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Tesla to Halt Production in Germany as
Red Sea Conflict Hits Supply Chains

Disruption related to attacks on ships by Houthi rebels raise risk of
supply-chain crisis in Europe

By William Boston , Costas Paris and Benoit Faucon

Updated Jan. 12, 2024 1:45 pm ET

BERLIN—Tesla TSLA-3.67% ¥ plans to halt production at its only large factory
in Europe for two weeks because of a lack of parts, a sign of how the fallout from
recent attacks on ships in the Red Sea is starting to ripple through the global
economy.

Yemen-based, Iran-backed Houthi fighters have launched successive attacks on



This Paper

Tractable model of (global, complex) supply chains to:
@ characterize short-run impact of a shock,
@ contrast with long-run impact,
@ investigate how impacts depend on network /complexity,

@ examine impact of globalization on fragility.
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Model

n € {1,..., N} countries,

(]

m € {1,..., M} intermediate goods,

fef{l,..., F} final goods,

L,, units of labor country n,

e T, (finite) set technologies country n.



lceberg costs, Prices

@ 0. > 1 units of O(7) shipped from 7 for 1 unit to get to 7.
@ lceberg cost on labor 6, > 1.
@ No iceberg costs on final goods.

. : N+T|
@ Local prices before iceberg costs p € R .



Example: Technologies
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Arrow-Debreu (1954) Technologies

Constant returns to scale technologies 7

(Iabor, an,...,mM/, f]_,...,fF/‘

Vv
intermediate final goods

e.g., (—2,0,-3,0,1): 2 units labor & 3 units my make 1 unit f.



Arrow-Debreu (1954) Technologies @

Suppose country n can produce according to y = LYK~

Then T), = {(=1, —k,1) : [°k'~* = 1}




Arrow-Debreu (1954) Technologies @

Suppose country n can produce according to y = LYK~

Then T,, = {(—l, —k,1) : I*k'~> = 1}




Equilibrium

@ Laborers/Consumers

» supply labor inelastically, L,, in country n;
» maximize homothetic preferences for final goods, U(cy,...,cr).

@ Producers

» maximize profits pry, — > prxrr,
» s.t feasible production: —7y, = Zr':O(T'):k %.

't

@ Markets clear - standard Arrow-Debreu equilibrium.



Labor, endow 10

Example Equilibrium

Intermediate R, output 2

1 1 8
p= TA' 1A 1n°? 1
10" 10 10 ~~
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labor R I
1 1 1 producers earn 0 profits,

markets clear,

labor buys full output

Final good F, output 1
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© The Impacts of Shocks: Contrasting Short and Long Runs



Impact of Shock

For 7 with output k, we normalized 7, = 1.

Let's vary 7 to capture shocks/disruptions

Analyze/contrast:
@ Long run: new equilibrium using shocked technologies,

@ Short run: work with existing supplies/shortages.



Long-Run: Hulten's Theorem

Proposition (Hulten's Theorem)

Consider a generic equilibrium and technology 7, with O(7) = k, used in positive
amounts in equilibrium. Then

dlog(U) _ Olog(GDP) _ prys
Olog(m,)  Olog(m,)  GDP’

e i i\
/ \




Long-Run: Hulten's Theorem

Proposition (Hulten's Theorem)

Consider a generic equilibrium and technology 7, with O(7) = k, used in positive
amounts in equilibrium. Then

dlog(U) _ 9log(GDP) _ prys
Olog(m,)  Olog(m,)  GDP’

e j :\

e Sufficient statistic: spending on shocked technology.
@ Intuition—adjust by sourcing more inputs at the margin.

@ Network matters in background as it determines equilibrium
» but don't need to see network to estimate long-run impact.
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Final good F, output 1



Labor, endow 10

BPRTNE BT

P=U0 107 5 =~
N O~~~ I
labor R I

PRYR = 1/10 % 2;
GDP = Zf prf = 1;

Marginal impact:

PRYR 1

1 1 1 GDP 5

Final good F, output 1



Final good F, output 1

Labor, endow 10

PRYR = 1/10 % 2;
GDP =3, prey=1;

Marginal impact:

PRYR 1

GDP 5

Extrapolating for a 10% shock,
(source more)

Long Run impact: 1/50th of GDP



Final good F, output ¥ .98

Labor, endow 10

EPRTNE BT

P=490" 107 5 =~
~ ~ ~~ F
labor R I

PRYR = 1/10 * 2;
GDP =Y, pses = 1;

Marginal impact:

PRYR _ 1

GDP 5

Extrapolating for a 10% shock,
(source more)

Long Run impact: 1/50th of GDP



Larry Summers 2013

“There would be a set of economists who would sit around explaining that
electricity was only 4% of the economy, and so if you lost 80% of electricity,
you couldn't possibly have lost more than 3% of the economy...[However,] we
would understand that [...] when there wasn't any electricity, there wasn't really
going to be much economy.”



Short-Run Impact of a Shock

Hulten: Production is perfectly flexible and fully adjusts.
(Marginal result.)

Now: Opposite benchmark with no adjustments.
(Our result holds away from the margin.)
@ Cannot adjust the technologies being used.
@ Cannot source additional units from alternative suppliers.

@ Prices cannot adjust—rationing of disrupted goods is proportional



Short Run Disruption 10%

Labor, endow 10

Intermediate |, 1
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Short Run Disruption 10%

Labor, endow 10

Intermediate |, 1

1

Final good F, 1 unit



Short Run Disruption 10%

Labor, endow 10

Final good F, 1.9 unit



Short Run Disruption 10% Long Run Disruption 2%

Labor, endow 10 Labor, endow 10

Final good F, 1.9 unit |Fina| good F, output £ .98 |




Figure: Shock Propagation Algorithm
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Figure: Shock Propagation Algorithm
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Figure: Shock Propagation Algorithm
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Figure: Shock Propagation Algorithm
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Figure: Shock Propagation Algorithm
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Figure: Shock Propagation Algorithm
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Figure: Shock Propagation Algorithm
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Short-Run Impact: The Minimum Disruption Problem </ \>\

subject to
@ shock constraints: §, < \y, for all 7 € Tshocked

m) y, for active T,

. ~ . New input level
@ technology constraints g, < (mmmputs used by 7 5 b

© proportional rationing 2, = T <z—f> for active 7T,

@ inactive technologies stay inactive.



Shock Propagation Algorithm <>

Define an algorithm that traces shock (like example): it converges to a solution of the
minimum disruption problem.



Shock Propagation Algorithm

Define an algorithm that traces shock (like example): it converges to a solution of the
minimum disruption problem.

Let F(Ts"ocked) be the final goods on directed paths from shocked technologies.

Proposition (Upper Bound)

Consider a shock that reduces the output of technologies 7 € T*"¢*¢d to \ < 1 of their
original levels. The proportion of lost GDP is bounded above by

(1 - )\) EfeF(Tshocked) pfcf .
GDP




Sufficient Conditions for Bound to Bite

@ All producers of given good and any “substitute” for it in a supply chain are
shocked.

@ Globalization: for low iceberg costs generically get unique technologies used.

@ Other sufficient conditions (graph-cut) in paper.



Short Run vs Long Run

Long Run, Hulten's Theorem,

Jlog(U)  0log(GDP) (1 —A)p-y,
Olog(\) ~ Odlog(\) ~ GDP

Short Run, when bound bites

Alog(U)  Alog(GDP) (1= pepim Prey

Alog())  Alog()\) GDP

e i i\
/ \



Short Run vs Long Run <>

Long Run, Hulten's Theorem,

Jlog(U)  0log(GDP) (1 —A)p-y,
Olog(\) ~ Qdlog(\) ~ GDP

Short Run, when bound bites

Alog())  Alog()\) GDP

@ Long Run: shocking more expensive technologies has a larger impact.

@ Short Run: shocking technologies that are used in more final goods has a larger
impact.



Long Run: Network Irrelevant, Impact 1% < >
Rzt Ry =]
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Long Run: Network Irrelevant, Impact 1%
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Short Run: Network Matters: Impact 5% or 10% N
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Short Run: Network Matters: Impact 5% or 10% N
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Short Run vs Long Run

Short Run:

@ Network position matters,

@ Disrupt all final goods downstream

Long Run:
@ (Much) cheaper than Short Run,

@ Relative cost of input matters,

@ Network matters, but only to extent changes costs.
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@ Complexity, Fragility, Globalization



Supply Chain Complexity and Disruption

Under the bound, randomly disrupt any technology to A < 1:
@ Probability 7 disrupt any given technology, independent.
@ S = average # inputs used produce a final good.

@ ¢ = E[(cost of random input)/(cost per final good)].

@ m = average number of final goods downstream from random input.



Horizontal Supply Chain (all labor inputs = 1)
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Average input cost / final good cost: ¢ = .2



Horizontal Supply Chain (all labor inputs = 1)

T]., U= 1

7'2, U= 1

T3v Y3 = 1

T4v Y3 = 1

F]., Up = 1

Labor endowment: 5

Complexity inputs/final good: S = 4.
Average input cost / final good cost: ¢ = .2

Short Run expected impact: 4(1 — \)7

Long Run expected impact: .8(1 — \)7«



Vertical Supply Chain (all labor inputs = 1) /C\
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Vertical Supply Chain (all labor inputs = 1)
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Parallel Supply Chains (intermediate labor inputs = 1, final <"/ \>“
goods = 1/4)

Labor endowment: 5
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Parallel Supply Chains (intermediate labor inputs = 1, final <'/ \>“
goods = 1/4)
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Supply Chain Complexity and Disruption

Proposition (Complexity and Fragility)

For small NG
Short-Run [E [ CDP } ~—(1— NS,
AGDP q
_ ~ —(1 — =
Long-Run E [ GDP } ( )\)7rSm




Supply Chain Complexity and Disruption

Short Run:

@ Increased number of goods (.S) per supply chain to disrupt,
e Each would disrupt the final good fully (by 1 — \).
@ Overall effect (1 — \)7S.

Long Run:

@ Increased number of goods (.S) per supply chain to disrupt,
@ But each has a fractional value (g) relative to final good.
@ Overall effect (1 — \)7Sq.



Supply Chain Complexity and Disruption

Short Run:

@ shape (breadth vs depth) of supply chain is irrelevant (S matters),
@ More final goods, lower S, impact compartmentalized.

Long Run :

@ shape of supply chain matters as it affects relative costs,

@ number of final goods does not matter, relative costs of inputs does.



Trade Costs and Globalization <>

0., > 1 units of O(7) shipped from 7 for 1 unit to get to 7’.

Competing Effects of dropping costs:

@ Increased diversity: new technologies/goods become viable as can source inputs
that were previously too expensive.

@ Increased specialization: only most efficient technology is used.



Trade Costs and Globalization <>

0., > 1 units of O(7) shipped from 7 for 1 unit to get to 7’.

Competing Effects of dropping costs:

@ Increased diversity: new technologies/goods become viable as can source inputs
that were previously too expensive.

@ Increased specialization: only most efficient technology is used.

@ ~90% of most advanced computer chips assembled in Taiwan,

@ Materials cross borders > 70 times before final assembly.



Specialization <>

Proposition (Specialization)

Generically, if transportation costs are sufficiently low there is a unique equilibrium with
full specialization: There exists a cost threshold 6 > 1 such that if max, /0. <0,

then y, > 0 and y,» > 0 implies that O(7) # O(7').




Fragility and globalization

Corollary (Globalization)

If transportation costs are sufficiently low, then in generic economies the upper bound is
tight for any shock.

As supply chains consolidate: If shocks are not perfectly correlated across different
producers of the same good, then the probability of the disruption of the final good
decreases, but the expected short-run size of that disruption conditional upon
occurrence increases.




Fragility and globalization

@ More specialized production—fewer,larger producers,

@ Larger shocks, but fewer producers and so (possibly) less frequent.

@ As cross more borders, could face more political /transport risk...



Outline

© The Impact in the Medium Run



Medium Run

No new sourcing: existing supply chains in place
Prices can steer rationed goods to most needed technologies

If multiple flows affected:
o Different supply chains have similar final good values: looks like short run,

o Different supply chains have very different final good values: looks more like long
run, only disrupt lowest value chains.



Medium Run Shock Impact
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Medium Run Shock Impact

........

19 9

F1, 545 F2, 545

Impact 1/10
Same as Short Run

F1,1.8

F2,9

Impact 1/50
Close to Long Run



Externalities!

Competition is inefficient (missing markets)

Competition pushes to cheaper sourcing, low inventories

Unless compensated for resilience, leads to excessive specialization /fragility

Policy implications of model:
» Short run:

* target ‘central’ technologies
* build inventories, substitutes (decrease centrality)
* build parallel chains

» Long run:

* target ‘expensive’ technologies
* support diverse technologies for same goods
* favor technologies enabling shallower supply chains
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