RacerX: effective, static detection of race
conditions and deadlocks

Dawson Engler and Ken Ashcraft
Stanford University

The problem.
Big picture:
Races and deadlocks are bad.
Hard to get w/ testing: depend on low-probability events.
Want to get rid of them.
Main games in town have problems.

Language: Mesa, Java, various type systems.
Forced to use language: still have errors
Tools:
Dynamic (Eraseré&co): must execute code: no run, no bug.
Static (ESC, Warlock): High annotation overhead.
Static & dynamic high false positive rates.

RacerX: lightweight checking for big code

Goal:
As many bugs as possible with as little help as possible

Works on real million line systems
Low annotation overhead (<100 lines per system)

Aggressively infers checking information.

Unusual techniques to reduce false positives.

The RacerX experience

How to use:
List locking functions & entry points. Small:
Linux: 18 + 31, FreeBSD: 30 + 36, System X: 50 + 52
Emit trees frj\ source code (2x cost of compile)

[\
Your ¢ mc-gce— slice—> ?%—*Racerx — Bugs

System

Run RacerX over emitted trees
Links all trees into global control flow graph (CFG)
Checks for deadlocks & races
~2-20 minutes for Linux.
Post-process to rank errors (most of IQ spent here)
Inspect

Talk Overview
Context
RacerX overview

Context-sensitive, flow-sensitive lockset analysis.

Deadlock checking
Race detection.

Conclusion.

Lockset analysis

Lockset: set of locks currently held [Eraser]
For each root, do a flow-sensitive, inter-procedural DFS
traversal computing lockset at each statement

initial =» lockset = {}
lock(l) =» lockset = lockset U {1}
unlock(l) = lockset = lockset - { 1}

Speed: If stmt s was visited before with lockset Is, stop.

Inter-procedural:
Routine can exit with multiple locksets: resume DFS w/
each after callsite.
Record <in-Is, {out-Is}> in fn summary. If s in
summary, grab cached out-Is's and skip fn body.

Lockset

connect() {
=> lock(a); {a}
= open_conn(); {a}

send();
summary:
TN ey

open_conn() {

—> if (x) {a}

=> lock(b); {ab}
—» else {a}

=>» lock(c): {ac}

- {a,b} {ac}

Lockset
connect() {
lock(a): {a}
open_conn(); {a}
send(); {a, b} {a c}

}

summary:
{a}>{a, b} {ac}
open_conn() {
if (x) {a}
{a,b} {a,c lock(b): {a,b}

a
lock(c): {a,c}
} {a,b} {a ¢}

Talk Overview
Context
RacerX overview
Static lockset analysis

Deadlock checking

Race detection.
Conclusion.

Big picture: Deadlock detection

Pass 1: constraint extraction
emit 1-level locking dependencies during lockset analysis
lock(a); lock(b);
lock(by=—> “a=>b" lock(a)=— “"b>a"
Pass 2: constraint solving
Compute transitive closure & flag cycles.
“aPbda” : T1 acquires a, T2 acquires b, boom.
Ranking:
Global locks over local
Depth of callchain & number of conditionals (less better)
Number of threads involved (fewer MUCH better)

Simplest deadlock example

// 2.5.62/drivers/char/rtc.c //2.5.62/drivers/char/rtc.c

int rtc_register(rtc_task_t *task) {| | rtc_unregister(rtc_task_t *task)

spin_lock_irq(&rtc_lock):
//..

spin_lock(&rtc_task_lock); .
if (rtc_callback) { spin_lock(&rtc_lock):
spin_unlock(&rtc_task_lock):

spin_lock_irq(&rtc_task_lock):
//

spin_unlock_irq(&rtc_lock):

Constraint extraction emits “rtc_lock=»rtc_task_lock” and

“rtc_task_lock=»rtc_lock”
Constraint solving flags cycle: T1 acquires rtc_lock, T2
acquires rtc_task_lock. Boom.

Ranked high: only two threads, global locks, local error.

Some crucial improvements

Unlockset analysis to counter lockset mistakes.

Automatic elimination of rendezvous semaphores

Release-on-block semantics.
Release lock when thread blocks. No dependency.

Handling lockset mistakes with
Summary selection heuristics
Computing the same result more than one way.
Pruning false paths based on locking errors

False positive trouble.

Most FPs from bogus locks in lockset
Typically caused by mishandled data dependencies
Oversimplified typical example

Naive analysis will think four paths rather than two,
including false one that holds lock a at line 5.

1: if(x) 0
2: lock(a); {a}
3: if(x) {a}
4: unlock(a): N
5: lock(b); {a} “adb

Inter-procedural analysis makes this much worse.
Could add path-sensitivity, but undecidable in general

Unlockset analysis

Observations:
In practice, all false positives due to the A in "A»B",
most because A goes “too far”
We had unconsciously adopted pattern of inspecting
errors where there was an explicit unlock of "A" after
“"AB" since that strongly suggested "A" was held.

// 2.5.62/drivers/char/rtc.c
rtc_register(rtc_task_t *task) {
spin_lock_irq(&rtc_lock):
/...
spin_lock(&rtc_task_lock); ——rtc_lock»rtc_task_lock
if (rtc_callback) {
spin_unlock(&rtc_task_lock):
spin_unlock_irq(&rtc_lock):

Unlockset analysis

At statement S remove any lock L from lockset if there
exists no successor statement S' reachable from S that
contains an unlock of L.

1: if(x) 0

2: lock(a): {a}

3: if(x) {a}

4: unlock(a):

5. lock(b): X o

Key: lockset holds exactly those locks the analysis can
handle. Scales with analysis sophistication.

Without this we just can't check FreeBSD.

Unlockset implementation sketch

Essentially compute reaching definitions
Run lockset analysis in reverse from leaves to roots
Unlockset holds all locks that will be released
initial =» unlockset = {}
lock(l) =» unlockset = unlockset -{1}
unlock(l) = unlockset = unlockset U { |}
s.unlockset = s.unlockset U unlockset

During lockset analysis:
lockset = intersect(s.unlockset, lockset);
Main complication: function calls.

Different locks released after different callsites. Don't
want to mix these up (context sensitivity)

Deadlock results

System Confirmed Unconfirmed | False
System X 2 3 7
Linux 2.5.62 4 8 6
FreeBSD 2 3 6
Total 8 14 19

A bit surprised at the low bug counts
Main reason seems to be not that many locks held
simultaneously
< 1000 unique constraints, only so many chances for
error.

The most surprising error

// Entered holding scsiLock

int FindHandle(int handleID) {
prevIRQL = SP_LockIRQ(&handleArraylock, ..):
Validate(handle);

int Validate(handle) {
ASSERT(SP_IsLocked(&scsiLock)):
while (adapter->openInProgress) {
CpuSched_Wait(&adapter- >openInProgress,
CPUSCHED_WAILT_SCSI, é&scsilock):
SP_Lock(&scsiLock):

T1 enters FindHandle with scsilLock, calls Validate, calls
CpuSched_wait (rel scsiLock, sleep w/ handleArraylLock)
T2 acquires scsiLock and calls FindHandle. Boom.

Talk Overview
Context
RacerX overview
Static inter-procedural lockset analysis.
Deadlock checking

Race detection.

Conclusion.

The big picture: race detection
Three modes

Simple: flag globals accessed int x;
w/ empty lockse contrived(int *p) {
Simple statistical: flag non- —Px++;

globals accessed w/ empty L *p ++;
Precise statistical: fla? shared |_—»lock(a):
accessed with wrong lockset __—"T"__ f55():
unlock(a):
}

Ranking
Bulk of effort devising heuristics for probable races
Each error message falls under several. Need to order.

The usual trick: use a scoring function to map non-
numeric attributes to a numeric value. Sort by value.

What's important to know

Is lockset valid?
Roughly same as for deadlock.

Is code multithreaded?

Does X have to be protected (by lock L)?

Does X have to be protected?

Naive: flag any access to shared state w/o lock held.
Way too strong: 1000s of unprotected accesses. Only a
few errors.

The right definition:

Race = concurrent access that violates app invariant.

Problem:

No one tells us invariants
Diagnosing race requires understanding app...
General approach: belief analysis [sosp'01]

Analyze if programmer seems to *believe* X must be
protected.

Infer if coder believes X needs locking

If X “often” protected, flag when not.

lock(l): ~ lock(): lock(l): lock(l): lock(): // eppor!
foo(): foo(): foo(); foo(): foo(): foo();
unlock(l); unlock(l); unlock(l): unlock(l); unlock(l):

Two modes:
Simple: count how often protected (S) versus not (F)
More precise: count how often protected by “most
common” lock L (S) versus not (F).
Use “z-test statistic” to rank based on S and F counts
Intuition: the more protected (S/(S+F)), and the more
samples (S+F), the higher the score.

Infer if coder believes X needs locking

Coders generally don't do spurious concurrency ops
If X is only object in critical section
Almost certainly protected (by L)
lock(l); // error!
foo(): foo():
unlock(l);
Similar (but weaker) if first or last.
lock(l);
bar():
foo();
unlock(l);
Most important ranking feature
Almost always look at these errors first.

Combined belief analysis example

serial_out-info pair:
First statement in csection 11 times & last 17 times.

//Ex1: drivers/char/esp.c // Ex 2:drivers/char/esp.c
cli(); cli();
serial_out(info, ...): info->IER &= ~UART_IER RDI:
serial_out(info, ...): serial_out(info, ...):
restore_flags(flags): serial_out(info, ...):

sti():

Obvious bug, trivial to diagnose.

restore_flags(flags): // re-enable interrupts

J/ERR: calling <serial_out-info> w/o clil
serial_out(info,...);

Race results

System Confirmed Unconfirmed | Minor |False
System X 7 4 13 14
Linux 2.5.62 3 2 2 6
Total 10 6 15 20

Many more uninspected results. Races *very* hard to
inspect: 10 minutes+ rather than 10 seconds.

Summary

RacerX
Few annotations: 100 or less for > million lines of code
Takes an hour to setup for new system
Finds bugs
Reasonable false positive rate

Main tricks
Belief analysis is a big win.
Unlockset analysis kills many false positives.
Ranking heuristics: other tools should be able to use.
Much more in paper...

Lots of work left to do.

Some high-probability unsafe operations

Non-atomic writes (> 32-bits, bitfields):
easy to diagnose, almost certainly bad.

1
:: r og:g; Read here = bizarre value

Many vars modified in “non-critical section”

> 1 variable on unprotected path, almost certainly going
to result in an inconsistent world-view.

shared int x, y:

;‘ = ,Il <—— Read x,y here = bizarre values

Data shared with interrupt handler.
Bug on uniprocessor.
Many others...

An illustrative race

/* ERROR:RACE: unprotected access to
[logLevelPtr, _loglevel_offset_vmm,
(*theIOSpace).enabledPassthroughPorts,
(*theIOSpace).enabledPassthroughWords]
[nvars=4] [modified=1] [has_locked=1] */
LOG(2,("IOSpaceEnablePassthrough Ox%x count=%d\n",
port, theIOSpace->resumeCount)):
theIOSpace- >enabledPassthroughPorts = TRUE:
theIOSpace- >enabledPassthroughWords |= (1<<word):

High rank:
Modified (modified=1)
Four variables in non-critical section (nvars=4)
Concurrency operations in callchain (has_locked)

Multithreaded inference

Infer if coder *believes® code is multithreaded.
Programmers generally don't do spurious concurrency ops
Any such op implies belief code is multithreaded.

RacerX marks function F as multithreaded if concurrency
ops occur (1) in F's body or (2) above it in callchain.

/
int x; . threaded|
threaded() { barﬁﬂ, } noﬂj“:‘:ea =
bar(): threaded():
atomic_inc(&x): }

Note: concurrency ops in callee do not nec imply caller
multithreaded

Programmer-written annotators

Use coder knowledge to automatically mark code as:
Multithreaded or interrupt handlers (errors promoted)
Ignore or single-threaded (elided)

// mark all system calls as multithreaded
for(struct fn *f = fn_list; f; f = fn_next(f))
if(strncmp(f - >name, “sys_", 4) == 0)
f->multithreaded_p = 1;

Big win: small fixed cost & many annotations (100-1000)

Function pointer equivalence
Functions assigned to same fptr ~ have same interface
If one annotated, automatically annotate others

Main limitations

Very weak alias analysis:
Pointers to locals and parameters named by type.
“struct foo *f" = <struct:foo:local>
Limited function pointer analysis
Record all functions assigned to fptr (static or explicitly)
Assume call using that fptr type can call any of them.
Miss: functions passed as arguments and then assigned.

Main speed problem:
Deep fns called in many places with different locksets.
Will cause RacerX to re-analyze each time. Expensive.
Skips any fn when more than > 100 different locksets.

The problem with rendevous semaphores

Two conflated semaphore uses

Sometimes down(a);
as locks (dep) lock(b); +——>"a>b"
up(a):

Sometimes for signaling (no dependency)

// Producer // Consumer
up(a): // signal down(a): // wait
lock(b); —1>"aXb"

If not separated cause lots of false positives. Many.
Use behavioral analysis to automatically eliminate!

Behavioral analysis
Does s behave more like lock or more like semaphore?
Lock: (1) many down-up pairings, (2) few spurious ups

down(a); |[down(a); ||down(a); | |down(a):
up(b): up(b): up(b): up(b):

down(a);
up(b):

Scheduling: (1) few down-up pairs, (2) many spurious ups

| down(s); ||up(s) | | down(s); ||down(s); ||up(s || up(s)

Use statistical analysis to calculate which s behaves
like

Statistical classification sketch

Foreach semaphore s, compute:
Ratio of paired down(s)/up(s)
Ratio of spurious up(s)'s to total down(s) calls
Baseline ratios using known spin-lock functions
Compare s's ratio against baseline using “z-test statistic”
“Very improbable”? classify s as scheduling sem.

name down up spurious up
PQFCH BA.complete B) 0 B)
event_exit 2 0 9
thread_exit 2 0 1
us_data.sem 8 28 2
mm_struct.sem 141 208 2

Example scoring

X first, last, or only object in critical section.
+4 if only object > 1 times, +2 if 1 time.
+1 if first, last object > O times

Count protected vs unprotected, rank using z-test
+2 if z > 2; -2 if non-global and z < -2.

Writes:
Unprotected vars in non-csection: +2 n > 2, +1if n > 1
Non-atomic write: +1
Weritten by interrupt handler: +2, in general: +1.
Modified by > 2 roots: +2

Rank
Cases with concurrency op in callchain above not.
Order same score by callchain depth and conditionals

