step 2, we can take m̄ to be symmetric simply by choosing the same
limit point for each i, given that the sequences of m̄r

i are identical across i.
In Step 3 we select o to be symmetric. To do this, start with the o as

defined in Step 3. Let ô(s) =
∑

σ
oσ(s)
k

. As argued above, ô is symmetric and
measurable. Also, ōmr → oσm for each σ implies that ōmr → ôm.

In Step 5, Hi and Ai are the same for each player. So, define osi for some
i and then choose the same for each j. Then õ will be symmetric.

The rest of the proof proceeds unaltered.

8 Appendix B: Auction Proofs

Properties of O(b) To see that O(b) is nonempty, simply give the objects
away in the order indicated by g.,.(.), and at ties give objects away in the order
of player’s labels. That O has a closed graph (which implies both compact
values and upper hemi-continuity given the compact bid space) follows from
the fact that along any convergent sequence of bid vectors and allocations
bk, ok → b, o: if oeih > 0, then okeih > 0 for all k sufficiently far along the
sequence, and similarly, if gih(bih) > gi′h′(bi′h′), then gih(b

k
ih) > gi′h′(b

k
i′h′) for

all k sufficiently far along the sequence. Therefore, any restriction implied in
the limit is also implied everywhere late in the sequence. To see that O(b)
is convex valued, let o ∈ O(b) and o′ ∈ O(b). As the second condition is
clearly satisfied by αo + (1 − α)o′, let us check the first condition. Suppose
αoeih + (1 − α)o′eih > 0, and, without loss of generality, let oeih > 0. If
o′eih > 0 also, then

∑m
w=h′ (αoejw + (1− α) oejw) = 1 for all j, h′ such that

gjh′ (bjh′) > gih (bih) and so the first condition is satisfied. Consider the case
where o′eih = 0. Then for some i′, h′ (where only one of i′ or h′ needs to
differ from i and h) o′ei′h′ > oei′h′ ≥ 0. Since o′eih = 0, it must thus be that
gih (bih) ≤ gi′h′(bi′h′). Since oei′h′ < 1, it must be that gih(bih) ≥ gi′h′(bi′h′). So,
gih(bi′h′) = gih(bih). But then, each time that oeih > 0 implies that a certain
player must be winning for sure under oe,.,., the same implication for o′e,.,.
follows from the fact that o′ei′h′ > 0. So, αoeih + (1−α)o′eih again satisfies the
first condition.

Proof of Lemma 4, Condition (a) Consider a sequence of grids and
full support trembles, indexed by k. Assume there is ε > 0 and a subsequence
along which
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Prk(bih − vih > ε|i does not tremble, bih is a buy bid) > ε

for some i. Consider any grid fine enough that there are always at least two
available bids in any interval of length ε. Consider the deviation di(bi) that
when the original strategy specifies a buy bid bih > vih + ε, i lowers bih (and
any later bids that need to be) to b′ih, defined as the first grid point above vih.
Consider any outcome (under the equilibrium strategies) in which i would
have won the same number of objects by di(bi) as under bi. Then, since C is
weakly increasing, and since in the event that i is a seller, his payments are
unaffected by his buy bids, i would have been weakly better off by bidding
di(bi). Consider any outcome in which i wins h′′ objects with bi and would
have won h′ < h′′ objects by bidding di(bi). Think about moving from bi
to di (bi) in a sequence of changes, first lowering bim to dim(bi) then bi,m−1

to di,m−1(bi) up until ei + 1. For h /∈ {h′, . . . , h′′} , this does not change
the number of objects won, but does weakly lower the price. Consider any
step h ∈ {h′, . . . , h′′} . Since bi won an hth object, but di(bi) does not, it
must be that bi was actually lowered. Thus, it must be that bih > vih, and,
since dih(bi) does not win, it must be that there is b̂ih ∈ [dih(bi), bih] such

that if instead i lowered bid bih to b̂ih, he would be tied and so would pay
b̂ih ≥ bih > vih for object h. Since C is weakly increasing, under bi he is
paying more than vih for object h. Hence, this step is strictly profitable. So,
this deviation is weakly profitable, and strictly profitable any time that it
actually results in winning fewer objects. But, given the tremble structure,
there is a positive probability that all players place all bids on any given
grid point. So, if there is a positive probability that i is making buy bids
strictly above value, d must win fewer objects in expectation, and hence is
a strictly profitable deviation. It follows that i places minimum weight on
such strategies, and hence in the limit submits buy bids above value with
probability 0. A symmetric argument holds on the sell side.

Condition (b) As before, assume Prk(bih−vih > ε|i does not tremble) >
ε for some i. If bi1 wins, it earns vi1 − Ci1 (b) < vi1 − bi1 < −ε. If it does not
win, it earns −Ci1(b) ≤ 0. Given the tremble technology, bi1 does sometimes
win. Hence, conditional on bih − vih > ε, mi earns strictly negative profits.
Consider the deviation that whenever i’s equilibrium strategy specifies bi1 −
vi1 > ε, i bids some grid point below 0 instead. Since b0h > 0 for h ≤ e0,
such a bid never wins. Hence, it earns 0, a strictly profitable improvement.
So, in the limit, i submits such bids with probability 0.
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Fix a profile of strategies (m1, . . . ,mn) (equilibrium or otherwise). Given
these strategies, let B be the induced measure over Z × Θ, where in this
case, a typical element of zi ∈ Zi has the form (bi, θ

′
i) consisting of the

submitted bid vector and announced value vector (remember that we are
assuming that realizations of ei are observable), and a typical element θ of
Θ has the form (ei, vi) . Let Bi be the marginal of B onto Zi × Θi (except
that B0 is simply P0, the marginal onto e0). Our next Lemma shows that an
implication of the absolute continuity of P with respect to

∏n
i=0 Pi is that

B is absolutely continuous with respect to
∏n

i=0Bi. So, events involving the
set of submitted bids and realized values which are zero probability assuming
players draw values and bid independently are also zero probability under the
actual distribution over realized values and submitted bids. If in addition,∏n

i=0 Pi is absolutely continuous with respect to P (a condition which we
use for Theorem 6) then the reverse implication will be true as well, so that
positive probability events under

∏n
i=0 Pi are positive probability under P .

Lemma 9 (1) For each A ∈ ΓA, or A ∈ ΦA and for each strategy profile m
in A, B is absolutely continuous with respect to

∏n
i=0Bi.

(2) If
∏

i Pi is absolutely continuous with respect to Pi, then
∏n

i=0Bi is
absolutely continuous with respect to Bi.

Proof of Lemma 9.
We provide the proof for augmented auctions. The proof for A ∈ ΦA is

obtained by replacing Z by S and z by s.
In what follows, think of player 0 as having a singleton strategy space,

so that dm0(z0|θ0) ≡ 1, and dm0(z0, θ0) = dP0(θ0). Consider any Borel E ⊂
Z ×Θ

B(E) =

∫
E

n∏
i=0

dmi(zi|θi)dP (θ)

=

∫
E

f(θ)
n∏
i=0

dmi(zi|θi)dPi(θi)

=

∫
E

f(θ)
n∏
i=0

dmi(zi, θi)

=

∫
E

f(θ)dm.

44



Given that f(θ) < M , it follows that B(E) ≤ Mm(E). Since mi = Bi,
29

we have established B(E) ≤ M
∏

iBi(E) and hence Part 1. It also follows
that 0 < M ′ < f(θ) so that B(E) ≥ M ′m(E). This implies that B(E) ≥
M ′∏

iBi(E) establishing Part 2.

Say that b ∈ [−1, v̄+1], is a bid-atom for Bi if Bi({bih = b for some h}) >
0. For each i, let B̂i be the set of bid-atoms of Bi.

Let gi(B̂i) ≡ {gih(b)|h ∈ {1, . . . ,m}, b ∈ B̂i}. So, gi(B̂i) is the image of

B̂i as transformed through the various gih’s. Since B̂i is countable, gi(B̂i) is
countable.

Recall that our definition of a tie was constructed to rule out irrelevant
cases in which a small change in bid does not affect the allocation. Say that

bih and bjh′ are in a pre-tie if gih(bih) = gjh′(bjh′). Let Yi ≡ g−1
i

(
∪j 6=igj

(
B̂j

))
.

Since the various gih are strictly increasing and continuous, Yi is well defined
and countable. By avoiding Yi, i avoids pre-ties with any given j 6= i using
bjh′ ∈ B̂i. It turns out that by doing so, i reduces the probability that he is
involved in a pre-tie (and hence a tie) to 0.

Lemma 10 Pr ({gih(bih) = gjh′(bjh′)} ∩ {bih /∈ Yi}) = 0. That is, there is
zero probability of a pre-tie involving i when i does not use bids in Yi.

Proof of Lemma 10 This is obvious if the Bi are independent. The result
follows by absolute continuity of B with respect to

∏n
i=1Bi.

Proof of Theorem 5 Let A be a non-augmented auction with a tie break-
ing rule o which does not depend on private information and in which ties
between buyers and sellers always result in trade. Let A′ be the augmented
counterpart to A. By Theorem 1, A′ has a weakly perfect equilibrium m′, o′.
Define m from m′ by removing the type announcements. We show that o,m
is an equilibrium, and that with probability one, outcomes under o,m are the
same as under o′,m′. (This establishes weak perfection as the same sequence
weakly converging to o′,m′ can be used to converge to o,m.) The proof is
in two steps. First, we show that ties occur in equilibrium in A′ with zero

29B is defined by dB(z, θ) =
∏
i dmi(zi|θi)dP (θ). The careful reader can verify that the

marginal of B on i, Bi, has the same form as as one would arrive at by directly taking the
marginal of P onto Pi which leads to dmi(zi|θi)dPi(θi) (which for a distributional strategy
is the same as dmi(zi, θi)).
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probability. Hence, players receive the same payoffs by playing m in A as
they did playing m′ in A′. Second, we argue that if a player has a profitable
deviation di from m in A, then he has a profitable deviation d̂i which in-
volves ties with probability 0. But then, d̂′i, defined as d̂i along with truthful

announcements, receives the same payment in A′ as d̂i does in A, and so is
a profitable deviation in A′ as well.

Fix an arbitrary player i. Let ôeih(b) ≡
∑m

h′=h oeih′(b) be the probability
that i ends up with h or more objects given bid vector b. Let Ti be the event
that i is involved in a tie given equilibrium play. Let TihLb be the subset of Ti
such that bih is a buy offer involved in a tie and ôeih(b) < 1. So, TihLb is the
set of events where bih is involved in a tie and i does not get an hth object
for sure.

Assume that Pr(TihLb) > 0. By Lemma 10, Pr(bih ∈ Yi|TihLb) = 1. By
NDB, Pr(vih < bih|TihLb) = 0. By atomlessness, Pr(vih ∈ Yi|TihLb) = 0. It
follows that Pr(vih > bih|TihLb) = 1.

Similarly, let TihLs be the subset of T such that bih is a sell offer involved
in a tie and ôeih > 0. Recalling that in our set up, a sale occurs when ones bid
is not accepted, this is the set of events where bih is involved in a tie, and i
does not sell object h for sure. By an argument analogous to that establishing
that Pr(vih > bih|TihLb) = 1, it follows that Pr(vih < bih|TihLs) = 1.

Define

ω ≡
∑

{h|Pr(TihLs)>0}

Pr(TihLs)E(ôeih(b) (bih − vih) |TihLs)

+
∑

{h|Pr(TihLb)>0}

Pr(TihLb)E((1− ôeih(b)) (vih − bih) |TihLb).

So, the first term sums the probabilities of not making a sale on unit h,
multiplied by the expected profit on that sale, and the second sum does the
same thing for purchases. If Pr(TihLs) or Pr(TihLb) is positive for any i, h,
then ω is positive.

Assume ω > 0. Consider modifying mi so that buy bids in Yi are raised
a little bit, and sell bids in Yi are lowered a bit, in such a way that they
no longer lie in Yi. Formally, alter mi as follows. Let {x1, x2, x3, . . .} be an
enumeration of Yi. Fix a sequence {εk} , εk → 0, and for each x ∈ Yi, and k,
define ybk(x) as some bid in [x, x+εk), but not in Yi, and ysk(x) as some bid in
(x−εk, x], but not in Yi. Define a map from B to B that iteratively transforms
buy bids as follows. If bi,ei+1 ∈ Yi, and biei 6= bi,ei+1, then b′i,ei+1 = ybk(bi,ei+1),
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where εk is the first element of {εk} such that εk < ε, εk < (biei − bi,ei+1) /3.
Otherwise, b′i,ei+1 = bi,ei+1. Now, for h = ei + 2, . . . ,m, if bih ∈ Yi and
bih < b′i,h−1, then b′ih = ybk(bih) where εk is the first element of {εk} such that
εk < ε, εk < (b′i,h−1 − bih). Otherwise, b′ih = bih. This results in raising all of
i’s buy bids except in the case biei = bi,ei+1. From NDB, biei = bi,ei+1 can only
occur when biei = viei = vi,ei+1

= bi,ei+1. Furthermore, when biei = bi,ei+1 = 0,
any bid not equal to viei is raised. So, the only time that this does not result
in raising any buy bid in Yi to a nearby bid not in Yi is in the zero probability
event that viei ∈ Yi.

Similarly, iteratively define new sell bids as follows. If biei ∈ Yi, and
biei 6= bi,ei+1, then biei = ysk(bi,ei+1), where εk is the first element of {εk}
such that εk < ε, εk < (biei − bi,ei+1) /3. Otherwise, b′iei = biei . Now, for
h = ei− 1, . . . , 1 if bih ∈ Yi and bih > b′i,h+1 then b′ih = ysk(bih) where εk is the

first element of {εk} such that εk < ε, εk <
(
b′i,h+1 − bih

)
. As before, the only

time a bid at Yi is left alone is in the zero probability event that vih ∈ Yi.
This is a measurable mapping from B to B. Hence, mε

i defined as the
composition of mi with this mapping is also measurable, and so is a feasible
distributional strategy. Further, since ties involving i are zero probability
given mε

i , any issues involving the potential non-Borel measurability of o at
discontinuities are moot.

This change in strategy costs an amount which vanishes in ε, in terms of
paying more for objects won, or receiving less for objects that would otherwise
have been sold. And, it gains ω by transforming oeih to 0 when a sell bid bih
would have been involved in a tie, and oeih to 1 when a buy bid bih would
have been involved in a tie. Any extra objects bought beyond those at the
original ties are worth almost as much as was paid for them (because the
original strategy satisfied NDB), and similarly, any extra objects sold are
worth not much more than the sales price. So, this deviation results in an
increase in expected utility for ε sufficiently small. This is a contradiction.
Hence, Pr(TihLs) = Pr(TihLb) = 0 for each i and h.

So, each buyer either is in a tie with probability 0, or wins ties with prob-
ability 1. So, in particular, it cannot be that he is with positive probability
in a tie in which he wins and another buyer does not, since the other buyer
also wins ties all the time. Similarly, it cannot be that a seller is with positive
probability in a tie with another seller, and that he wins but the other seller
does not. It is, however, possible that a seller and a buyer with positive
probability make the same bid, but that the mechanism always decides in
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favor of trade in this event.30 So, if one replaces the tie breaking rule of the
augmented game by the standard one (subject to the proviso that when a
buyer and a seller are tied, the object is actually transferred), then payoffs
under the original equilibrium strategies are unaffected.

To complete the proof, we show that there are no improving deviations
from o,m. Suppose to the contrary that some player i has a profitable
deviating strategy µi. Without loss of generality, take µi to satisfy NDB..31

Now, for given ε > 0, define µεi from µi in terms of the map defined above.
Arguing as above, for small ε, µεi performs arbitrarily close to as well as
µi, and so for small enough ε, is also a strictly profitable deviation. But,
Pr(bih ∈ Yi|µεi ) = 0 for each h, and hence by Lemma 10, i is with probability 0
involved in a tie given µεi .Hence, µεi is also strictly profitable in the augmented
game, a contradiction.

Proof of Theorem 6
Fix A ∈ ΦA satisfying SIP and CGT. As in the proof of Theorem 1,

we generate equilibria for a sequence of auctions with finite strategy spaces,
so that the payoffs in the equilibrium constructed of the limit game is the
limit of those in the sequence of finite games. Choose a sequence Ar of finite
approximations to A, where in Ar, each coordinate of B is approximated
within Hausdorff 1/r by a finite grid. For each such game, fix the tie breaking
rule as symmetric randomization among tied bids, as described above. It
suffices to show that there is ρ > 0 and r̂ < ∞ such that for each r > r̂,
there is an equilibrium of Ar that has probability of trade at least ρ.

Now, for any finite approximation Ar, and for each t = {1, 2, . . .}, consider
the auction Art modified from Ar as follows. With probability 1/t a non-
strategic player n+ 1 has en+1 = 1 and submits a sell offer which is uniform
over the available bids in [0, v̄].32 With probability 1/t, en+1 = 0 and n + 1
submits a buy offer which is uniform on the available bids in [0, v̄]. With
residual probability, player n + 1 is not involved. These probabilities are

30For example imagine that there are two buyers with demand in [2, 3], and two sellers
with a single unit for sale and value in [0, 1]. Then, it is an equilibrium for all players to
bid 1.5, and for trade to always occur. This does not require the auctioneer to be able to
observe anything about players except who is a seller and who a buyer. In this sense, this
example is quite different from the example at the end of Section 5.1.

31For instance, transform bids to min(bih, vih) if h > ei and max(bih, vih) if h ≤ ei.
32This player is not the same as the non-strategic player 0 who represents the possibility

of an exogenous supply (as in the case of a one sided auction). Player n + 1 is just a
construction for the proof who disappears from the limit auction A.
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independent of P . Each Art has an equilibrium mrt by Milgrom and Weber
[16], Theorem 1. For each s, let ρs = infr>s,t>s Pr {trade under mrt} . Assume
that lim inf ρs = ρ′. Then, there is s <∞ such that the probability of trade
in any mrt for r > s, t > s is at least ρ′/2 for all t. By Milgrom and Weber
[16], Theorem 2, the limit as t → ∞ of any convergent subsequence of mrt

is an equilibrium mr of Ar which has probability of trade at least ρ′/2. To
prove the theorem, we need to show that ρ′ > 0. Suppose the contrary so
that there exists a sequence rs, ts such that rs → ∞, ts → ∞, and such
that the probability of trade under the corresponding ms goes to 0 along the
sequence.

Consider the case where the second condition in CGT holds, so that there
are sometimes m + 1 sell values below a buy value. (The argument if the
first condition holds is symmetric.) For notational convenience, let Prs(E)
be the probability of event E happening in auction s. When the probability
of an event does not depend on s, we write simply Pr(E)

Without loss of generality consider players 1, 2, . . . . , j, j + 1 such that
sometimes there are m + 1 sell values among J ≡ {1, . . . , j} below j + 1’s
highest buy value, and such that J is minimal. That is,

Pr
{
ej+1 < m,#{(i, h)|i ∈ J, h ≤ ei, vih < vj+1,ej+1} > m+ 1

}
> 0,

but

Pr
{
ej+1 < m,#{(i, h)|i ∈ I, h ≤ ei, vih < vj+1,ej+1+1} ≥ m+ 1

}
= 0,

for all I ⊂ J , I 6= J .
Let

v′ = min{x|Pr{ei < m, vi,ei+1
> x} = 0 ∀i ∈ N\J}

be the upper bound on buy values among players outside of J. Let i∗ ∈ N\J
be a player for whom this is binding. Let ω > 0 be chosen so that

Pr {X} > ω

where
X ≡ {#{(i, h) |i ∈ J, h ≤ ei, vih < v′ − ω} ≥ m+ 1}

is the event that there are at least m + 1 sell values below v′ − ω in J . By
the minimality of J , each i ∈ J has at least one sell value below v′ − ω in
this event.
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Consider an arbitrary k ∈ {1, 2, . . .}. There is ω/k > δ > 0 and δ′ > 0
such that

Pr ({ei∗ < m, vi∗,ei+1 > v′ − δ} ∩ {no other player has buy value ≥ v′ − 2δ}) > δ′.

That is, δ can be chosen such that there is a positive probability that i∗

has a buy value above v′ − δ, but no other player has a buy value above
v′ − 2δ. To see this, note that for any δ < ω/2, when each i ∈ J has a
sell value below v′ − ω, she has (by diminishing marginal utility) no buy
values ≥ v′ − 2δ ≥ v′ − ω. And, by definition of v′, and given that values
are atomless, there is δ > 0 small enough such that for each i ∈ J ∪ i∗ there
is a positive probability that i has no buy values ≥ v − 2δ. Since

∏
iBi is

absolutely continuous with respect to B, there is some probability δ′ > 0 of
all these things happening at once. By NDB, this implies

Prs{no buy bids other than by i∗ ≥ v − 2δ} > δ′

for large enough s as well.33

For any given ω and δ satisfying the above, let QB be the number of buy
bids greater than v′− 2δ, and QS the number of sell bids at or below v′− 2δ
by anybody other than i∗.

Now, Prs (QS > 0) → 0 must hold. To see this suppose the contrary.
Note that by bidding at v′ − 3δ/2 whenever i∗ has a buy value above v′ − δ,
i∗ wins whenever QS > 0, and all other buy bids are below v′ − 2δ. Since∏

iBi is absolutely continuous with respect to B, this is a positive probability
event, and so this strategy earns positive surplus independent of s, which
contradicts the fact that the probability of trade is going to zero.

Prs (QB > 0)→ 0 must also hold. To see this, note that if Prs (QB > 0) >
γ, then at least one of J, say 1, assesses probability at least γ/2 that one of
his opponents makes a buy bid above v′ − 2δ, and hence probability at least
M ′γ/2 on such a bid conditional on having a sell value below v′ − ω. So,
1 gets a surplus of at least (ω − 2δ) with probability at least M ′γ/2 which
contradicts the fact that the probability of trade is going to zero.

Let µs ≡ maxi∈{0,...,n} Prs {ei < m, bi,ei+1 ≥ v′ − 2δ} be the maximum prob-
ability that any player makes a buy bid above v′−2δ. By the above, µs must
go to 0 as Prs{QB > 0} ≥ µs.

33NDB applies to the limit auction, but then far enough along the sequence the proba-
bility of dumb bids is going to zero.
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The probability that q players bid above v′ − 2δ is less than
(
n
q

)
(µs)q . It

follows that
Prs{QB > m} < κ

(
(µs)

2 + (µs)
3 + ...

)
where κ < ∞ takes care of the combinatorial terms. Since Prs{QB > 0} ≥
µs, and since µs → 0,

Prs(QB ≤ m|QB > 0)→ 1. (14)

Now, since Prs (QS > 0) → 0, each i ∈ J is in the limit only submitting
sell offers above v′ − 2δ. Consider the deviation di for any given i ∈ J that
whenever i has a sell value vih below v′ − ω, i submits bih = v′ − 2δ instead
of his equilibrium bid. Let ni be the random variable giving the number of
such sell offers i submits with di. Now, since Prs (QS > 0) → 0, di in the
limit sells min{ni, QB} objects with probability 1, at a price at least v′− 2δ.

For each QB, i only sells as many objects as he has bids among the QB

lowest. So, by deviating, he sells an extra object (or objects) whenever his
bid under the equilibrium strategy was among the QB lowest. Let iL be the
event that i has a sell bid not among the m lowest. Then, in particular, di
sells at least one extra object whenever {X, iL, 0 < QB ≤ m}. Let yi be this
event. Thus, the deviation gains at least ω − 2δ with probability at least
Prs(yi).

On the other hand, di only results in a worse outcome for i than the equi-
librium strategy when i would already have sold objects, and in this event,
the cost is at most m2δ and occurs with probability bounded by Pr(QB > 0).
Since the utility function has bounded derivative, there exists Λ < ∞ such
that U ′(x)/U ′(y) < Λ for all x and y. So, for the deviation not the be prof-
itable, it must be that

Prs (yi) (ω − 2δ) < Prs(Qb > 0)2mδΛ

and so
(ω/δ − 2) Prs (yi) /Prs(Qb > 0) < 2mΛ, (15)

where the division is well defined for s large, because for each s large, player
n+ 1 sometimes makes a buy bid above v′ − 2δ.

51



Since, Pr(X) > ω, Prs(X|0 < Qb ≤ m) > M ′ω. Hence,

Prs(yi)/Prs(Qb > 0) = Prs(X, iL, 0 < Qb ≤ m)/Prs(Qb > 0)

= Prs(X, iL, 0 < Qb ≤ m|Qb > 0)

= Prs(iL|X, 0 < Qb ≤ m) Prs(X|0 < Qb ≤ m) Prs(0 < Qb ≤ m|Qb > 0)
∼= Prs(iL|X, 0 < Qb ≤ m) Prs(X|0 < Qb ≤ m)

≥ Prs(iL|X, 0 < Qb ≤ m)M ′ω.

where, from (14), the approximation is arbitrarily good when s is large.
Substituting and summing (15) over i ∈ J, we have

(ω/δ − 2)
∑
i∈J

Prs(iL|X, 0 < Qb ≤ m)M ′ω < 2jmΛ (16)

for large s.
But, in event X there are at least m + 1 sell values below v′ − ω in J,

and hence when Qb ≤ m, with probability 1 someone in J goes away with
an unsold unit. Hence, (16)implies

(ω/δ − 2)M ′ω < 2jΛm.

But, ω/δ ≥ k, and so, since k was arbitrary, we have a contradiction.
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