Using System-Specific Compiler
Extensions to Find Errors in Systems Code

Dawson Engler
Ben Chelf, Andy Chou, Seth Hallem
Stanford University

Checking systems software

Systems software has many ad-hoc restrictions:
“acquire lock L before accessing shared variable X"
“do not allocate large variables on 6K kernel stack”

Error = crashed system. How to find errors?

Formal verification

+ rigorous

- costly + expensive. *Very* rare to do for software
Testing:

+ simple, few false positives

- requires running code: doesn't scale & can be impractical
Manual inspection

+ flexible

- erratic & doesn’t scale well.
What to do??

Another approach

Observation: rules can be checked with a compiler

scan source for “relevant” acts check if they make sense
E.g., to check “disabled interrupts must be re-enabled:”
scan for calls to disable()/enable(), check that they
match, not done twice

Main problem:

compiler has machinery to automatically check, but not
knowledge

implementor has knowledge but not machinery

Meta-level compilation (MC):

give impl tors a fr k to add easily-written,
system-specific compiler extensions

Meta-level compilation (MC)

Implementation:
Extensions dynamically linked into GNU g++ compiler
Applied down all paths in input program source
E.g. 64-line extension to check disable/disable (82 bugs)

save(flags): GNU C++ compiler

cli():;

Linux: | i (1(buf = allocONLE= "djd not re-enable

raid5.c] peturn NULL: [[ "ferrupt ch interrupts!”

restore(flags);
return buf;

Static detection of real errors in real systems:
600+ bugs in Linux, OpenBSD, FLASH, Xok exokernel
most extensions < 100 lines, written by system outsiders

A bit more detail initial

{ #include "linux-includes.h” }
sm chk_interrupts {
decl { unsigned } flags;
/1 naned patterns
pat enable = { sti(); }
| { restore_flags(flags); };
pat disable = { cli(); };

Il states
i s_enabl ed: disable ==> is_disabl ed .
| enable ==> { err("double enable"); } disabl¢

i s_disabl ed: enable ==> is_enabl ed
| disable ==> { err("doubl e disable");
| $end_of _pat h$ ==>
{ err("exiting wintr disabled!"); }
;)

"X before Y" rule: system call pointers

Applications are evil
0OS much check all input pointers before use
one missing check = security hole

MC checker: Each input ptr P
Bind syscall ptr's to "tainted” state

tainted vars only touched w/
“safe” routines

or: explicit check to make “clean”

copyin(p),
copyout(p,

/* from sys/ kern/disk.c */
int sys_disk_request(...
struct buf *regbp, u_int k) {

/* bypass for direct scsi commands */
if (regbp->b_flags & B_SCSI C\MD)
return sys di sk_scsicnd (sn, k, regbp);




Deriving specification from common usage
Problem: difficult to specify all user pointers
so:see what code usually does, deviations probably errors
if ever pass ptr to paranoid routine, make sure always do
Found 5 security errors in Linux.

Canonical example: hole in an “ioct
obscure device driver.

1"

routine for some

/* drivers/usb/evdev.c */
static int evdev_ioctl (..., unsigned long arg) {

switch (cmd) {
case EVI OCGVERSI ON:
return put_user (EV_VERSION, (__u32 *) arg);
case EVIOCA D: /* copy_to_user(to, from! */
return copy_to_user(&dev->id, (void *) arg,
si zeof (struct input_id));

Kernel alloc/dealloc rules

Must check that alloc succeeded
Must allocate enough space
Must not use after free()

Must free alloc'd object on error:
/* fromdrivers/char/tea6300.c */
client = knmal | oc(sizeof *client, GFP_KERNEL);
if (‘client)
return - ENOVEM

tea = knalloc (sizeof *tea, GFP_KERNEL);
if ('tea)
return - ENOVEM

MOD_I NC_USE_COUNT; /* bonus bug: knalloc could sleep

Stripped-down kernel malloc/free checker

decl { scalar } sz; /l match any scalar
decl { const int } retv; /l match const ints
state decl { any_ptr}v; // match any pointer, can bind to a state

/I Bind malloc results to “unknown” until observed
start: {v = (any)malloc(sz) } ==>v.unknown
| { free(v) } ==>v.freed;
/I can compare in states unknown, null, not_null
v.unknown, v.null, v.not_null:
{(v==0)} ==> true = v.null, false = v.not_null
|{(v!=0)}==> true =v.not_null, false = v.null;
/I Cannot reach error path with unknown or not-null
v.unknown, v.not_null: {return retv; } ==>
{if(mgk_int_cst(retv) <0) err("Error path leak!"); };
/I No dereferences of null, freed, or unknown ptrs.
v.null, v.freed v.unknown:
{ *(any *)v } ==> { err("Using ptrillegally!"); };

Some amusing bugs

No check (130 errors, 11 false pos). Worse case
(many uses):
* include/linux/coda_linux.h: CCDA_ALLOC */
ptr = (cast)vnall oc((unsigned |ong) size);

if (ptr == 0) printk("kernel nalloc returns O\n");
nenset ( ptr, 0, size);
use after free (14 errors, 3 false pos): 5 cutépaste
of /* drivers/isdn/pcbit:pchit_init_dev */
kfree(dev);
i ounmap( (unsi gned char *) dev->sh_nen);
rel ease_nem regi on(dev->ph_nem 4096);
wrong size (2 errors)

/* drivers/parport/daisy.c:add_dev: 50 */
newdev = knmal | oc ( GFP_KERNEL, si zeof (struct dai sydev));

“In context Y, don't do X": blocking

Linux: if interrupts are disabled, or spin lock held, do
not call an operation that could block.
MC checker: @

Compute transitive closure of all lock(l), unlock(l)
potentially blocking fn's i 1\ nable()

Hit disable/lock: warn of any calls

123 errors, 8 false pos

/* drivers/net/pcntial/ wavel an_cs.c */ Block call

spin_l ock_irqgsave (& p->lock, flags); /* 1889 */
swi t ch(cnd) @
case S| CCGA WPRI V:

if(copy_to_user(wqg->u.data. pointer, .)) [/* 2305 */
ret = -EFAULT,;

Example: statically checking assert

Assert(x) used to check "x" at runtime. Abort if false

compiler oblivious, so cannot analyze statically
Use MC to build an assert-aware extension

msg.len = O;

—1*| assert checker
assert(msg.len 1=0);

Result: found 5 errors in FLASH.
Common: code cuté&paste from other context

Manual detection questionable: 300-line path explosion
between violation and check

General method to push dynamic checks to static

line 211:assert failure!
-




Result overview

Conclusions

MC goal: make programming much more powerful

How: Raise compilation from level of programming
language to the “meta level” of the systems implemented
in that language

MC works well in real, heavily tested systems
We found bugs in every system we've looked at.
Over 600 bugs in total, many capable of crashing system
Easily written by people unfamiliar w/ checked system

Currently:
making correctors, using domain-knowledge to extract
verifiable specs, deriving errors by usage deviations,
performing meta-level optimization...

Check Errors False pos Loc
Static assert 5 0 100
Stack check 10+ 0 53
Allocation 184 64 60
Blocking 123 8 131
Module race ~75 2 133
Mutex 82 201 64
FLASH 34 69 553
Total(+others) ~545 ~226 ~1100
Conclusions

Meta-level compilation:
Make compilers aggressively system-specific

Easy: digest sentence fragment, write checker/optimizer.
Result: Static, precise, immediate error diagnosis

As outsiders found errors in every system looked at
Over 600 bugs, many capable of crashing system

Currently:
making correctors, using domain-knowledge to extract
verifiable specs, deriving errors by usage deviations,
performing meta-level optimization...

Bugs as deviant behavior
One way to find bugs:

have a deep understanding of code semantics, detect
when code makes no sense. Hard.

Easier:
see what code usually does: deviations probably bugs

x protected by lock(a) 1000 times, by lock(b) once,
probably an error

lock(a): lock(a):  lock(a): lock(a):  lock(b): lock(a):

Jooy: o X+ X++; X++; X4+
unlock(a); unlock(a); unlock(a): unlock(a); unlock(b):  unlock(a):

Find inverses by looking for common pairings

More general: derive temporal orderings. Use machine
learning to derive more sophisticated patterns?

What to do when static analysis too weak?

Static analysis works in some cases, not well in others

hit undecidable problems with loop termination conditions,
data values, pointers, ...

Alternative:
use domain-specific slicing to extract spec from code
run through verifier

Main lever: a little domain knowledge goes a long way

e.g., strip out Linux TCP finite-state-machine by keying
off of variable “sk->state”

Real example: checking FLASH code

Extracting specs from FLASH code

Embedded sw for cache coherence in FLASH machine
errors crash or deadlock machine: can take week to track
typical protocol: 18K lines of hairy C code

Extract specifications from source by simple slicing
found 9 errors in code
despite 5+ years of heavy testing and formal verification!

How?

Given list of data structure fields and message
operations, slice out all relevant operations
Compose with specification (manual) boilerplate
run through Murphi model checker

Levers: aliasing and globals, but in a stylized way that we
can mostly ignore. 4 loops in code.




FLASH vs Murphi

FLASH HANDLER GLOBALS( header . nh. | en) = LEN_CACHELI NE;
if (! HANDLER GLOBALS( h. hl . Pendi ng)) {
if (! HANDLER GLOBALS(h.hl.Dirty)) {
ASSERT( ! HANDLER GLOBALS( h. hl . 10));
Pl _SEND(F_DATA, F_FREE, F_SWAP, ... .);
HANDLER GLOBALS(h. hl . Local ) = 1;
/* ... deleted 14 lines */
} else {
ASSERT( ! HANDLER_GLOBALS( h. hl . Li st));
ASSERT( ! HANDLER_GLCBALS( h. hl . Real Ptrs));

Murphi nh.len : = len_cacheline;
if ((DH Pending = 0)) then
if ((DHDirty = 0)) then

assert(nh.len !'= | en_nodata);
nbResult := pi_send_func(src, PlI_Putt);
DH. Local := 1;
el se
assert ((DH.List = 0));
assert ((DH Real Prrs = 0))-

Checkers into Correctors

Problem: big system, lots of bugs
may not be your system or take too long to fix manually
Can turn some classes of checkers into correctors:
"Do not allocate large variables on kernel stack”: if you
hit a violation, rewrite code to dynamically allocate var

“Do not call blocking memory allocator with interrupts
disabled”: hoist allocation out

cli(); 'M_\p = malloc(sizeof *p);
p = malloc(sizeof *p); —> C"E):’f )
sti(); p = tmp;

sti():

"On error paths, rollback side-effects”: dynamically
track what these are, and reverse.

Interesting: trade dynamic checks for simplicity

MC optimization

Optimization rules similar to checking:

“if data is not shared with interrupt handlers, protect
using spin locks rather than interrupt disable/enable

“to save an instruction when setting a message opcode,
xor it with the new and old (msg.opcode "= (new ~ old)):

“replace quicksort with radix sort when sorting integers”
Common rule: “In situation X, do Y rather than Z":
“if a variable is not modified, protect using read locks”

lock(q- >lock); read_lock(q- >lock):
head = q->head;——>head = q->head:

n = q->nelem; n = q->nelem;
unlock(q- >lock): read_unlock(q- >lock):

and with a few lines: change opt into checker:

read_lock(q->lock); __ “modifying q with read lock!”
q->head = h;

MC analysis vs. traditional compiler analysis

Meaning more apparent + domain-specific knowlege

Bigint a, b, c:

set(a, 3);

mu, a, @); — > printf("81"):

mul(c, b, b);

printf(*%s”, bigint_to_str(c)):
Easier to bound side-effects: use knowledge of
abstract state to ignore many concrete actions
Aliasing less of a problem

typical: opaque handles vs normal mess of pointers
Operations more coarse grain

read()/write() vs load/store; matrix ops vs +/-




