Experiences using static analysis & model
checking for bug finding

Dawson Engler and Madanlan Musuvathi
Based on work with
Andy Chou, David {Lie, Park, Dill}
Stanford University

Context: bug finding in implementation code

Goal: find as many bugs as possible.

Not verification, not checking high level design
Two promising approaches

Static analysis

Software model checking.

Basis: used static analysis extensively for four years:
model checking for several projects over two years.

General perception:
Static analysis: easy to apply, but shallow bugs
Model checking: harder, but strictly better once done.

Reality is a bit more subtle.
This talk is about that.

Quick, crude definitions.
“Static analysis” = our approach [DSL'97,0SDI'00]

Flow-sensitive, =
inter-procedural,
extensible analysis

Goal: max bugs, code]
min false pos
May underestimate work factor: not sound, no annotation
Works well: 1000s of bugs in Linux, BSD, company code
Expect similar tradeoffs to PREfix, SLAM(?), ESP(?)
“Model checker” = explicit state space model checker
Use Murphi for FLASH, then home-grown for rest.

May underestimate work factor: All case studies use
techniques to eliminate need to manually write model.

compiler
—‘I* extension i*bugs

The Talk

An introduction

Case 1: FLASH cache coherence protocol code
Checked statically [ASPLOS'00], then model checked
[ISCA'01]

Surprise: static found 4x more bugs.

Case 2: AODV loop free, ad-hoc routing protocol
Checked w/ model checking [OSDI'02], then statically.
Surprise: when checked same property static won.

Case 3: Linux TCP

Model checked [NSDI'04]. Statically checked it & rest
of Linux [OSDI'00,SOSP'01,..]

Surprise: So hard to rip TCP out of Linux that it was
easier to jam Linux into model checker!

Lessons and religion.

Some caveats
Talk bias:

OS designer who does static analysis and has been
involved in some some model checking

Some things that surprise me will be obvious to you.

Of course, is just a bunch of personal case studies
tarted up with engineers induction
to look like general principles. (1,2,3=QED)
Coefficients may change, but general trends should hold

Not a jeremiad against model checking!
We want it to succeed. Will write more papers on it.

Life has just not always been exactly as expected.

Case Study: FLASH

ccNUMA with cache coherence protocols in software.
Protocols: 8-15K LOC, long paths (73-183LOC ave)

Tension: must be *very* fast, but 1 bug
deadlocks/livelocks entire machine

Heavily tested for 5 years. Manually verified.

~ InterconnectionNework
f I I

CPUO CPU1 CPU 2

Finding FLASH bugs with static analysis

Gross code with many ad hoc correctness rules
Key feature: they have a clear mapping to source code.
Easy to check with compiler.
Example: “you must call WAIT_FOR_DB_FULL() before
MISCBUS_READ_DB()".
(Intuition: msg buf must have all data before you read it)

Handler: i
if(...) GNU C compiler_

WAIT_FOR_DB_FULL(): |— T T L »'read msg
w/o
MISCBUS_READ_DB(): synchl

Nice: scales, precise, statically found 34 bugs

A modicum of detail

start

wait_for_db_fill) \qisc_bus_read_db()

smwait_for_db {
decl any_expr addr;

start:
{ WAIT_FOR DB_FULL(addr); } ==> stop
| { M SCBUS_READ DB(addr); } ==>
{ err(“Buffer read not synchronized"); }

FLASH results [ASPLOS'00]

Rule Loc Bugs False
wait_for_db_full before read 12 4 1
has_length parameter for msg 29 18 2

sends must match specified
message length

Message buffers must be 94 9 25
allocated before use,
deallocated after,
not used after deallocated

Messages can only be sent 220 2 0
on pre-specified lanes

Total 355 33 28

When applicable, works well.

Don't have to understand code
Wildly ignorant of FLASH details and still found bugs.
Lightweight
Don't need annotations.
Checkers small, simple.
Not weak.
FLASH not designed for verification.
Heavily tested.
Still found serious bugs.
These generally hold in all areas we've checked.
Linux, BSD, FreeBSD, 15+ large commercial code bases.
But: not easy to check some properties with static...

Model checking FLASH

Want to vet deeper rules
Nodes never overflow their network queues
Sharing list empty for dirty lines
Nodes do not send messages to themselves
Perfect for model checking
Self -contained system that generates its own events
Bugs depend on intricate series of low-probability events

The (known) problem: writing model is hard
Someone did it for one FLASH protocol.
Several months effort. No bugs. Inert.
But there is a nice trick..

A striking similarity

Hand-written

X A de
Murphi model Rzl
Rule "PI Local Get (Put)" voi d Pl Local Get (void) {
1: Cache. State = Invalid /1 ... Boilerplate setup
& ! Cache. Wit 2 if (!'hl.Pending) {
2: & ! DH. Pending 3
3 & ==> 4! /1 ASSERT(hl . Local);
Begin -
4: Assert !DH Local ; 6 Pl _SEND(F_DATA, F_FREE, F_SWAP,
5. DH Local := true; F_NOMIT, F_DEC 1);
6. CC_Put(Home, Menory); 5 hi.Local = 1; n
EndRul e;

Use correspondence to auto-extract model from code
User writes static extension to mark features
System does a backwards slice & translates to Murphi

The extraction process from 50K meters

Reduce manual effort:
Check at all. Check more things

Important: more automatic = more fidelity
Reversed extraction: mapped manual spec back to code
Four serious model errors.

Model checking results [ISCA'01]

Protocol Errors Protocol Extracted Manual Extens.
(Loc) (Loc) (LOC) (LOC)

Dynptr(*) 6 12K 1100 1000 99
Bitvector 2 8k 700 1000 100
RAC 0 10K 1500 1200 119
Coma 0 15K 2800 1400 159

Extraction a big win: more properties, more code, less
chance of mistakes.

(*) Dynptr previously manually verified (but no bugs found)

Myth: model checking will find more bugs

Not quite: 4x fewer (8 versus 33)
While found 2 missed by static, it missed 24.
And was after trying to pump up model checking bugs...
The source of this tragedy: the environment problem.
Hard. Messy. Tedious. So omit parts. And omit bugs.
FLASH:
No cache line data, so didn't check data buffer handling,
missing all alloc errors (9) and buffer races (4)
No I/O subsystem (hairy): missed all errors in I/0 sends
No uncached reads/writes: uncommon paths, many bugs.
No lanes: so missed all deadlock bugs (2)
Create model at all takes time, so skipped “sci” (5 bugs)

The Talk
An introduction
Case I: FLASH

Static: exploit fact that rules map to source code
constructs. Checks all code paths, in all code.

Model checking: exploit same fact to auto-extract model
from code. Checks more properties but only in run code.

Case IT: AODV

Case IIT: TCP
Lessons & religion
A summary

Case Study: AODV Routing Protocol

Ad hoc, loop-free routing protocol.
Checked three implementations
Mad-hoc
Kernel AODV (NIST implementation)
AODV-UU (Uppsala Univ. implementation)
Deployed, used, AODV-UU was “certified”

Model checked using CMC [OSDI'00]

Checks C code directly (similar to Verisoft)

Two weeks to build mad-hoc, 1 week for others (expert)
Static: used generic memory checkers

Few hours (by me, but non-expert could do it.)

Lots left to check.

Checking AODV with CMC [0SDT'02]

Properties checked
CMC: seg faults, memory leaks, uses of freed memory
Routing table does not have a loop
At most one route table entry per destination
Hop count is infinity or <= nodes in network
Hop count on sent packet is not infinity

Effort:
Protocol Code Checks Environment Cann'ic
Mad-hoc 3336 301 100 + 400 165
Kernel-aodv 4508 301 266 + 400 179
Aodv-uu 5286 332 128 + 400 185

Results:42 bugs in total, 35 distinct, one spec bug.
~1 bug per 300 lines of code.

Classification of Bugs

madhoc Kernel AODV-

AODV WU

Mishandling malloc failures 4 6 2
Memory leaks 5 3 0
Use after free 1 1 0
Invalid route table entry 0 0 1
Unexpected message 2 0 0
Invalid packet generation 3 2 (2) 2
Program assertion failures 1 1(1) 1
Routing loops 2 3(2) 2(1)
Total bugs 18 16 (5) 8 (1)
LOC/bug 185 281 661

Model checking vs static analysis (SA)

CMC & CMC SA only

SA only
Mishandling malloc failures 11 1 8
Memory leaks 8 5
Use after free 2
Invalid route table entry 1
Unexpected message 2
Invalid packet generation 7
Program assertion failures 3
Routing loops 7
Total bugs 21 21 13

Who missed what and why.

Static: more code + more paths = more bugs (13)
Check same property: static won. Only missed 1 CMC bug
Why CMC missed SA bugs: no run, no bug.
6 were in code cut out of model (e.g., multicast)
6 because environment had mistakes (send_datagram())
1 in dead code
1 null pointer bug in model!

Why SA missed model checking bugs: no check, no bug
Model checking: more rules = more bugs (21)
Some of this is fundamental. Next three slides discuss.

Significant model checking win #1

Subtle errors: run code, so can check its implications
Data invariants, feedback properties, global properties.
Static better at checking properties in code, model
checking better at checking properties implied by code.

The CMC bug SA checked for and missed:

for(i=0; i <cnt;i++) {
tp = malloc(sizeof *tp);
if('tp)
br eak;

tp->next = head; head = tp;

for(i=0, tp = head; i <cnt;i++, tp=tp->next) {
rt_entry = getentry(tp->unr_dst_ip);

Significant model checking win #2.

End-to-end: catch bug no matter how generated

Static detects ways to cause error, model checking
checks for the error itself.

Many bugs easily found with SA, but they come up in so
many ways that there is no percentage in writing checker

Perfect example: The AODV spec bug:
Time goes backwards if old message shows up:

cur_rt = getentry(recv_rt->dst_ip);
/1 bug if: recv_rt->dst_seq < cur_rt->dst_seq!
if(cur_rt && ..) {

cur_rt->dst_seq = recv_rt->dst_seq;

Not hard to check, but hard to recoup effort.

Significant model checking win #3

Gives guarantees much closer to total correctness:
Check code statically, run, it crashes. Surprised? No.
Crashes after model checking? Much more surprised.

Verifies that code was correct on checked executions.

If coverage good and state reduction works, very hard

for implementation to get into new, untested states.
As everyone knows: Most bugs show up with a small
value of N (where N counts the noun of your choice)

bugs \\

N

The Talk

An introduction
Case I: FLASH

Case II: AODV
Static: all code, all paths, hours, but fewer checks.
Model checking: more properties, smaller code, weeks.

AODV: model checking success. Cool bugs. Nice bug rate.

Surprise: most bugs shallow.

Case III: TCP

Lessons & religion
A summary

Case study: TCP [NSDI'04]

“Gee, AODV worked so well, let's check the hardest
thing we can think of"
Linux version 2.4.19
About 50K lines of heavily audited, heavily tested code.
A lot of work.
4 bugs, sort of.
Statically checked:
TCP (O bugs)
+ rest of linux (1000s of bugs, 100s of security holes)
Serious problems because model check = run code
Cutting code out of kernel (environment)
Getting it to run (false positives)
Getting the parts that didn't run to run (coverage)

The approach that failed: kernel-lib.c

The obvious approach:
Rip TCP out, run on libLinux
Where to cut?

Basic question: TCP calls foo().
Fake foo() or include?

Faking takes work. Including
leads to transitive closure
Conventional wisdom: cut on narrowest interface
Doesn't really work. 150+ functions, many poorly doc'd

Make corner-case mistakes in faking them. Model
checkers good at finding such mistakes.

Result: many false positives. Can cost *days* for one.
Wasted months on this, no clear fixed point.

Shocking alternative: jam Linux into CMC.

Different heuristic: only cut along well-defined
interfaces
ref TCP

Only two in Linux:
syscall boundary and
fake HAL

hardware abstraction layer
M e

Result: run Linux
in CMC.

Nice: can reuse to model check other OS subsystems

(currently checking file system recovery code)

Cost: State ~300K,
transition ~bms.

Fundamental law: no run, no bug.

Method line protocol branching additional
coverage coverage factor bugs
Standard
client&server 47% 64.7% 2.9 2
+ simultaneous
connect 51% 66.7% 3.67 0
+ partial close 53% 79.5% 3.89 2
+ corruption 51% 84.3% 7.01 0

Combined cov. 55.4% 92.1%

Big static win: check all paths, all compiled code.
CMC coverage for rest of Linux: 0%. Static ~ 100%.

The Talk

An introduction
Case I: FLASH
Case IT: AODV

Case III: TCP

Model checking found 4 bugs static did not, static found
1000s model checking missed.

Environment is really hard. We're not kidding.
Executing lots of code not easy, either.
Myth: model checking does not have false positives

Some religion
A summary

Open Q: how fo get the bugs that matter?

Myth: all bugs matter and all will be fixed
FALSE
Find 10 bugs, all get fixed. Find 10,000..
Reality
All sites have many open bugs (observed by us & PREfix)
Myth lives because state-of -art is so bad at bug finding
What users really want: The 5-10 that "really matter”
General belief: bugs follow 90/10 distribution
Out of 1000, 100 account for most pain.
Fixing 900 waste of resources & may make things worse
How to find worst? No one has a good answer to this.

Open Q: Do static tools really help?

Bugs found ugs that
mattered

Bugs found
Bugs that

The hope mattered The null hypothesis

ugs that
mattered
ugs found

A Possibility

Dangers: Opportunity cost. Deterministic bugs to non-
deterministic.

Some cursory static analysis experiences

Bugs are everywhere

Initially worried we'd resort to historical data...

100 checks? You'll find bugs (if not, bug in analysis)
Finding errors often easy, saying why is hard

Have to track and articulate all reasons.
Ease-of-inspection *crucial*

Extreme: Don't report errors that are too hard.
The advantage of checking human-level operations

Easy for people? Easy for analysis. Hard for analysis?
Hard for people.

Soundness not needed for good results.

Myth: more analysis is always better

Does not always improve results, and can make worse
The best error:

Easy to diagnose

True error
More analysis used, the worse it is for both

More analysis = the harder error is to reason about,
since user has to manually emulate each analysis step.

Number of steps increase, so does the chance that one
went wrong. No analysis = no mistake.

In practice:
Demote errors based on how much analysis required
Revert to weaker analysis to cherry pick easy bugs
Give up on errors that are too hard to diagnose.

Myth: Soundness is a virtue.

Soundness: Find all bugs of type X.
Not a bad thing. More bugs good.
BUT: can only do if you check weak properties.
What soundness really wants to be when it grows up:
Total correctness: Find all bugs.
Most direct approximation: find as many bugs as possible.
Opportunity cost:
Diminishing returns: Initial analysis finds most bugs
Spend on what gets the next biggest set of bugs
Easy experiment: bug counts for sound vs unsound tools.
End-to-end argument:

"It generally does not make much sense to reduce the
residual error rate of one system component (property)
much below that of the others.

Related work

Tool-based static analysis
PREfix/PREfast
SLAM
EsSP
Generic model checking
Murphi
Spin
SMV
Automatic model generation model checking
Pathfinder
Bandera
Verisoft
SLAM (sort of)

static analysis vs model checking

"How big is code?"”
Must compile
Hours.
So what.
All paths! All paths!

Seconds to min
100-1000s
10MLOC
Surprised.

Not surprised.
Source visible
rules

"What does it do?"
Must run.
Weeks.

Problem.
Executed paths.

Seconds to days.
0-10s
10K
Less surprised.

More surprised (much).
Code implications &
all ways fo get errors

Summary

First law of bug finding: no check, no bug
Static: don't check property X? Don't find bugs in it.
Model checking: don't run code? Don't find bugs in it.
Second law of bug finding: more code = more bugs.
Easiest way to get 10x more bugs: check 10x more code.
Techniques with low incremental cost per LOC win.
What surprised us:
How hard environment is.
How bad coverage is.
That static analysis found so many errors in comparison.
That bugs were so shallow.
Availability:
Murphi from Stanford. CMC from Madan (now at MSR).
Static checkers from coverity.com

A formal methods opportunity

"Systems” community undergoing a priority sea change
Performance was king for past 10-15 years.
Moore's law has made it rather less interesting.
Very keen on other games to play.

One "new" game: verification, defect detection
The most prestigious conferences (SOSP, OSDI) have had
such papers in each of last few editions.
Warm audience: Widely read, often win “best paper,”

program committees makes deliberate effort to accept
“to encourage work in the area.”

Perfect opportunity for formal methods community: Lots
of low hanging fruit + systems people interested, but lack
background in formal method's secret weapons.

The fundamental law of defect detection:
No check, no bug.

First order effects:
Static: don't check property X? Won't find its bugs.
Model checking: don't check code? Won't find bugs in it.

