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Description of the Add Health Data
Measuring Homophily.Webeginwithsomesimpledefinitionsthatare
important inmeasuringhomophilyandalso inpresenting themodel.
Let Ni denote the number of type i individuals in the pop-

ulation, and let wi ¼ Ni
N be the relative fraction of type i in the

population, where N ¼ ∑kNk.
Let si denote the average number of friendships that agents of

type i have with agents who are of the same type, and let di be the
average number of friendships that type i agents form with
agents of types different from i. Let ti = si + di be the average
total number of friendships that type i agents form.
The homophily index Hi measures the fraction of the ties of

individuals of type i that are with that same type.
DEFINITION 1 The homophily index Hi is defined by

Hi ¼ si
si þ di

:

The profile (s, d) exhibits baseline homophily for type i if
Hi = wi.
The profile (s, d) exhibits inbreeding homophily for type i if
Hi > wi.
Generally, there is a difficulty in simply measuring homophily

according toHi. For example, consider a group that comprises 95%
of a population. Suppose that its same-type friendships are 96%of
its friendships. Compare this to a group that comprises 5% of a
population and has 96% of its friendships being same-type. Al-
though both have the same homophily index, they are very dif-
ferent in terms of how homophilous they are relative to how
homophilous they could be. Comparing the homophily index, Hi,
to the baseline, wi, provides some information, but even that does
not fully capture the ideaof howbiased a group is compared to how
biased it could potentially be. To take care of this we use the in-
breeding homophily index introduced by Coleman [Coleman J
(1958)HumOrgan 17:28–36] that normalizes the homophily index
by the potential extent to which a group could be biased.
DEFINITION 2 Coleman’s inbreeding homophily index of type i is

IHi ¼ Hi −wi

1−wi
:

This index measures the amount of bias with respect to baseline
homophily as it relates to the maximum possible bias (the term 1 –
wi). It can be easily checked that we have inbreeding homophily
for type i if and only if IHi > 0, and inbreeding heterophily for
type i if and only if IHi < 0 . The index of inbreeding homophily
is 0 if there is pure baseline homophily, and 1 if a group com-
pletely inbreeds.*†

General Patterns of Homophily
ThedatafromAddHealthwerecollectedoverseveralyearsstarting
in1994 fromacarefully stratifiedsampleofhigh schoolsandmiddle
schools (to vary by size, location, include public and private, varied
racial composition, and socio-economic backgrounds). There are
behavioral and demographic data in the data set from 112 schools;
here we use the data from 84 schools for which extensive network
information was obtained. The data are based on student inter-
views. The friendship data were based on reports of friendships by
each student. Student’swere showna list of all of theother students
in the school and permitted to name up to five friends of each sex.
Only 3% nominated 10 friends, and only 24% hit the constraint on
one of the sexes, and so the constraints do not seem to impose a
substantial measurement issue, although there are standard con-
cerns about self-reported relationships and interview-based data.

Here a tie is present if either student mentioned the other as a
friend. Student’s could also identify other students withwhom they
had romantic relations, which are not reported among friendships.
The attribution of race is based on a self-reported classification.
In the analysis to follow, each observation refers to the average

of a given racial groupwithin a givenhigh school.Wehave a total of
305 observations (all racial groups that are present in the sampled
high schools).
Fig. 1 relates the total number of friendships (on average) held

by each racial group to the relative size of that group. The average
number of total friends is an increasing function of group size, with
a mean of <6 friends for groups that are a small fraction of their
school increasing up to >8 friends on average for a racial group
that comprises most of a high school. Regressing the total number
of friends t on relative group size w we find that (standard errors
are in parenthesis)‡:

t ¼ 5:54
ð:19Þ

þ 2:27
ð:31Þ

w [s1]

Both the constant and the coefficient of group size are significant
at a 99% confidence level (with t-statistics of 7.34 for w and 28.46
for the constant, and R2 = 0.076).§

As explained above, it is informative to normalize groups’
inbreeding relative to their inbreeding potential by dividing the
difference between the observed index H and the relative group
size w by a factor of one minus w, to obtain the Inbreeding
Homophily Index. As shown in Fig. 1, this index varies non-
monotonically with relative group size, following a humped
shape. Very small and very large groups tend to inbreed very
little compared with their inbreeding potential, while, on aver-
age, middle sized groups inbreed the most. Because of the
nonlinearity of the relation between IH and w, we regress the
index IH on group size w and on the square of group size w2

(higher order terms do not significantly improve the fit). We
obtain the following relationship¶:

IH ¼ :032
ð0:01Þ

þ 2:15
ð0:13Þ

w � 2:35
ð0:15Þ

w2 [s2]

Both coefficients and the constant term are significant at a 99%
confidence level, with t-statistics of 2.16 for the intercept, of 24.8
for w and of 20.4 for w2, and with R2 = 0.73.

*One could also define a heterophily index, which would be
si

siþdi
−wi

−wi
, reflecting the extent

to which a group is outgoing. It would be 0 at baseline homophily and 1 if a group only
formed different-type friendships.

†The measures Hi and IHi have slight biases in small samples. For example, suppose that
there was no bias in the friendship formation process so that we are in a “baseline”
society. Then the fraction of other agents that are of type i is Ni −1

N−1 . Thus, the expected
value of Hi – wi in a baseline society is − N−Ni

NðN− 1Þ, which vanishes as N becomes large. The
expected value of IHi is then − 1

N−1, which is independent of i, vanishing in N, and slightly
negative.

‡This is a weighted regression, since the relationship is a per-capita variable and small
groups have only a few individuals and substantially higher variances. So the average
value of a group of x students is weighted by x. Without weights, the average individual
behavior of few students in a small racial group would affect results as much as the
average behavior of hundreds of students in a large group, biasing the results in favor of
small groups. Since total friends are a characteristic related to individual behavior of
students, the student is the correct level of observation. For comparison, an unweighted
regression gives similar results (t = 5.86 + 1.86w with standard errors of 0.15 and 0.37,
respectively), so it does not make much of a difference.

§The R2 increases by a factor of 4 when we include racial information, below.
¶This is an unweighted regression since the relationship is a group-level one and the index
is a normalized index.
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A Closer Look at Data: Differences Across Schools and Races
A closer inspection of the data suggests that the observed rela-
tions between relative group size and friendship patterns result
from the aggregation of seemingly different patterns for the
various races. Significant differences are also associated with
friendships patterns in schools of different sizes.

Inbreeding Homophily Index. We obtain a clear picture of the
different trends followed by different races by running separate
regressions of the Inbreeding Homophily Index for each race, and
plotting the fitted curves in Fig. 1A.
To get an idea of the effect of school size, we run separate

regressions of the inbreeding homophily index against group size
and its square for small and large schools. We break the data into
two parts, with a threshold that splits the data roughly in half:
those schools with >1000 students and those with <1000 stu-
dents. The separate fits are depicted in Fig. 1B.
The two quadratic fits suggest a general increase in the

inbreeding of all groups in larger schools. Interestingly, this
increase seems to be more substantial for smaller groups (and is
statistically significant, as found by the significance of the inter-
cept dummy variable for school size in the regression in Table S1).
To test the statistical significance of the above differences

across races and schools, we run a regression of the Inbreeding
Homophily Index against relative group size, controlling for the
composition of the sample with respect to race and school size.
The results of this regression are summarized in Table S1.
We control for the effect of race by means of race dummies for

Black, Hispanic, and Asian groups, and slope dummies for these
three races for both w and w2; we control for school size by means
of a dummy variable splitting the sample in large schools and
small schools. We also control for the interaction effect of school
size with both group size and the square of group size. We obtain
qualitatively similar results for thresholds of school size other
than the 1000 which splits the data roughly in half.
The parametric tests of Table S1 impose constraints on the

functional forms. To further investigate the significance of the
above differences, we run a nonparametric Mann–Whitney test
on the difference of distributions from which observed data for
the various races and schools are drawn. The null hypothesis is
here that the observed Inbreeding Homophily Indices for the
two races are drawn from the same distribution. The z-statistics
are as follows:

Asian – Black: – 4.417***; Asian – Hispanic: 1.269; Asian –

White: – 5.041***;
Black – Hispanic: 5.271***; Black – White: 0.549; Hispanic –

White: – 6.036***.

The results of this test are in line with those found in the
parametric tests, suggesting a systematic effect of race. There are
very highly significant differences between races in all cases with
the exception of Black-White and Asian-Hispanic. As this is a
much weaker test than the parametric fits, it is not completely
clear how to interpret this. Fitting the parametric regressions
based on quadratics picks up a difference between Blacks and
Whites and also for Asians and Hispanics (using confidence
intervals on the dummies), while the nonparametric rank sum test
does not (and is also weaker as it does not correct for school size
effects). Fitting the model below will help in further sorting this
out, as it provides a different angle altogether.
We can nonparametrically test the effect of school size by

means of a Matt–Whitney test on the difference of distributions
of the Inbreeding Homophily Index associated with large
(>1,000 students) and small (<1,000 students) schools. The null
hypothesis is that both samples are drawn from the same dis-
tribution. The null hypothesis is rejected at the 99% confidence

level. Finally, we test whether the difference in distribution is
driven by small racial groups. Interestingly, we obtain that the
distributions from large and small schools are not statistically
different for majority groups and are statistically different for
minorities. In particular, for large groups we obtain a z-statistic
of −1.703, with Pr > z equal to 0.089, while for small groups we
obtain a z-statistic of −4.057, with Pr > z equal to 0.0001. We can
rephrase this result by saying that the inbreeding behavior of
students in groups that comprise small fractions of their school is
“more affected” by school size than the behavior of groups that
comprise large fractions of their school. A potential explanation
for this, that will be consistent with the modeling below, is that
small racial groups may find it easier to inbreed in larger rather
than in smaller schools, possibly because of the presence of
economies of scale in the formation of organized loci of activity
that traditionally favor inbreeding behavior, such as clubs, soci-
eties, and other extracurricular activities and organizations.

Numbers of Friendships. We now turn to the pattern of how the
average numbers of friendships varies as a function of group size.
The bottom panel of Fig. S1 suggests that the relation between
total number of friends and relative group size results from quite
different patterns across races. Running separate regressions for
separate races, we obtain the fitted lines pictured in the bottom
panel of Fig. S1. As we see from Table S2, the relation between
group size and total friends is significantly different from a flat
line at 99% confidence level only for Whites and Hispanics, and
also for Blacks if we relax to a 95% confidence level.k

Finally, theeffect of school sizeon total numberof friends is such
that total friendships slightly decrease in larger schools (as we see
from Table S3, this difference is not statistically significant).
As we did for the Inbreeding Homophily Index, we run a single

regression of the total number of friends against relative group
size, controlling for racial composition and school size. Again, we
control for the effect of race bymeans of racial dummies and racial
slope dummies for w, and for the effect of school size by means of
the dummy DS which splits the sample in schools with >1000
students and schools with <1000 students. The results are sum-
marized in Table S3.
These results about both the number of friendships and the

inbreeding homophily index point out effects of both race and
school size on the relation between the relative size of racial groups
and their pattern of friendship formation.Race significantly affects
both total friendships and their racial mix, and in different ways
across races. School size also affects the racial mix of friendships,
strengthening the tendency to inbreed; but does not have a sig-
nificant effect on total numbers of friendships. We again remark
that although statistically significant, these results merely indicate
an association between race and school size and some patterns of
friendship formation, while no casual effect is implied.

A Preference- and Random Meeting-Based Model of
Friendship Formation
Our model is such that friendship formation takes place via a
meeting pool in which agents enter without any friends, are
randomly matched to new possible friends and eventually exit the
process after having formed some friendships. Heuristically, this
can be thought of as being like a party that students attend, and
they continue to form friendships while at the party and eventually
decide to leave the party.

kAgain, these are weighted regressions. We note that the negative relationship for His-
panics seems driven by a single outlier. In that school, Hispanics form 89% of the pop-
ulation and yet form fewer than five friends per capita, and in this case they form <0.25
different-type friendships per capita. If we change the value of that outlier to the aver-
age value, then the relationship for Hispanics is positive (although not statistically sig-
nificant).
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Agents are characterized by race and generally we use the term
type, as the model applies for all sorts of different catego-
rizations, including things like age, gender, or combinations of
such attributes. Agents have preferences over whom they are
friends with, which are potentially sensitive to the racial (or type)
mix of these friends. Each racial group i is characterized by its
relative size wi in the school.
We consider a steady state of the meeting process in which the

flow of new agents into thematching balances those exiting. Three
key elements of the model are: (i) the preferences and resulting
choices of the agents of how many friendships to form given the
meeting process; (ii) the random meeting process itself, which
may be more or less biased in terms of the relative rates at which
it matches types; and finally (iii) the steady-state requirements
that require that friendships add up across agents and that
people enter and exit at a similar rate so that the process is in
equilibrium. We use the model to calibrate preferences and
meeting rates across races, evaluating whether there are differ-
ences across races or according to school size. This approach
complements the purely statistical one, since it allows us to infer
which forces are affecting homophily and friendship numbers.

An Agent’s Preferences. Each agent receives utility from the
composition of the set of his or her friends.
Agents of the same type are characterized by their utility

function, which may, however, differ across types. The total utility
to an agent of type i who has si same-type friends and di different-
type friends is given by Eq. 1:

Uiðsi; diÞ ¼ ðsi þ γidiÞα;
where both γi and α are between 0 and 1, so that Ui is increasing
in both si and di.
This simple functional form for preferences has several features

worth commenting on. First, the α(< 1) parameter captures the
fact that there are diminishing marginal returns to friendships, so
that although there are benefits from having more friends, those
marginal benefits decrease as more friends are added. Second,
the γi parameter captures the bias that an individual has in
evaluating friendships of same type versus different type. A
different-type friend is only worth γi as much as a same-type
friend. Third, we allow γi to vary with type but keep α the same
across types. We could extend the model to fuller generality, but
at the risk of having too many free parameters and over-fitting
the data. The critical difference that we are interested in ex-
ploring is racial attitudes toward cross-race friendships and so γi
is a critical parameter to allow to vary, while the rate at which
friendship value diminishes is less pertinent and so we hold that
fixed across races.
The race-dependent parameter γi quantifies the bias toward

own type in preferences: a value of γi = 0 indicates completely
biased preferences which attributes no value to friendships with
different types, a value of γi = 1 corresponds instead to prefer-
ences which are independent of types (in the economics termi-
nology, this is a case of perfect substitutes).
There are costs to meeting people and forming friendships,

both in time and energy, and that caps the numbers of friendships
that agents form. In particular, an agent bears a cost c > 0, in
terms of opportunity cost of time and resources, for each unit of
time spent in the meeting process. We will see that the param-
eter c, although needed to close the model, does not end up
playing a significant role in the calibration, and could in principle
even be heterogeneous across schools.

The Meeting Process and Decision Problem. Theway in which people
meet to potentially form friendships is through a meeting process
that is likeaparty.Agentsbeginbyenteringtheprocessorparty,and
thenonce there they randomlymeet other people.Agents can then

choose toeither formafriendshipornotwitheachagentwhomthey
meet. There is a cost to being in the meeting process (i.e., at the
party), and so eventually people choose to leave when the benefits
from meeting more people no longer exceeds the cost of staying.
Given that preferences are increasing in friendships of both types,
agents will accept whomever they meet as friends, and the main
decision is simply when to leave.** Note that even though the only
decision is when to exit the process, both biases in preferences and
biases in the matching will affect that decision. The bias in pref-
erences determines how the agent evaluates what the marginal
return from staying in the meeting process is relative to its cost,
while the bias in the meeting process will affect the mix of same
versus different people that will be met and thus also the antici-
pated marginal return from being in the meeting process.
Thus, the relevant meeting parameter from an agent’s decision

perspective is the expected rate at which the agent will meet
same versus different type friends. Because of the bias and po-
tential heterogeneity in the actions of different types of agents,
the relative rate at which agents meet their own type versus
different types will not correspond directly to their relative
fraction in the population wi. This would only be true if all agents
stayed in the meeting process for the same amount of time and
the process operated completely uniformly at random and had
no bias in matching. Otherwise, we need to keep track of the rate
at which a type i agent meets other type i’s, which we denote qi.
This parameter will be determined by the decisions and the
steady-state.
Given the matching probabilities of same type of agents and

different type agents of qi and 1 – qi per unit of time, respectively,
if an agent of type i stays in the meeting process (at the party) for
a time ti, then he or she will end up with (si, di) = (tiqi, ti(1 – qi))
friends of same and different types, respectively. We solve the
model in the case where the actual realizations of the matching
are the expected numbers, so that qi will be equal to the ho-
mophily index Hi (Definition 1).†† Thus, an agent of type i solves
the following decision problem of how long to stay in the
meeting process and thus how many friends to have:

max
ti

Uiðqiti; ð1− qiÞtiÞ− cti: [s3]

Given the utility function described in Eq. 1, this is a straight-
forward maximization problem and it has solution:

ti ¼
�α
c

� 1
1− αðγi þ ð1− γiÞqiÞ

α
1− α:

The Bias in Meeting Process and the Steady State. Solving the model
requires determining the meeting rates. Clearly, there must be
some conditions that relate meeting rates across races, since if a
person of race i is meeting a person of race j then the converse is
also true. Thus, there are cross conditions that constrain the
potential configurations of qi’s.
Themeeting process is described byann×nmatrixq∈ [0, 1]n × n,

where qij is the fraction of i’smeetings per unit of time that are with
type j and the matrix is row stochastic so that∑jqij ¼ 1.
Let Mi denote the relative stock of agents of type i in the

meeting process at any time. In particular, Mi = tiwi, and we can
also normalize the stocks, letting mi ¼ Mi

∑kMk
. The relative meet-

ing probabilities (qij’s) depend on the stocks of agents in the
society and how they bump into each other, which is captured by

**Allowing for satiation can lead agents to refuse friendships. We discuss an extension of
the basic model to allow for satiation in the supplementary material to Currarini, Jackson
and Pin [Currarini S, Jackson MO, Pin P (2009) Econometrica 77:1003–1045]. It significantly
complicates the model as choices then become path-dependent. Thus, at some loss of
generality we work with the simpler model as it still admits both sorts of biases.
††This can be justified by a limit process with an infinite number of agents and renders the
analysis tractable.
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a function F, where q = F(M1, . . ., Mn) is the matching that
occurs as a function of the relative stocks of agents in the society,
and of the utilities of the agents.
To be well defined, the meeting process needs to balance, so

that the number of meetings where an i meets a j is the same as
those where a j meets an i. A meeting process F is balanced at a
given M if q = F(M1, . . ., Mn) is such that

mijqij ¼ qijmij

for all i and j.
A canonical meeting process is one where agents meet each

other in proportion to their relative stocks in the process (at the
party). We call that the unbiased meeting process, and it is such
that qij ¼ Mj

∑kMk
. Given that agent’s preferences only depend on

own an other types, we let qi = qii and then 1− qi ¼ ∑j≠iqij.
We work with a parameterized version of the meeting process

such that:

qi ¼ m1=βi
i ; [s4]

where βi ≥ 1 is the bias that type i has toward itself in the meeting
process. The case βi = 1 in the unbiased process (uniformly
random meetings), and the meeting bias of type i increases with
βi > 1.
If the meeting process were uniformly at random, then it would

have to be that ∑iqi ¼ 1. However, if there is a bias in the
meeting process, agents can meet their own types at a rate which
is greater than their relative mass in the meeting process. In that
case qi > Mi

∑kMk
and so ∑iqi > 1.

The matching defined in s4 will be balanced if, and only if, for
each type i,‡‡

ð1− qiÞmi≤∑
j≠i
ð1− qjÞmj: [s5]

If there are only two types then the two inequalities from s5
impose an additional equality, so that βi is determined by βj. As
the number of types increase, as is in our 5-races case, then the
inequalities from s5 are less binding. With the β’s that we cali-
brate, s5 is satisfied for almost all of the cases in the data.
The parameterization of the meeting process s4 implies Eq. 3:

∑
i
qβii ¼ 1:

Using thismodel,wecanestimate theparameters fromsteady-state
conditions. First, note that from the maximization of utility for the
agents it follows that, for any pair of types i and j, Eq. 4 holds

tiðγj þ ð1− γjÞqjÞ
α

1−α ¼ tjðγi þ ð1− γiÞqiÞ
α

1−α:

Next, note that ti, tj and qi, qj are available from the data since ti is
simply the total number of friends, and qi = si/(si + di) is the
relative rate at which type i’s meet themselves. Thus, we can
estimate the preference parameters (α and the γi’s) from the data
by searching over values which come closest to satisfying Eq. 4.
Finally, we can estimate the meeting bias parameters (the βi’s) di-

rectly by searching over values which come closest to satisfying Eq. 3.

Estimation of the Model
Differences Across Races. Here we estimate the model described
using the Add Health data.
The Add Health data actually have six (self-reported) ethnic

categories: Asian, Black, Hispanic, White, Mixed, and Missing.
For the sake of completeness and to avoid discrepancy with the
empirical data, we use a category of Others: to include “Mixed”
and “Missing” outcomes.
We estimate the model as follows. Index the schools by k. Let

Nk denote the number of students in school k and let wik denote
the fraction of students in school k who are of type i.
A student a of type i in school k faced with a rate qik of

meeting own types solves

max
tik

ðqiktik þ γið1− qikÞtikÞα − cktik; [s6]

with solution

tik ¼
�
α

ck

� 1
1−α

ðγi þ ð1− γiÞqikÞ
α

1− α : [s7]

We suppose that individual students are subject to independent
idiosyncratic shocks on a student-by-student basis (which may be
errors or individual preference differences or other idiosyn-
crasies), so that the solution to s7 is subject to noise and hence,

taik ¼
�
α

ck

� 1
1− α

ðγi þ ð1− γiÞqikÞ
α

1− αþεa ; [s8]

where εa is the individual error that has 0 mean and variance σ2
for every type in every school.
Eq. s8 can be aggregated on a given type in a given school, so that

wikNktik ¼
�
α

ck

� 1
1− α

wikNkðγi þ ð1− γiÞqikÞ
α

1− αþEik; [s9]

where Eik has 0 mean and variance wikNkσ
2; but can also be

aggregated over all of the other types in the school, so that

∑
j≠i

wjkNktjk ¼
�
α

ck

� 1
1− α

∑
j≠i

�
wjkNkðγj þ ð1− γjÞqjkÞ

α
1− α

�
þ E− i;k;

[s10]

where E–i, k has 0 mean and variance
�
∑j≠iwjk

�
Nkσ2.

In principle, from our data, one could compare s8 with s9, but
this would take a very long time as we are running a calibration.
What we can do is compare s9 with s10.
Order the weights so that wik ≥ wjk when i < j. Let

Aik ¼ ðγik þ ð1− γiÞqikÞ
α

1−α: [s11]

Then, it follows from s9 and s10 that

wikNktik −Eik

wikNkAik
¼

�
∑j≠iwjkNktjk

�
−E− i;k

∑j≠iwjkNkAjk
:

We obtain an error for school k

‡‡Condition s5 is clearly necessary for balance. To see sufficiency, first note that this
directly implies balance for two types, and so let us examine a case with three or more
types. We describe one meeting process that works, but in most cases there are many
others. For each type i, let x0i ≡ (1 – qi)mi and order types so that x01 ≥ x02··· ≥ x0n. Start with
type 1’s. Have them meet the second largest group until the remaining part of the
second group is equal in size to the third largest group, and then meet equally with
those two groups until their remainders are equal to the fourth largest group, and so
forth, until the type 1s are exhausted. Then iterate on this process with the remaining
groups until there are no remainders. More formally, match λ0jxj of the type js for j > 1
with the type 1s, where the λ0j ∈ [0, 1] for j ≥ 2 are the unique scalars that satisfy
x1 ¼ ∑j≥2λ

0
j xj ; and (1 – λ0j)xj ≥ (1 – λ0j+1)xj+1 with equality whenever λ0j+1 > 0. Since

x01 ≤∑j≥2x
0
j , such a profile of λ0js exists. Let xj

1 = (1 – λ0j)xj0 and x1
1 = 0. Note that by

the constructions of the λ0js the ordering is preserved and it is also straightforward to
verify that x12 ≤ ∑j≥3x

1
j , and so s5 is still satisfied on the remaining parts of groups 2 to n,

(x21, x
1
3, . . ., x

1
n). Then repeat the process treating (x21, x

1
3, . . ., x

1
n) as the starting point,

until all groups are exhausted. Note that when we reach step n – 3, where (xn−3n–2,
xn−3n–1, x

n−3
n ) are remaining to be matched, then it must be that after that matching we

are left with xn−2n–1, x
n−2
n ) such that xn−2n–1 = xn−2n , and so the final step is to match these two

remainders together. To see that these two last groups must be equal in size, suppose the
contrary so that xn−2n–1 > xn−2n . By the definitions of the λs, it would have to be that λn−3n = 0,
and so it would have to be that xn−3n–2 = xn−3n–1 (since xn−3n–2 ≥ xn−3n–1 and xn−3n–2 = λn−3n–1 xn−3n–1 and λn−3n–1 ∈
[0, 1]). But this implies that xn−2n–1 = 0 > xn−2n , which is a contradiction.
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Ψk ¼ w1kNkt1k
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wjkNkAjk

�
−
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wjkNktjk
�
w1kNkA1k: [s12]

¼ E1k

�
∑
j≠1

wjkNkAjk

�
−E− 1;kw1kNkA1k: [s13]

Ψk has mean 0 and variance σ2ϕk where

ϕk ¼ N3
k

�
w1k

�
∑
j≠1

wjkAjk

�2
þ
�
∑
j≠1

wjk

�
w2
1kA

2
1k

�
:

Normalizing the errors so that these are of equal variance across
schools (required for an F-test), leads to setting ðErrorkÞ2 ¼ Ψ2

k
ϕk
.

The total error is obtained aggregating across schools, which now
have errors with zero mean and equal variances (of σ2). Thus,
the total error calculation is

TotalError ¼ ∑
k

Ψ2
k

ϕk
:

We search over a grid of values for α and γs to find the one that
minimizes this sum of squared errors.
The upper part of Table 1 reports the combination that min-

imizes the sum of squared errors as described above.
Our calibration of the model with respect to preference bias is

consistent with the statistical evidence from Tables S1–S3 and the
Mann–Whitney tests.
Next, we calibrate the meeting bias parameters based on Eq. 3.
When we estimate the β’s from Eq. 3, there will be some error

school by school, and so

∑
i
qβiik ¼ 1þ νk; [s14]

where νk is an error for school k’s matching that has mean 0 and
a variance that is the same across schools. So, for any specifi-
cation of βs we end up with a set of errors, one for each school.
Thus, we sum the squared errors across schools and choose βs to
minimize that sum. We first search over a grid of step 0.5, from 1
to 9. If we hit a corner then we refine the grid to a step of 0.1 and
search again (now from 1 to 3). In this case we hit corners for
Whites and Others, as we discuss in more detail below, but not
for the remaining races. The lower part of Table 1 reports the
combination that minimizes the sum of squared errors.

Alternative Estimations of the Meeting Biases. The result βWhites = 1
identifies a corner solution. One reason for this is that the cal-
culation ends up including some noisy observations which are
those corresponding to groups that are very small fractions of
their schools. For example, if a group is a few percent of a
school, then it can end up just having a few students and their
idiosyncratic behavior ends up influencing the error.§§ We are
considering averages across all of the students of the same type
as a good indicator of their meeting opportunities, and this as-
sumption relies implicitly on a law of large numbers. For this
reason, as a check, we rerun the calibration excluding all those
observed types i whose representative wi in the school is smaller
than a threshold τ. To do this we can define a “threshold” ver-
sion of Eq. 3, that accounts for this:

∑
i:wi > τ

qβii ¼ ∑
i:wi > τ

wi : [s15]

Here only a type i for which wi > τ is considered. The sum of the
biased opportunities qβii of sufficiently represented types should

now sum to 1 minus the fraction of those minorities we have
excluded (clearly ∑i:wi > τwi ¼ 1−∑i:wi < τwi).
We estimate Eq. s15 by adopting a threshold τ= 0.06 (which is

the minimal value that avoids βWhites = 1). In this way we con-
sider 237 out of 389 observations (we discard 6 out of 83 Whites,
31 out of 70 Blacks, 41 out of 82 Hispanics, 58 out of 70 Asians
and 16 out of 84 Others). The best fitting βs are:
βAsian = 4.5, βBlack = 6, βHispanic = 3 βWhite = 1.1 βOther = 1.
The obtained result is no longer a corner solution for Whites

and is consistent with the qualitative outcomes of Table 1.
When we estimate the meeting biases using the above tech-

niques, we are jointly estimating the biases across all races. In
principle, βi could instead be inferred from s4, as βi ¼ logmi

log qi
. This

would, however, miss cases in which the logarithm is not defined,
or where this expression is driven by small values. Of the 305
observations, qi = 0 for 48 of them (and for those wi has a mean
of 0.011 and a maximum of 0.094, which happens in a school of
32 students). For the observations for which qi > 0, the imputed
βi has a mean of 1.957, with a standard deviation of 0.095.
If we consider the size of the schools, then on large schools (n >

1000, 118 observations) we have βlarge = 2.349 (0.162), while on
small schools (n < 1000, 139 observations) this bias is, as ex-
pected, lower: βsmall = 1.623 (0.102).
Race by race we obtain the following by regressing log(qi)

on log(mi) to obtain 1/βi and then inverting,¶¶ all of which are
significant at the 99.9% level:

1. Asians (12 observations): βasian = 2.1.
2. Blacks (39 observations): βblack = 3.4.
3. Hispanics (36 observations): βhispanic = 1.3.
4. Whites (77 observations): βwhite = 2.1.

The basic pattern is consistent with that obtained from the
calibrations reported in Table 1. Although the patterns are
somewhat similar to those estimated under the joint estimation
procedure, the Whites’ meeting bias has now jumped above that
of the Hispanics to match the Asian bias, and the overall level of
the biases is a bit attenuated. This fitting, however, ignores joint
information which incorporates comovements in racial compo-
sitions and meeting rates that we estimate in the main article
under Eq. 3 and so should be less accurate in estimating the βs.

Significance Tests. We consider the following F-statistic:

F ¼
ðSSRcon − SSRunconÞ

puncon − pcon
SSRuncon
n− puncon

where SSR stands for "sum of squared residuals" of the best fit
calibration, while p is the number of parameters estimated in the
various models, and n is the number of observations: 84. The
subscript “con” stands for the constrained model under the null
hypothesis that some of the γ’s are equal to each other and/or
take on some values. The subscript “uncon” stands for uncon-
strained model, where all parameters are fit as above.
To illustrate this, before presenting the full tables of all of the

tests, we first test the null hypothesis that all γ parameters are
equal to 1. This is a test of the hypothesis that preferences are
not sensitive to race.
We examine a 99% confidence level, and look at the F-statistic

with (5, 78) degrees of freedom. The threshold F level for a 99%
level is 3.26. We obtain:

§§We cannot simply reweight observations, because we need to respect the structural
equations from the model.

¶¶The regressions are done with a 0 intercept and considering only those above the
weight threshold of 0.06, from above.
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F ¼
17554− 4704

6− 1
4704
84− 6

¼ 42:61∗∗ > 3:26:

When considering small and large schools, we fit different
parameters for the two cases, and then get a total error when we
allow these parameters to vary. This becomes the unconstrained
case for the F-test, and then we compare it to the error when we
add the constraint that the parameters not vary with school size.

Significance of Differences Across Races. The first thing to note is
that all of the preference bias parameters are lower than 1, as
shown in Table S4. Thus all races exhibit some bias in prefer-
ences toward their own race. When we test whether the prefer-
ence bias parameters are significantly different from 1, we find
that they are significantly different well beyond the 99% con-
fidence level (with an F-statistic of 42.61).
The second thing to note is that there are significant differences

between the races. Blacks exhibit the strongest preference bias
with a γ of 0.55, so that a friendship with another race provides
only 55% of the utility of a friendship with another Black. His-
panics see values of 65% for the same parameter, Whites 75%,
and Asians are the least biased with a parameter of 90%. Some
of those parameters are significantly different from each other,
basically with Blacks and Hispanics both being significantly dif-
ferent from both Asians and Whites, but with Blacks not sig-
nificantly different from Hispanics and Asians not significantly
different from Whites.
When we examine the meeting biases (see Table S5), we again

see dramatic differences across races and significant biases for
most of the races. Whites have nearly no meeting bias, while that
of the other races are quite substantial, with Blacks seeing the
largest meeting bias, Asians the second largest, and Hispanics
the third. The bias parameter for Blacks is more than seven times
that of Whites. The differences between each pair of races is
highly significant, except between Asians and Blacks.
The previous interpretations are based on a model such that all

students of a given race behave homogeneously. This is an
important caveat, since significant differences may arise within
groups, and possibly driving average data. Moreover, in deriving
conclusions about norms and/or policies it is important to recall
that we are not taking into account other socioeconomic factors
that could be correlated with race and be driving some of the
differences in calibration (for instance, a preference for friend-
ships along some other dimension).

Estimation of Differences Due to School Size and Income Level. We
now calibrate the model by school size, seeing what differences in
biases exist between small and large schools. The threshold
determining size is kept at 1000.
We find that large schools exhibit significantly higher biases in

meetings, and although the preference biases are also higher in
larger schools they are not significantly so. For example, when we
examine the meeting biases by races and school size, Black
meeting biases are 6 for small schools and 9 for large schools,kk

Hispanics vary from 2 for small schools and 6.5 for large schools,
where there is no change for Whites (unbiased in each case) and
actually a decrease for Asians (from 6.5 for small to 3.0 for
large). So again, we see different patterns for Blacks and His-
panics compared to Asians and Whites.
Table S6, below, shows the results. We find a larger meeting

bias in larger compared to smaller schools, going from an aver-
age value of 2–2.5. We also check that these differences do not
vanish once we control for differences across races. The lower
part of Table S6 confirms that the net effect of size on biases
remains significant at a 99% confidence level.***
We perform similar calculations by school income level, as

discussed in the main article and reported in Table S7.

Normality of the Error Terms. The F-tests that we perform presume
that the errors in s12 and s14 are Normally distributed. Plots of
those errors appear in Fig. S2. To test that these distributions do
not deviate significantly from Normal distributions, we employed
Kolmogorov–Smirnov tests. The combined P values are 0.756
and 0.076, respectively, and so neither deviates significantly from
a Normal distribution at a 95% confidence level. We also per-
form more specific tests on skewness and kurtosis separately
using χ2 tests. In those cases, neither distribution exhibits a
skewness that deviates from a Normal distribution, but both
show significant differences in kurtosis (in this case, more
‘spiked’ distributions around 0).

kkThis last value is an upper bound on the range used in the estimations. A larger upper
bound would further increase the F-statistic, which is already significant at the 99% level.

***We check that there is not excess correlation between population shares and school
size. We find the following correlations: Asians: 0.0263 (0.8291), 0.0509199, 0.0463393;
Black: -0.0081 (0.9469), 0.1835026, 0.1587189; Hispanic: 0.2727 (0.0132), 0.1614755,
0.1156209; White: -0.3245 (0.0028), 0.4976767, 0.6456013; where the first number is the
correlation, the second number is the P value, the third and fourth numbers are the mean
wi for the large and small schools, respectively.
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Fig. S1. Total number of friends by group size: all races (Upper) and by race (Lower).
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Fig. S2. Plot of residuals for estimation of γ and β.

Table S1. Inbreeding homophily index regressed on school size
and racial variables

Inbreeding homophily index Coefficient SE t-statistic P value

Constant 0.135 0.047 2.83 0.005
Group size, w 1.44 0.23 6.18 0.000
Group size squared, w2 −1.66 0.23 −7.13 0.000
School size dummy, DS 0.059 0.024 2.40 0.017
School size dummy times w 0.27 0.22 1.24 0.216
School size dummy times w2

–0.40 0.27 −1.47 0.147
Dummy Black –0.049 0.052 −0.95 0.344
Dummy Hispanic –0.19 0.05 −3.73 0.000
Dummy Asian –0.16 0.051 −3.23 0.001
Slope dummy Black times w 1.02 0.31 3.31 0.001
Slope dummy Hispanic times w –0.16 0.34 −0.49 0.627
Slope dummy Asian times w 2.67 0.65 4.13 0.000
Slope dummy Black times w2 −1.24 0.35 −3.53 0.000
Slope dummy Hispanic times w2 0.92 0.44 2.09 0.038
Slope dummy Asian times w2 −6.71 1.89 −3.55 0.000
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Table S2. Number of friends against group size: regressions by
race

Number of friends Asian Black Hispanic White

Constant 5.58 5.45 6.63 5.55
t-statistic 23.19 15.09 29.43 10.64
P value 0.000 0.000 0.000 0.000
Coefficient 0.47 1.80 −2.50 2.77
t-statistic 0.43 2.55 −5.26 3.82
P value 0.668 0.013 0.000 0.000

Table S3. Number of friends

Number of friends Coefficient SE t-value Pr > t-value

Constant 5.30 0.44 12.00 0.000
Group size, w 3.31 0.60 5.47 0.000
School size dummy 0.52 0.37 1.41 0.161
School size dummy times w −1.14 0.58 −1.98 0.049
Dummy Asian –0.087 0.69 −0.13 0.899
Dummy Black –0.20 0.50 −0.40 0.687
Dummy Hispanic 0.96 0.48 1.98 0.048
Dummy Asian times w −1.99 2.68 −0.75 0.457
Dummy Black times w –0.74 0.84 −0.88 0.381
Dummy Hispanic times w −4.90 0.84 −5.86 0.000

Table S4. Differences in preference biases across races

Preference parameter α γa γb γh γw γo RSScon RSSuncon F 95% 99%

Unconstrained 0.55 0.90 0.55 0.65 0.75 0.90 — 4704 — — —

Asian = Black 0.70 0.80 0.80 0.80 0.85 0.95 5303 — 9.93** 3.963 6.971
Asian = Hispanic 0.65 0.75 0.70 0.75 0.80 0.95 5197 — 8.17** ” ”

Asian = White 0.65 0.85 0.70 0.75 0.85 0.95 4864 — 2.65 ” ”

Black = Hispanic 0.65 0.90 0.70 0.70 0.80 0.95 4798 — 1.56 ” ”

Black = White 0.55 0.80 0.65 0.60 0.65 0.90 5333 — 10.43** ” ”

Hispanic = White 0.60 0.90 0.55 0.70 0.70 0.90 4911 — 3.43 ” ”

All = 1 0.20 1.00 1.00 1.00 1.00 1.00 17554 — 42.61** 2.332 3.261
All = 0.55 0.80 0.80 0.80 0.80 0.80 6175 — 6.10** 2.489 3.570

*Significance above a 95 percent level; **significance above a 99 percent level.

Table S5. Differences in meeting biases across races

Meeting parameters βa βb βh βw βo RSScon RSSuncon F 95% thr. 99% thr.

Unconstrained 7.0 7.5 2.5 1.0 1.0 — 1.7265 — — —

Asian = Black 7.5 7.5 2.5 1.0 1.0 1.7274 — 0.04 3.962 6.967
Asian = Hispanic 3.5 7.5 3.5 1.0 1.0 1.8347 — 4.95* “ “

Asian = White 1.5 6.5 3.5 1.5 1.0 2.7748 — 47.97** “ “

Black = Hispanic 3.5 5.5 5.5 1.0 1.0 2.1486 — 19.31** “ “

Black = White 9.0 3.0 1.0 3.0 1.0 4.4483 — 124.5** “ “

Hispanic = White 8.5 7.0 1.5 1.5 1.0 2.2366 — 23.34** “ “

All = 1 1.0 1.0 1.0 1.0 1.0 25.8836 — 220.64** 2.330 3.258
All = 2.0 2.0 2.0 2.0 2.0 6.2069 — 51.25** 2.487 3.566

*Significance above a 95 percent level; **significance above a 99 percent level.
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Table S6. Preference and meeting biases when allowed to vary by school size

Preference parameters α γa γb γh γw γo RSS F 95% thr. 99% thr.

Ignoring size 0.55 0.90 0.55 0.65 0.75 0.90 4704 — — —

Small schools 0.65 0.90 0.75 0.80 0.80 0.90 1685 — — —

Large schools 0.55 0.85 0.40 0.45 0.65 0.85 2531 — — —

Total error small + large 4216 1.39 2.227 3.063
Small Schools, all = 0.70 0.90 0.90 0.90 0.90 0.90 1831 — — —

Large Schools, all = 0.55 0.80 0.80 0.80 0.80 0.80 4338 — — —

Total error small + large with all = within sml/lrg 6169 4.17** 2.070 2.769
Meeting parameters βa βb βh βw βo — RSS F 95% thr. 99% thr.
Ignoring size 7.0 7.5 2.5 1.0 1.0 — 1.7265 — — —

Small schools 6.5 6.0 2.0 1.0 1.0 — 0.9406 — — —

Large schools 3.0 9.0 6.5 1.0 1.0 — 0.3688 — — —

Total error small + large — 1.3094 4.71** 2.338 3.275
Small schools, all = 2.0 2.0 2.0 2.0 2.0 — 2.5607 — — —

Large schools, all = 2.5 2.5 2.5 2.5 2.5 — 2.8428 — — —

Total error small + large with all = within sml/lrg — 5.4035 28.92** 2.066 2.762

**Significance above a 99 percent level.

Table S7. Preference biases when allowed to vary by the school’s county median household
income level (low is <30,000 dollars in 1990 census and high is above)—for 78 of the 84 schools
for which we have income data

Preference parameters α γa γb γh γw γo RSS F 95% thr. 99% thr.

Ignoring income 0.55 0.95 0.55 0.65 0.75 0.90 4255 — — —

Low income schools 0.60 1.0 0.50 0.50 0.65 0.95 1541 — — —

High income schools 0.35 1.0 0.40 0.70 0.90 0.75 1703 — — —

Total error low + high 3244 3.43** 2.227 3.063
Low income schools, all = 0.55 0.75 0.75 0.75 0.75 0.75 2998 — — —

High income schools, all = 0.55 0.85 0.85 0.85 0.85 0.85 2076 — — —

Total error low + high with all = within low/high 5074 4.65** 2.070 2.769
Meeting parameters βa βb βh βw βo — RSS F 95% thr. 99% thr.
Ignoring income 7.5 7.5 2.5 1.0 1.0 — 1.652 — — —

Low income schools 2.0 8.0 3.0 1.0 1.0 — 0.8699 — — —

High income schools 5.0 4.5 4.0 1.0 1.0 — 0.7485 — — —

Total error low + high — 1.618 0.282 2.338 3.275
Low income schools, all = 2.0 2.0 2.0 2.0 2.0 — 2.6180 — — —

High income schools, all = 2.0 2.0 2.0 2.0 2.0 — 3.1506 — — —

Total error low + high with all = within low/high — 5.7686 21.805** 2.066 2.756

**Significance above a 99 percent level.

Currarini et al. www.pnas.org/cgi/content/short/0911793107 10 of 10

www.pnas.org/cgi/content/short/0911793107

