# Supply Chain Disruptions, the Structure of Production Networks, and the Impact of Globalization

Matthew Elliott Cambridge

A CONTRACT OF

Matthew O. Jackson Stanford & SFI

A AKAL

April 2024

## THE WALL STREET JOURNAL, BOXING DAY SPI Subscribe

English Edition 🔻 Print Edition | Video | Audio | Latest Headlines | More 🔻

Sian In

Latest World Business U.S. Politics Economy Tech Finance Opinion Arts & Culture Lifestyle Real Estate Personal Finance Health Style Sports  $\bigcirc$ 

#### BUSINESS

## **Tesla to Halt Production in Germany as Red Sea Conflict Hits Supply Chains**

Disruption related to attacks on ships by Houthi rebels raise risk of supply-chain crisis in Europe

By William Boston Follow, Costas Paris Follow and Benoit Faucon Follow Updated Jan. 12, 2024 1:45 pm ET

BERLIN—Tesla TSLA -3.67% ▼ plans to halt production at its only large factory in Europe for two weeks because of a lack of parts, a sign of how the fallout from recent attacks on ships in the Red Sea is starting to ripple through the global economy.

Yemen-based, Iran-backed Houthi fighters have launched successive attacks on



Tractable model of (global, complex) supply chains to:

- characterize short-run impact of a shock,
- contrast with long-run impact,
- investigate how impacts depend on network/complexity,
- examine impact of globalization on fragility.

## Some Related Literature

- Foundational work: Leontief (1936), Long Jr and Plosser (1983), Acemoglu et al. (2012)
- **Surveys:** Bernard (2018), Carvalho and Tahbaz-Salehi (2019), Baqaee and Rubbo (2022), Antràs and Chor (2022), Elliott and Golub (2022), Baldwin and Freeman (2022).
- Production networks: e.g., Dhyne et al. (2015); Magerman et al. (2016); Brummitt et al. (2017); Baqaee (2018); Oberfield (2018); Acemoglu and Tahbaz-Salehi (2020), Acemoglu and Azar (2020), Baqaee and Farhi (2021), Kopytov et al. (2021), Di Giovanni et al. (2022); Bernard et al. (2022), Elliott et al. (2022), Bui et al. (2022), König et al. (2022), Pellet and Tahbaz-Salehi (2023), Grossman et al. (forthcoming), Grossman et al. (2023a), Grossman et al. (2023b)
- Trade networks: e.g., Furusawa and Konishi (2007); Chaney (2014); Bernard et al. (2019); Grossmand et al. (2021)
- Micro network structure: e.g., Bimpikis et al. (2018), Bimpikis et al. (2019), Amelkin and Vohra (2020)







## 2 Model

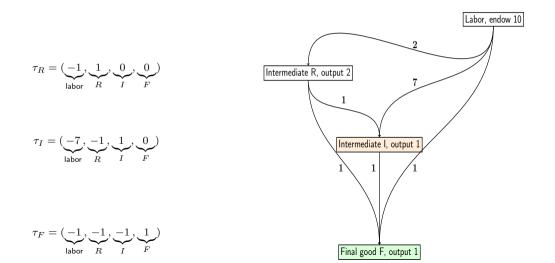
3 The Impacts of Shocks: Contrasting Short and Long Runs

4 Complexity, Fragility, Globalization

5 The Impact in the Medium Run

## Model




- $n \in \{1, \dots, N\}$  countries,
- $\bullet \ m \in \{1, \dots, M\}$  intermediate goods,
- $f \in \{1, \ldots, F\}$  final goods,
- $L_n$  units of labor country n,
- $T_n$  (finite) set technologies country n.



- $\theta_{\tau\tau'} \ge 1$  units of  $O(\tau)$  shipped from  $\tau$  for 1 unit to get to  $\tau'$ .
- Iceberg cost on labor  $\theta_{n\tau} \ge 1$ .
- No iceberg costs on final goods.
- Local prices before iceberg costs  $p \in \mathbb{R}^{N+|T|}_+$

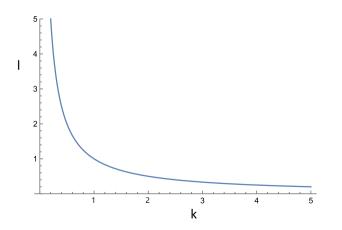
## Example: Technologies





## Arrow-Debreu (1954) Technologies

Constant returns to scale technologies  $\boldsymbol{\tau}$ 

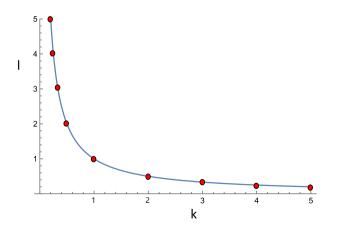

$$\begin{pmatrix} \mathsf{labor}, & \underbrace{m_1, \dots, m_M}_{\mathsf{intermediate}}, & \underbrace{f_1, \dots, f_F}_{\mathsf{final goods}} \end{pmatrix}$$

e.g., (-2, 0, -3, 0, 1): 2 units labor & 3 units  $m_2$  make 1 unit  $f_2$ .

# Arrow-Debreu (1954) Technologies

Suppose country n can produce according to  $y=L^{\alpha}K^{1-\alpha}$ 

Then  $T_n = \{(-l, -k, 1) : l^{\alpha}k^{1-\alpha} = 1\}$ 





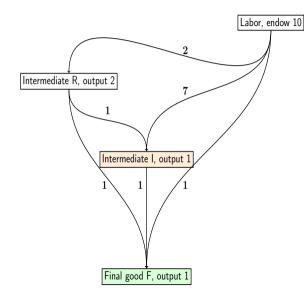

# Arrow-Debreu (1954) Technologies

Suppose country n can produce according to  $y=L^{\alpha}K^{1-\alpha}$ 

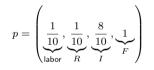
Then  $T_n = \{(-l, -k, 1) : l^{\alpha}k^{1-\alpha} = 1\}$ 






# Equilibrium



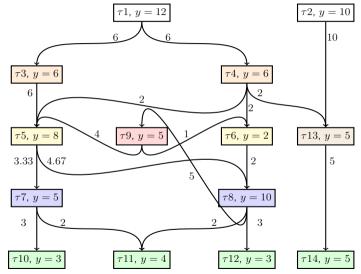

- Laborers/Consumers
  - supply labor inelastically,  $L_n$  in country n;
  - maximize homothetic preferences for final goods,  $U(c_1, \ldots, c_F)$ .
- Producers

  - maximize profits p<sub>τ</sub>y<sub>τ</sub> − Σ<sub>τ'</sub> p<sub>τ'</sub>x<sub>τ'τ</sub>,
     s.t feasible production: −τ<sub>k</sub>y<sub>τ</sub> = Σ<sub>τ':O(τ')=k</sub> x<sub>τ'τ</sub>/θ<sub>τ</sub>.
- Markets clear standard Arrow-Debreu equilibrium.





Example Equilibrium




producers earn 0 profits,

markets clear,

labor buys full output

Example w Cycles (Labor Omitted, Final Goods in Green)







1 Introduction

2 Model

The Impacts of Shocks: Contrasting Short and Long Runs

4 Complexity, Fragility, Globalization

5 The Impact in the Medium Run

## Impact of Shock



For  $\tau$  with output k, we normalized  $\tau_k = 1$ .

Let's vary  $au_k$  to capture shocks/disruptions

Analyze/contrast:

- Long run: new equilibrium using shocked technologies,
- Short run: work with existing supplies/shortages.

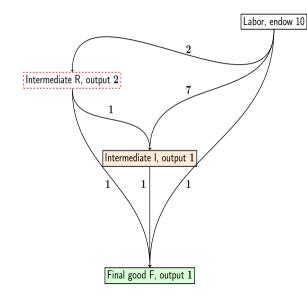
# Long-Run: Hulten's Theorem

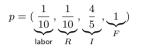
# Proposition (Hulten's Theorem)

Consider a generic equilibrium and technology  $\tau,$  with  $O(\tau)=k,$  used in positive amounts in equilibrium. Then

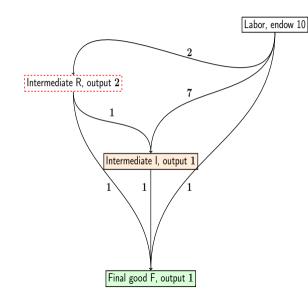
$$\frac{\partial \log(U)}{\partial \log(\tau_k)} = \frac{\partial \log(GDP)}{\partial \log(\tau_k)} = \frac{p_\tau y_\tau}{GDP}.$$

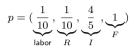
# Long-Run: Hulten's Theorem


## Proposition (Hulten's Theorem)


Consider a generic equilibrium and technology  $\tau$ , with  $O(\tau) = k$ , used in positive amounts in equilibrium. Then

$$\frac{\partial \log(U)}{\partial \log(\tau_k)} = \frac{\partial \log(GDP)}{\partial \log(\tau_k)} = \frac{p_{\tau}y_{\tau}}{GDP}.$$


- Sufficient statistic: spending on shocked technology.
- Intuition—adjust by sourcing more inputs at the margin.
- Network matters in background as it determines equilibrium
  - but don't need to see network to estimate long-run impact.

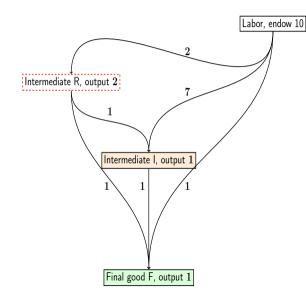


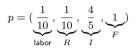










 $\begin{array}{l} p_R y_R = 1/10 * 2;\\ GDP = \sum_f p_f c_f = 1; \end{array}$ 

Marginal impact:

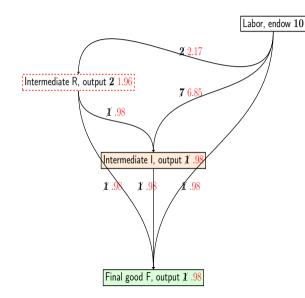
$$\frac{p_R y_R}{\mathsf{GDP}} = \frac{1}{5}$$

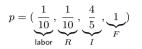






 $p_R y_R = 1/10 * 2;$  $GDP = \sum_f p_f c_f = 1;$ 


Marginal impact:


$$\frac{p_R y_R}{\mathsf{GDP}} = \frac{1}{5}$$

Extrapolating for a 10% shock, (source more)

Long Run impact: 1/50th of GDP







 $\begin{array}{l} p_R y_R = 1/10 * 2; \\ GDP = \sum_f p_f c_f = 1; \end{array}$ 

Marginal impact:

$$\frac{p_R y_R}{\mathsf{GDP}} = \frac{1}{5}$$

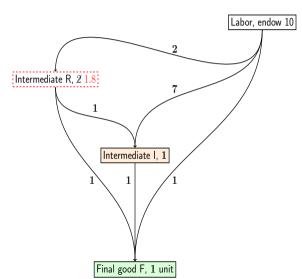
Extrapolating for a 10% shock, (source more)

Long Run impact: 1/50th of GDP

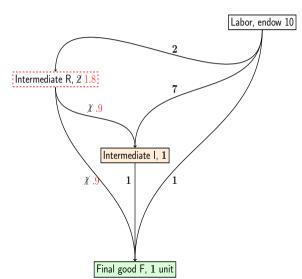


"There would be a set of economists who would sit around explaining that electricity was only 4% of the economy, and so if you lost 80% of electricity, you couldn't possibly have lost more than 3% of the economy...[However,] we would understand that [...] when there wasn't any electricity, there wasn't really going to be much economy."

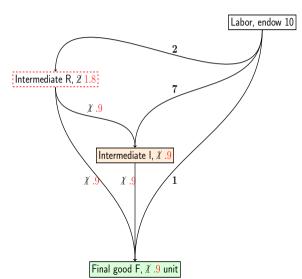
# Short-Run Impact of a Shock




Hulten: Production is perfectly flexible and fully adjusts. (Marginal result.)


Now: Opposite benchmark with no adjustments. (Our result holds away from the margin.)

- Cannot adjust the technologies being used.
- Cannot source additional units from alternative suppliers.
- Prices cannot adjust—rationing of disrupted goods is proportional

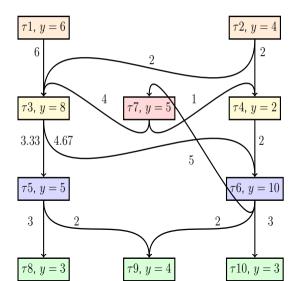




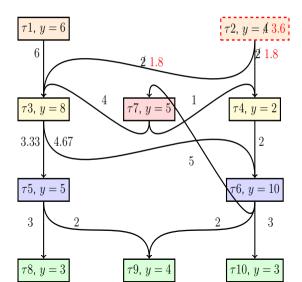




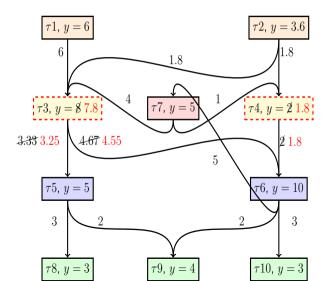




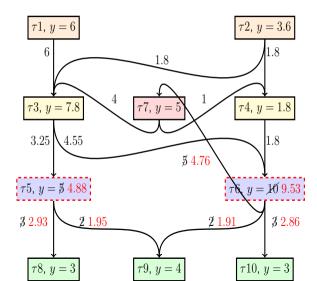


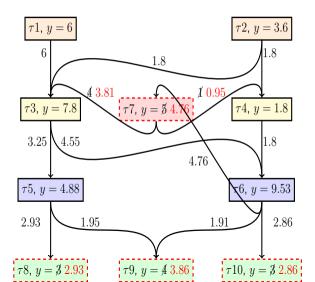

#### Long Run Disruption 2%



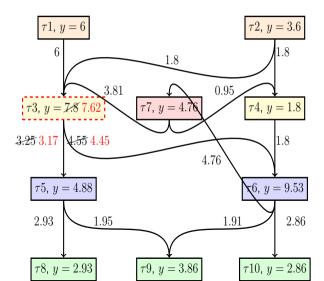


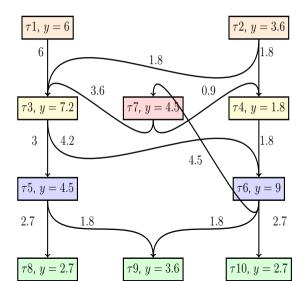



















## Short-Run Impact: The Minimum Disruption Problem





subject to

- **0** shock constraints:  $\hat{y}_{\tau} \leq \lambda y_{\tau}$  for all  $\tau \in T^{shocked}$ ,
- 2 technology constraints  $\hat{y}_{\tau} \leq \left(\min_{\text{Inputs used by } \tau} \frac{\text{New input level}}{\text{Original input level}}\right) y_{\tau}$  for active  $\tau$ ,

**③** proportional rationing  $\hat{x}_{\tau\tau'} = x_{\tau\tau'} \left(\frac{\hat{y}_{\tau}}{y_{\tau}}\right)$  for active  $\tau'\tau$ ,

Inactive technologies stay inactive.

# Shock Propagation Algorithm

Define an algorithm that traces shock (like example): it converges to a solution of the minimum disruption problem.

# Shock Propagation Algorithm

Define an algorithm that traces shock (like example): it converges to a solution of the minimum disruption problem.

Let  $F(T^{shocked})$  be the final goods on directed paths from shocked technologies.

#### Proposition (Upper Bound)

Consider a shock that reduces the output of technologies  $\tau \in T^{shocked}$  to  $\lambda < 1$  of their original levels. The proportion of lost GDP is bounded above by

$$(1-\lambda)\left(\frac{\sum_{f\in F(T^{shocked})} p_f c_f}{GDP}\right)$$

#### Sufficient Conditions for Bound to Bite



• All producers of given good and any "substitute" for it in a supply chain are shocked.

• Globalization: for low iceberg costs generically get unique technologies used.

• Other sufficient conditions (graph-cut) in paper.

# Short Run vs Long Run

Long Run, Hulten's Theorem,

$$\frac{\partial \log(U)}{\partial \log(\lambda)} = \frac{\partial \log(GDP)}{\partial \log(\lambda)} = \frac{(1-\lambda)p_{\tau}y_{\tau}}{GDP}.$$

Short Run, when bound bites

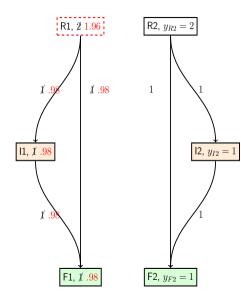
$$\frac{\Delta \log(U)}{\Delta \log(\lambda)} = \frac{\Delta \log(GDP)}{\Delta \log(\lambda)} = \frac{(1-\lambda)\sum_{f \in F(\tau)} p_f c_f}{GDP}.$$



# Short Run vs Long Run

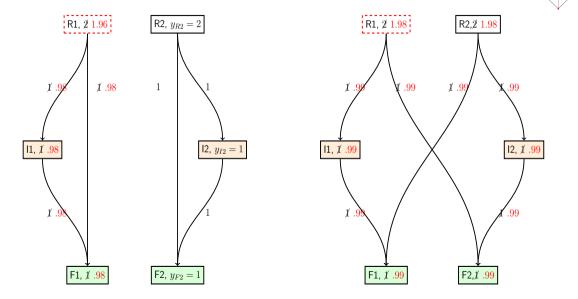
Long Run, Hulten's Theorem,

$$\frac{\partial \log(U)}{\partial \log(\lambda)} = \frac{\partial \log(GDP)}{\partial \log(\lambda)} = \frac{(1-\lambda)p_{\tau}y_{\tau}}{GDP}$$

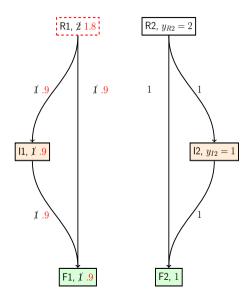

Short Run, when bound bites

$$\frac{\Delta \log(U)}{\Delta \log(\lambda)} = \frac{\Delta \log(GDP)}{\Delta \log(\lambda)} = \frac{(1-\lambda)\sum_{f \in F(\tau)} p_f c_f}{GDP}$$

• Long Run: shocking more expensive technologies has a larger impact.

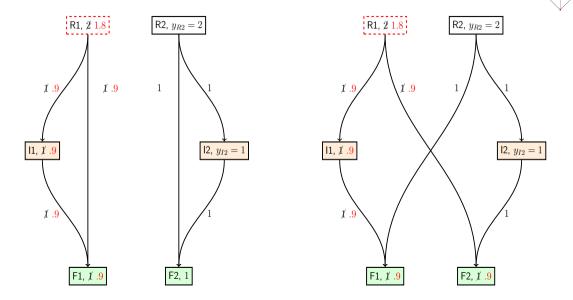

 Short Run: shocking technologies that are used in more final goods has a larger impact.

### Long Run: Network Irrelevant, Impact 1%






### Long Run: Network Irrelevant, Impact 1%




# Short Run: Network Matters: Impact 5% or 10%





#### Short Run: Network Matters: Impact 5% or 10%



# Short Run vs Long Run

 $\bigcirc$ 

Short Run:

- Network position matters,
- Disrupt all final goods downstream

Long Run:

- (Much) cheaper than Short Run,
- Relative cost of input matters,
- Network matters, but only to extent changes costs.





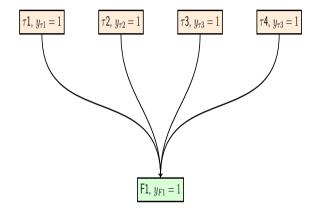
1 Introduction

2 Model

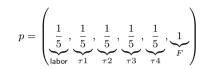
3 The Impacts of Shocks: Contrasting Short and Long Runs

Omplexity, Fragility, Globalization

5) The Impact in the Medium Run


# Supply Chain Complexity and Disruption

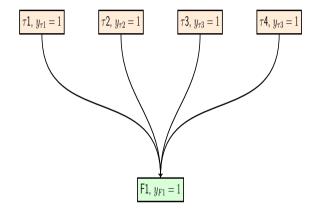
Under the bound, randomly disrupt any technology to  $\lambda < 1 :$ 


- Probability  $\pi$  disrupt any given technology, independent.
- $S = average \ \# \ inputs \ used \ produce \ a \ final \ good.$
- $q = \mathsf{E}[(\text{cost of random input})/(\text{cost per final good})].$
- m = average number of final goods downstream from random input.

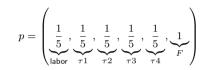


Horizontal Supply Chain (all labor inputs = 1)




Labor endowment: 5




Complexity inputs/final good: S = 4.

Average input cost / final good cost: q = .2

Horizontal Supply Chain (all labor inputs = 1)

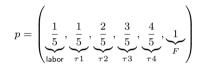


Labor endowment: 5



Complexity inputs/final good: S = 4.

Average input cost / final good cost: q = .2


Short Run expected impact:  $4(1-\lambda)\pi$ 

Long Run expected impact:  $.8(1-\lambda)\pi$ 

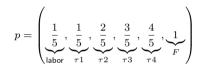
Vertical Supply Chain (all labor inputs = 1)

$$au 1, \ y_{\tau 1} = 1$$
  
 $au 2, \ y_{\tau 2} = 1$   
 $au 3, \ y_{\tau 3} = 1$   
 $au 4, \ y_{\tau 3} = 1$   
 $au 4, \ y_{\tau 3} = 1$   
 $au 5$   
 $au 5$   

Labor endowment: 5



Complexity inputs/final good: S = 4.


Average input cost / final good cost: q = .5

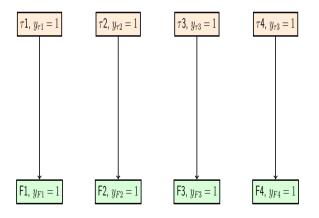


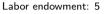
Vertical Supply Chain (all labor inputs = 1)

$$au 1, \ y_{\tau 1} = 1$$
  
 $au 2, \ y_{\tau 2} = 1$   
 $au 3, \ y_{\tau 3} = 1$   
 $au 4, \ y_{\tau 3} = 1$   
 $au 4, \ y_{\tau 3} = 1$   
 $au 5$   
 $au 5$   

Labor endowment: 5




Complexity inputs/final good: S = 4.

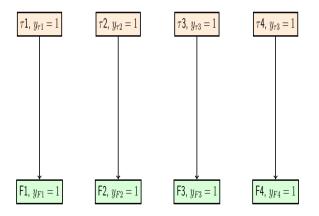

Average input cost / final good cost: q = .5

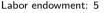
Short Run expected impact:  $4(1-\lambda)\pi$ 

Long Run expected impact:  $2(1-\lambda)\pi$ 

Parallel Supply Chains (intermediate labor inputs = 1, final goods = 1/4)







$$p = \left(\underbrace{\frac{1}{5}}_{\text{labor}}, \underbrace{\frac{1}{5}}_{\tau 1}, \underbrace{\frac{1}{5}}_{\tau 2}, \underbrace{\frac{1}{5}}_{\tau 3}, \underbrace{\frac{1}{5}}_{\tau 4}, \underbrace{\frac{1}{5}}_{\tau 4}, \underbrace{\frac{1}{4}}_{F 1}, \underbrace{\frac{1}{4}}_{F 2}, \underbrace{\frac{1}{4}}_{F 3}, \underbrace{\frac{1}{4}}_{F 3}, \underbrace{\frac{1}{4}}_{F 4}, \underbrace{\frac{1}{4}}_{F 3}, \underbrace{\frac{1}{4}}_{F 3},$$

Complexity inputs/final good: S = 1.

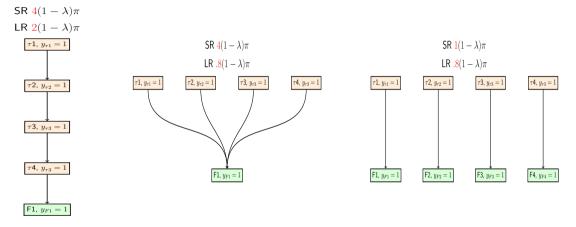
Average input cost / final good cost: q = .8

Parallel Supply Chains (intermediate labor inputs = 1, final goods = 1/4)





$$p = \left(\underbrace{\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{4}, \frac{$$


Complexity inputs/final good: S = 1.

Average input cost / final good cost: q = .8

Short Run expected impact:  $(1 - \lambda)\pi$ 

Long Run expected impact:  $.8(1-\lambda)\pi$ 







For small  $\pi$ 

Short-Run 
$$\mathbb{E}\left[\frac{\Delta GDP}{GDP}\right] \approx -(1-\lambda)\pi S$$
,  
Long-Run  $\mathbb{E}\left[\frac{\Delta GDP}{GDP}\right] \approx -(1-\lambda)\pi S\frac{q}{m}$ .



# Supply Chain Complexity and Disruption

Short Run:

- Increased number of goods (S) per supply chain to disrupt,
- Each would disrupt the final good fully (by  $1 \lambda$ ).
- Overall effect  $(1 \lambda)\pi S$ .

Long Run:

- Increased number of goods (S) per supply chain to disrupt,
- But each has a fractional value (q) relative to final good.
- Overall effect  $(1 \lambda)\pi Sq$ .



# Supply Chain Complexity and Disruption

Short Run:

- shape (breadth vs depth) of supply chain is irrelevant (S matters),
- $\bullet\,$  More final goods, lower S, impact compartmentalized.

Long Run :

- shape of supply chain matters as it affects relative costs,
- number of final goods does not matter, relative costs of inputs does.

### Trade Costs and Globalization



 $\theta_{\tau\tau'} \geq 1$  units of  $O(\tau)$  shipped from  $\tau$  for 1 unit to get to  $\tau'$ .

Competing Effects of dropping costs:

- Increased diversity: new technologies/goods become viable as can source inputs that were previously too expensive.
- Increased specialization: only most efficient technology is used.

### Trade Costs and Globalization



 $\theta_{\tau\tau'} \geq 1$  units of  $O(\tau)$  shipped from  $\tau$  for 1 unit to get to  $\tau'$ .

Competing Effects of dropping costs:

- Increased diversity: new technologies/goods become viable as can source inputs that were previously too expensive.
- Increased specialization: only most efficient technology is used.
- $\bullet~{\sim}90\%$  of most advanced computer chips assembled in Taiwan,
- Materials cross borders > 70 times before final assembly.

#### Specialization



#### Proposition (Specialization)

Generically, if transportation costs are sufficiently low there is a unique equilibrium with full specialization: There exists a cost threshold  $\bar{\theta} > 1$  such that if  $\max_{\tau,\tau'} \theta_{\tau\tau'} < \bar{\theta}$ , then  $y_{\tau} > 0$  and  $y_{\tau'} > 0$  implies that  $O(\tau) \neq O(\tau')$ .

# Fragility and globalization



#### Corollary (Globalization)

If transportation costs are sufficiently low, then in generic economies the upper bound is tight for any shock.

As supply chains consolidate: If shocks are not perfectly correlated across different producers of the same good, then the probability of the disruption of the final good decreases, but the expected short-run size of that disruption conditional upon occurrence increases.

# Fragility and globalization



- More specialized production—fewer, larger producers,
- Larger shocks, but fewer producers and so (possibly) less frequent.
- As cross more borders, could face more political/transport risk...





1 Introduction

2 Model

3 The Impacts of Shocks: Contrasting Short and Long Runs

4 Complexity, Fragility, Globalization

5 The Impact in the Medium Run

#### Medium Run



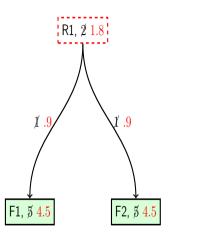
No new sourcing: existing supply chains in place

Prices can steer rationed goods to most needed technologies

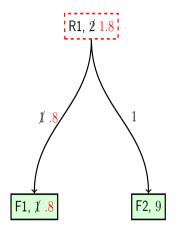
*If* multiple flows affected:

- Different supply chains have similar final good values: looks like short run,
- Different supply chains have very different final good values: looks more like long run, only disrupt lowest value chains.

# Medium Run Shock Impact







#### Equal-Valued Final Goods

Unequal-Valued Final Goods





Impact 1/10 Same as Short Run



#### Impact 1/50 Close to Long Run

### Externalities!



- Competition is inefficient (missing markets)
- Competition pushes to cheaper sourcing, low inventories
- Unless compensated for resilience, leads to excessive specialization/fragility
- Policy implications of model:
  - Short run:
    - ★ target 'central' technologies
    - ★ build inventories, substitutes (decrease centrality)
    - ★ build parallel chains
  - Long run:
    - ★ target 'expensive' technologies
    - ★ support diverse technologies for same goods
    - $\star$  favor technologies enabling shallower supply chains



# Discussion

ACEMOGLU, D. AND P. D. AZAR (2020): "Endogenous Production Networks," *Econometrica*, 88, 33–82.

- ACEMOGLU, D., V. M. CARVALHO, A. OZDAGLAR, AND A. TAHBAZ-SALEHI (2012): "The Network Origins of Aggregate Fluctuations," *Econometrica*, 80, 1977–2016.
- ACEMOGLU, D. AND A. TAHBAZ-SALEHI (2020): "Firms, Failures, and Fluctuations: The Macroeconomics of Supply Chain Disruptions," Tech. rep., National Bureau of Economic Research.
- AMELKIN, V. AND R. VOHRA (2020): "Strategic Formation and Reliability of Supply Chain Networks," in *Proceedings of the 21st ACM Conference on Economics and Computation*, 77–78.
- ANTRÀS, P. AND D. CHOR (2022): "Global value chains," Handbook of international economics, 5, 297–376.
- BALDWIN, R. AND R. FREEMAN (2022): "Risks and global supply chains: What we know and what we need to know," *Annual Review of Economics*, 14, 153–180.
- BAQAEE, D. AND E. FARHI (2021): "Entry vs. rents: Aggregation with economies of scale," Tech. rep., National Bureau of Economic Research, working Paper No. 27140.

- BAQAEE, D. AND E. RUBBO (2022): "Micro propagation and macro aggregation." Tech. rep., National Bureau of Economic Research, working Paper No. 30538.
- BAQAEE, D. R. (2018): "Cascading failures in production networks," *Econometrica*, 86, 1819–1838.
- BERNARD, ANDREW B.AND MOXNES, A. (2018): "Networks and trade," Annual Review of Economics, 10, 65–85.
- BERNARD, A. B., E. DHYNE, G. MAGERMAN, K. MANOVA, AND A. MOXNES (2022): "The origins of firm heterogeneity: A production network approach," *Journal of Political Economy*, 130, 1765–1804.
- BERNARD, A. B., A. MOXNES, AND Y. U. SAITO (2019): "Production networks, geography, and firm performance," *Journal of Political Economy*, 127, 639–688.
- BIMPIKIS, K., O. CANDOGAN, AND S. EHSANI (2019): "Supply Disruptions and Optimal Network Structures," *Management Science*, 65, 5504–5517.
- BIMPIKIS, K., D. FEARING, AND A. TAHBAZ-SALEHI (2018): "Multisourcing and miscoordination in supply chain networks," *Operations Research*, 66, 1023–1039.

BRUMMITT, C. D., K. HUREMOVIĆ, P. PIN, M. H. BONDS, AND

- F. VEGA-REDONDO (2017): "Contagious Disruptions and Complexity Traps in Economic Development," *Nature Human Behaviour*, 1, 665.
- BUI, H., Z. HUO, A. A. LEVCHENKO, AND N. PANDALAI-NAYAR (2022):
  "Information frictions and news media in global value chains," Tech. rep., National Bureau of Economic Research, working Paper No. 30033.
- CARVALHO, V. M. AND A. TAHBAZ-SALEHI (2019): "Production networks: A primer," *Annual Review of Economics*, 11, 635–663.
- CHANEY, T. (2014): "The network structure of international trade," *American Economic Review*, 104, 3600–3634.
- DHYNE, E., G. MAGERMAN, AND S. RUBÍNOVÁ (2015): "The Belgian production network 2002-2012," Tech. rep., NBB Working Paper.
- DI GIOVANNI, J., E. KALEMLI-ÖZCAN, A. SILVA, AND M. A. YILDIRIM (2022): "Global supply chain pressures, international trade, and inflation," Tech. rep., National Bureau of Economic Research.
- ELLIOTT, M. AND B. GOLUB (2022): "Networks and economic fragility," Annual Review of Economics, 14, 665–696.

- ELLIOTT, M., B. GOLUB, AND M. V. LEDUC (2022): "Supply network formation and fragility," *American Economic Review*, 112, 2701–47.
- FURUSAWA AND H. KONISHI (2007): "Free trade networks," Journal of International Economics, 7, 310–335.
- GROSSMAN, G., E. HELPMAN, AND S. REDDING (2023a): "When tariffs disrupt global supply chains," Tech. rep.
- GROSSMAN, G. M., E. HELPMAN, AND H. LHUILLIER (forthcoming): "Supply Chain Resilience: Should Policy Promote International Diversification or Reshoring?" *Journal of Political Economy*.
- GROSSMAN, G. M., E. HELPMAN, AND A. SABAL (2023b): "Resilience in Vertical Supply Chains," Tech. rep., National Bureau of Economic Research.
- GROSSMAND, G., E. HELPMAN, AND S. REDDING (2021): "When tariffs disrupt global supply chains," *American Economic Review*.
- KÖNIG, M. D., A. LEVCHENKO, T. ROGERS, AND F. ZILIBOTTI (2022):"Aggregate fluctuations in adaptive production networks," *Proceedings of the National Academy of Sciences*, 119, e2203730119.

- KOPYTOV, A., B. MISHRA, K. NIMARK, AND M. TASCHEREAU-DUMOUCHEL (2021): "Endogenous production networks under supply chain uncertainty," *Available at SSRN 3936969*.
- LEONTIEF, W. W. (1936): "Quantitative Input and Output Relations in the Economic Systems of the United States," *The Review of Economic Statistics*, 105–125.
- LONG JR, J. B. AND C. I. PLOSSER (1983): "Real business cycles," Journal of political Economy, 91, 39–69.
- MAGERMAN, G., K. DE BRUYNE, E. DHYNE, AND J. VAN HOVE (2016): "Heterogeneous firms and the micro origins of aggregate fluctuations," Tech. rep., NBB Working Paper.
- OBERFIELD, E. (2018): "A Theory of Input-Output Architecture," *Econometrica*, 86. PELLET, T. AND A. TAHBAZ-SALEHI (2023): "Rigid production networks," *Journal* of *Monetary Economics*.