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ABSTRACT FST is frequently used as a summary of genetic differentiation among groups. It has been suggested that FST depends on
the allele frequencies at a locus, as it exhibits a variety of peculiar properties related to genetic diversity: higher values for biallelic single-
nucleotide polymorphisms (SNPs) than for multiallelic microsatellites, low values among high-diversity populations viewed as sub-
stantially distinct, and low values for populations that differ primarily in their profiles of rare alleles. A full mathematical understanding
of the dependence of FST on allele frequencies, however, has been elusive. Here, we examine the relationship between FST and the
frequency of the most frequent allele, demonstrating that the range of values that FST can take is restricted considerably by the allele-
frequency distribution. For a two-population model, we derive strict bounds on FST as a function of the frequency M of the allele with
highest mean frequency between the pair of populations. Using these bounds, we show that for a value of M chosen uniformly
between 0 and 1 at a multiallelic locus whose number of alleles is left unspecified, the mean maximum FST is �0.3585. Further, FST is
restricted to values much less than 1 whenM is low or high, and the contribution to the maximum FST made by the most frequent allele
is on average �0.4485. Using bounds on homozygosity that we have previously derived as functions of M, we describe strict bounds
on FST in terms of the homozygosity of the total population, finding that the mean maximum FST given this homozygosity is 1 2 ln 2 �
0.3069. Our results provide a conceptual basis for understanding the dependence of FST on allele frequencies and genetic diversity and
for interpreting the roles of these quantities in computations of FST from population-genetic data. Further, our analysis suggests that
many unusual observations of FST, including the relatively low FST values in high-diversity human populations from Africa and the
relatively low estimates of FST for microsatellites compared to SNPs, can be understood not as biological phenomena associated with
different groups of populations or classes of markers but rather as consequences of the intrinsic mathematical dependence of FST on
the properties of allele-frequency distributions.

DIFFERENTIATION among groups is one of the funda-
mental subjects of the field of population genetics. Com-

parisons of the level of variation among subpopulations with
the level of variation in the total population have been em-
ployed frequently in population-genetic theory, in statistical
methods for data analysis, and in empirical studies of dis-
tributions of genetic variation. Wright’s (Wright 1951) fixa-
tion indices, and FST in particular, have been central to this
effort.

Wright’s FST was originally defined as the correlation be-
tween two randomly sampled gametes from the same sub-
population when the correlation of two randomly sampled

gametes from the total population is set to zero. Several
definitions of FST or FST-like quantities are now available,
relying on a variety of different conceptual formulations but
all measuring some aspect of population differentiation
(e.g., Charlesworth 1998; Holsinger and Weir 2009). Many
authors have claimed that one or another formulation of FST
is affected by levels of genetic diversity or by allele frequen-
cies, either because the range of FST is restricted by these
quantities or because these quantities affect the degree to
which FST reflects population differentiation (e.g., Charlesworth
1998; Nagylaki 1998; Hedrick 1999, 2005; Long and
Kittles 2003; Jost 2008; Ryman and Leimar 2008; Long
2009; Meirmans and Hedrick 2011). For example, Nagylaki
(1998) and Hedrick (1999) argued that measures of FST
may be poor measures of genetic differentiation when the
level of diversity is high. Charlesworth (1998) suggested
that FST can be inflated when diversity is low, arguing that

Copyright © 2013 by the Genetics Society of America
doi: 10.1534/genetics.112.144758
Manuscript received August 7, 2012; accepted for publication November 5, 2012
Available freely online through the author-supported open access option.
1Corresponding author: Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala,
Sweden. E-mail: mattias.jakobsson@ebc.uu.se

Genetics, Vol. 193, 515–528 February 2013 515

mailto:mattias.jakobsson@ebc.uu.se


FST might not be appropriate for comparing loci with sub-
stantially different levels of variation. In a provocative re-
cent article, Jost (2008) used the diversity dependence of
forms of FST to question their utility as differentiation mea-
sures at all.

One definition that is convenient for mathematical assess-
ment of the relationship of an FST-like quantity and allele
frequencies is the quantity labeled GST by Nei (1973), which
for a given locus measures the difference between the het-
erozygosity of the total (pooled) population, hT, and the
mean heterozygosity across subpopulations, hS, divided by
the heterozygosity of the total population:

GST ¼ hT 2 hS
hT

: (1)

In terms of the homozygosity of the total population, HT =
1 2 hT, and the mean homozygosity across subpopulations,
HS = 1 2 hS, we can write

GST ¼ HS 2HT

12HT
: (2)

The Wahlund (1928) principle guarantees that HS $ HT

and, therefore, because HS # 1 and for a polymorphic locus
with finitely many alleles, 0 , HT , 1, GST lies in the in-
terval [0,1].

Using GST for their definition of FST, Hedrick (1999,
2005) and Long and Kittles (2003) pointed out that because
hT , 1, FST cannot exceed the mean homozygosity across
subpopulations, HS:

FST ¼ 12 hS=hT , 12 hS ¼ HS: (3)

Hedrick (2005) obtained this result by considering a set of
K equal-sized subpopulations, in which each allele is private
to a single subpopulation. In the limit as K / N, a stronger
upper bound on FST as a function of HS and K reduces to
Equation 3 (see also Jin and Chakraborty 1995 and Long
and Kittles 2003).

While Hedrick (1999, 2005) and Long and Kittles (2003)
have clarified the relationship between FST and the mean
homozygosity HS across subpopulations, their approaches
do not easily illuminate the connection between FST and al-
lele frequencies themselves. A formal understanding of the
relationship between FST and allele frequencies would make
it possible to more fully understand the behavior of FST in
situations where markers of interest differ substantially in
allele frequencies or levels of genetic diversity. Our recent
work on the relationship between homozygosity and the fre-
quency of the most frequent allele (Rosenberg and Jakobsson
2008; Reddy and Rosenberg 2012) provides a mathematical
approach for formal investigation of bounds on population-
genetic statistics in terms of allele frequencies. In this article,
we therefore seek to thoroughly examine the dependence of
FST on allele frequencies by investigating the upper bound on
FST in terms of the frequency M of the most frequent allele
across a pair of populations. We derive bounds on FST given

the frequency of the most frequent allele and bounds on the
frequency of the most frequent allele given FST. We consider
loci with arbitrarily many alleles in a pair of subpopulations.
Using theory for the bounds on homozygosity given the fre-
quency of the most frequent allele, we obtain strict bounds
on FST given the homozygosity of the total population. Our
analysis clarifies the relationships among FST, allele frequen-
cies, and homozygosity, providing explanations for peculiar
observations of FST that can be attributed to allele-frequency
dependence.

Model

We examine a polymorphic locus with at least two alleles in
a setting with K subpopulations that contribute equally to
a total population. Denote the number of distinct alleles by I,
the frequency of allele i in population k by pki, and the mean
frequency of allele i across populations by �pi ¼ 1

K

PK
k¼1pki:

We primarily report our results in terms of homozygosities,
which can be easily transformed into heterozygosities.

We consider FST formulated as a property of nonnegative
numbers between 0 and 1 such that within populations, the
allele frequencies sum to 1 (

PI
i¼1pki ¼ 1 for each k). This

formulation is the same as the formulation of Nei’s GST,
which we hereafter denote by F. We have (Nei 1973)

F ¼ hT 2 hS
hT

¼ HS2HT

12HT
;

where

HT ¼
XI
i¼1

�p2i ¼
XI
i¼1

 
1
K

XK
k¼1

pki

!2

and

HS ¼ 1
K

XK
k¼1

 XI
i¼1

p2ki

!
¼ 1

K

XK
k¼1

XI
i¼1

p2ki:

The assumption that the locus is polymorphic guarantees
that HT , 1. The assumption that I, the number of distinct
alleles at the locus, is finite guarantees that HT . 0 (and
hence, HS . 0 because HS $ HT). Thus, 0 , HT , 1 and 0 ,
HS # 1.

We assume that all allele frequencies are the parametric
allele frequencies of the population under consideration.
Thus, the frequency of an allele is the probability of drawing
the allele from the parametric frequency distribution; homo-
zygosity is then the probability that two independent random
draws carry the same allelic type, and heterozygosity is the
probability that two independent random draws carry
different allelic types. We emphasize that in our formulation,
F, HT, and HS are functions of the parametric allele frequen-
cies, and our interest is in the properties of these functions
and their relationships with the allele frequencies; we do not
investigate their estimation from data, nor do we consider
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how evolutionary models affect the underlying allele fre-
quencies involved in their computation.

We focus on the case of two subpopulations (K = 2). In this
case, the allele frequencies are denoted p1i for population 1 and
p2i for population 2. For each i from 1 to I, let si = p1i + p2i be
the sum across populations of the frequency of allele i. Each
si lies in (0, 2), and the number of alleles I counts only those
alleles with si . 0. We denote �pi ¼ si=2. Without loss of
generality, we place the alleles in decreasing order, such that
s1 $ s2 $ . . . $ sI. We denote the frequency of the most
frequent allele in the total pooled population byM= s1/2, and
we find it convenient to express some results in terms of s1 and
others in terms of M. Because

PI
i¼1si ¼ 2 and each si is pos-

itive, we have 1/I # M , 1.
Let di = |p1i 2 p2i| be the absolute difference between p1i

and p2i. We can write the homozygosity of the total popu-
lation as

HT ¼
XI
i¼1

�p2i ¼ 1
4

XI
i¼1

s2
i ;

and the mean homozygosity across subpopulations as

HS ¼ 1
2

X2
k¼1

XI
i¼1

p2ki ¼
1
2

XI
i¼1

�
p21i þ p22i

�
:

We then have (Boca and Rosenberg 2011)

F ¼
PI

i¼1d
2
i

42
PI

i¼1s
2
i

: (4)

In other words, F can be computed solely using the allele-
frequency sums and differences between the two populations.

Bounds on F

Our goal is to study the relationship between F and M in the
general case of I alleles in two populations. For convenience,
we write F as a function of s1, keeping in mind that s1/2 =M,
and we begin by considering the special case in which I = 2.

Bounds on F for two alleles

This case has two alleles, with frequencies p11 and p12 in
population 1, and p21 and p22 in population 2 (Table 1). The
frequency of the second allele is p12 = 1 2 p11 in population
1 and p22 = 12 p21 in population 2. Using Equation 4, we have
a simple expression for F (Weir 1996; Rosenberg et al. 2003):

F ¼ d21 þ ½ð12p11Þ2ð12p21Þ�2
42s2

1 2 ½ð12p11Þ þ ð12p21Þ�2

¼ d21
s1ð22s1Þ:

(5)

We determine the upper and lower bounds of F in terms of the
frequency of the most frequent allele M = s1/2. Because the

alleles are arranged to satisfy s1$ s2 and because s1 + s2 = 2,
s1 must lie in [1, 2). For the lower bound on F as a function
of s1, we note that if allele 1 has the same frequency in both
populations, then p11 = p21 = s1/2. The frequency of allele
2 will also be the same in the two populations, p12 = p22 =
1 2 s1/2, and d1 and d2 will both equal zero. For these
allele frequencies, we see that HS = HT, and it is clear from
Equation 5 that F(s1)$ 0 for all values of s1 in [1, 2), with
equality if and only if p11 = p21 = s1/2.

For the upper bound, we first note that because d1 = 2p112
s1 when p11 $ p21 and d1 = 2p21 2 s1 when p21 $ p11,

d21# ð22s1Þ2; (6)

with equality if and only if p11 = 1 or p21 = 1. Using Equa-
tions 5 and 6, we have

Fðs1Þ# ð22s1Þ2
s1ð22s1Þ ¼

22s1

s1
:

Thus, the upper bound on F as a function of s1 is achieved
when the allele frequencies of the two populations differ as
much as possible, that is, when (p11, p21) = (1, s1 2 1) or
(p11, p21) = (s1 2 1, 1). The bounds on F are

F 2
�
0;
22s1

s1

�
: (7)

Figure 1 shows the upper bound as a function of the most
frequent allele, illustrating a monotonic decline from
q(1/2) = 1 to q(1) = 0.

Lower bound on F for an unspecified number of alleles

For any number of alleles I and any set of si, by noting that
the denominator of F in Equation 4 is positive and that the
numerator is

PI
i¼1d

2
i $ 0, we see that Equation 4 takes the

value of zero if and only if for each i, p1i = p2i = si/2. Thus,
the lower bound on F as a function of s1 is achieved when
the allele frequencies are the same in both populations for
all I alleles. Thus, F = 0 is attainable for any value of s1 in
(0, 2).

Upper bound on F for an unspecified number of alleles

The upper bound on F as a function of s1 has different
properties for s1 2 (0, 1) and for s1 2 [1, 2). We begin with
s1 2 (0, 1).

Using Equation 4, we can rearrange F(s1) to obtain

Table 1 Notation for two alleles in two populations

Population

Allele

1 2 Sum

1 p11 p12 1
2 p21 p22 1
Sum s1 s2 2
Absolute difference d1 d2 —
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Fðs1Þ ¼ 2 1þ 2
22 2

PI
i¼1p1i p2i�

42
PI

i¼1 p
2
1i2

PI
i¼1 p

2
2i

�
2 2
PI

i¼1p1i p2i
:

(8)

As we assume that the locus of interest is polymorphic, both the
numerator and denominator in the fraction in Equation 8 are
positive. Fix

PI
i¼1p

2
1i and

PI
i¼1p

2
2i. Because the same quantity

2
PI

i¼1p1ip2i is subtracted in the numerator and denominator
from quantities that must exceed it (2 in the numerator,
42

PI
i¼1p

2
1i 2

PI
i¼1p

2
2i in the denominator), the fraction

is maximized when
PI

i¼1p1ip2i is minimized, that is, whenPI
i¼1p1ip2i ¼ 0. In other words, given s1, for fixed

PI
i¼1p

2
1i

and
PI

i¼1p
2
2i, F(s1) is maximal when each allele is found

only in one of the two subpopulations.
To complete the maximization of F(s1) as a function of s1,

it remains to maximize
PI

i¼1p
2
1i and

PI
i¼1p

2
2i. These two max-

imizations can be performed separately, as no allele appears in
both subpopulations. Further, by symmetry,

PI
i¼1p

2
1i andPI

i¼1p
2
2i must have the same maximum.

Define J ¼ Øs21
1 ø. The number of alleles I is unspecified;

we search for an upper bound over all possible values I $ 2
and discover that the maximum occurs when each subpop-
ulation has I = J distinct alleles. Because p1i + p2i # s1

and because for each i, at the maximum of F(s1), each
allele has either p1i = 0 or p2i = 0, it suffices to maximizePI

i¼1p
2
1i subject to

PI
i¼1p1i ¼ 1 and p1i # s1 for all i. This

maximization is the same problem considered in Rosenberg
and Jakobsson (2008, Lemma 3), which demonstrates that
the maximum occurs if and only if the locus has J 2 1
alleles of frequency s1 and one remaining allele of frequency
1 2 (J 2 1)s1.

Lemma 3 of Rosenberg and Jakobsson (2008) yields 1 2
s1(J 2 1)(2 2 Js1) for each of the two maxima, on

PI
i¼1p

2
1i

and on
PI

i¼1p
2
2i. We then conclude

Fðs1Þ# 12s1ðJ21Þð22 Js1Þ
1þ s1ðJ21Þð22 Js1Þ; (9)

with equality if and only if the locus has 2J alleles, J of
which occur only in the first subpopulation and the other J
of which occur only in the second population, and each sub-
population has J 2 1 alleles of frequency s1 and one allele
of frequency 1 2 (J 2 1)s1. Because J ¼ Øs21

1 ø, we have

Fðs1Þ#
12s1

�
Øs21

1 ø21
��
22 Øs21

1 øs1
�

1þ s1
�
Øs21

1 ø2 1
��
22 Øs21

1 øs1
�: (10)

For the case of s1 2 [1, 2), we separate terms in Equation
4 for the first and subsequent alleles:

Fðs1Þ ¼ d21 þ
PI

i¼2d
2
i

42s2
12

PI
i¼2s

2
i

: (11)

The upper bound on F, given s1, occurs when d21,
PI

i¼2d
2
i ,

and
PI

i¼2s
2
i are maximized. To maximize d21, note that as in

the two-allele case (Equation 6), for s1 2 [1, 2),
d21 # ð22s1Þ2, with equality if and only if p11 = 1 or p21 = 1.

Next, for any i, di # si, with equality if and only if p1i =
0 or p2i = 0. Then

PI
i¼2

d2i #
PI
i¼2

s2
i

#
�PI

i¼2si

�2
¼ ð22s1Þ2;

(12)

where the last step follows from the fact that
PI

i¼1si ¼ 2.
Equality in the second step requires that among the si with
i $ 2, only one can be positive, namely s2, by the assump-
tion that the alleles are labeled in decreasing order of fre-
quency. Thus, equality occurs in both inequalities if and only
if s2 = 2 2 s1 and either p12 or p22 is 0.

We have therefore found that given s1 2 [1, 2), d21,PI
i¼2s

2
i , and

PI
i¼2d

2
i are all maximized under exactly the

same conditions—when (p11, p12, p21, p22) = (1, 0, s1 2 1,
2 2 s1) or (s1 2 1, 2 2 s1, 1, 0). Replacing the terms d21,PI

i¼2d
2
i and

PI
i¼2s

2
i in Equation 11 using inequalities 6 and

12, we have

Fðs1Þ# ð22s1Þ2þð22s1Þ2
42s2

1 2 ð22s1Þ2

¼ 22s1

s1
;

(13)

with equality if and only if p11 = 1 or p21 = 1 and s2 = 2 2
s1. This result matches the two-allele case: when s1 2 [1,
2), the case of an unspecified number of alleles reduces to
the case of two alleles.

Figure 1 The upper bound on F as a function of the frequency M of the
most frequent allele, for the two-allele case. The upper bound is com-
puted from Equation 7. The lower bound on F is 0 for all values of M.
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Summarizing our results, the bounds of F are

F 2
� ½0;Qðs1Þ�; 0,s1 ,1

½0; qðs1Þ�; 1#s1 , 2;
(14)

where

Qðs1Þ ¼
12s1

�
Øs21

1 ø21
��
22 Øs21

1 øs1
�

1þ s1
�
Øs21

1 ø21
��
22 Øs21

1 øs1
� (15)

qðs1Þ ¼ 22s1

s1
: (16)

Note that the upper bound on F is continuous at s1 = 1, as
lims1/1Qðs1Þ ¼ qð1Þ ¼ 1.

The upper bound on F is shown as the solid line in Figure
2. The plot illustrates that the upper bound on F(s1) has
a piecewise structure on (0, 1), with changes in shape oc-
curring when s1 is equal to the reciprocal of an integer.
Similarly to the bounds examined by Rosenberg and Jakobs-
son (2008), for each J $ 2, Q(s1) is monotonically increasing
on the interval [1/J, 1/(J2 1)), where Øs21

1 ø has the constant
value J. Further, Q(s1) is continuous at the boundaries 1/J
between intervals, with Q(1/J) = 1/(2J 2 1). On [1, 2),
the upper bound has a simple monotonic decline according
to q(s1).

Properties of the Upper Bound on F

The region between 0 and the upper bound on F exactly
circumscribes the set of possible values of F as a function

of s1, as the upper bound is strict. We now explore a series
of features of the upper bound on F as a function of s1.

The space between the upper and lower bounds on F

The mean maximum F across the range of possible frequen-
cies for the most frequent allele gives a sense of the maximal
F attainable on average, when M is uniformly distributed.
This mean can be obtained by evaluating the area of the re-
gion between the lower and upper bounds on F.

Because the lower bound on F is zero over the entire
interval s1 2 (0, 2), we need to determine only the area
A under the upper bound on F. We integrate Q(s1) for s1 2
(0, 1) and q(s1) for s1 2 [1, 2),

A ¼
Z 1

0
Qðs1Þds1 þ

Z 2

1
qðs1Þds1: (17)

The first integral can be computed as a sum over intervals
[1/J, 1/(J 2 1)) for J $ 2. On each such interval, Øs21

1 ø has
a fixed value of J. We then have

Z 1

0
Qðs1Þds1 ¼

XN
J¼2

Z 1
J21

1
J

12s1ðJ2 1Þð22 Js1Þ
1þ s1ðJ2 1Þð22 Js1Þ ds1:

In the Appendix, we show that

Z 1

0
Qðs1Þds1 ¼ 2 1þ

XN
J¼2

ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ2 1Þð2J2 1Þp þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ2 1Þð2J2 1Þp
2 1

!, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ2 1Þð2J2 1Þ

p
:

(18)

By numerically evaluating the sum in Equation 18, we
obtain an approximation

R 1
0 Qðs1Þds1 � 0:3307808.

The second term in Equation 17 isZ 2

1
qðs1Þds1 ¼

Z 2

1

22s1

s1
ds1

¼ 2 ln 22 1;

(19)

and the area under q(s1) for s1 2 [1, 2) is �0.3862944.
Summing the values for the two integrals, the area A

under the upper bound on F is �0.7170751. Considering F
as a function of M = s1/2 rather than s1, F is confined to
a region with area �0.3585376. This area under the curve is
the mean maximal value of F across the space of values ofM,
and it is substantially less than 1. Thus, on average, F is
constrained within a narrow range, and across most of the
space of possible values for the frequency of the most fre-
quent allele, F cannot achieve large values. For example,
only over half the range—for M between 1/4 and 3/4—is
it possible for F to exceed 1/3.

Jagged points touch a simple curve

For s1 2 [1, 2), the upper bound on F is a smooth function
q(s1). For s1 2 (0, 1), however, the upper bound is a jagged
curve. At s1 = 1/J for any integer J $ 2, that is, at the
“jagged points” where the upper bound is not differentiable,
Q(s1) coincides with the reflection of q(s1) across the line
s1 = 1. We have

Figure 2 The upper bound on F (solid line) as a function of the frequency
M of the most frequent allele, for the general case of any number of
alleles. The upper bound is computed from Equations 15 and 16. The
dashed line shows Equation 21, which the upper bound touches when
M = 1/(2J) for integers J$ 2. The lower bound on F is 0 for all values ofM.
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Qðs1 ¼ 1=JÞ ¼ 1
2J2 1

; (20)

because Øs21
1 ø ¼ J when s1 = 1/J. Thus, for s1 = 1/J,

Q(s1) touches the curve

q*ðs1Þ ¼ s1

22s1
: (21)

The dashed line in Figure 2 plots q*(s1) on (0, 1).
Because q*(s1) on (0, 1) is the reflection of q(s1) on

[1, 2) across the line s1 = 1, the area under q*(s1) on (0,
1) is the same as the area of q(s1) on [1, 2), or 2 ln 2 2 1.
Thus, on the interval (0, 1), the space between q*(s1) and
Q(s1) is

ð2 ln 22 1Þ2
Z 1

0
Qðs1Þds1 � 0:0555136: (22)

The contribution made by M to the upper bound on F

We denote by F1(s1) the contribution of the most frequent
allele to F(s1). By this quantity, we mean the term in F(s1)
contributed by the difference between populations in the
frequency of the most frequent allele. From Equation 4,
F(s1) can be written

Fðs1Þ ¼
XI
i¼1

d2i

42
PI

j¼1s
2
j

: (23)

If the ith term in the summation is denoted Fi(s1), our in-
terest is in the value of F1(s1) obtained at the set of allele
frequencies that maximizes F(s1).

For s1 in the interval (0, 1), defining Øs21
1 ø ¼ J, the max-

imum has 2J 2 2 alleles with frequency s1 and two alleles
with frequency 1 2 (J 2 1)s1: J 2 1 alleles with frequency
s1 and one allele with frequency 1 2 (J 2 1)s1 in each
subpopulation. The value of d21 at the maximum is s2

1.
Denoting the contribution F1(s1) to F(s1) at the maximum
by Q1(s1), we have

Q1ðs1Þ ¼ s2
1

2þ 2s1
�
Øs21

1 ø21
��
22 Øs21

1 øs1
�: (24)

In the Appendix, we evaluate
R 1
0 Q1ðs1Þds1. The expression

is unwieldy, but it provides a numerical approximationR 1
0 Q1ðs1Þds1 � 0:1284522.
For s1 2 [1, 2), at the maximum of F(s1), d21 ¼ ð22s1Þ2,

and we have

q1ðs1Þ ¼ ð22s1Þ2
42s2

12 ð22s1Þ2

¼ 22s1

2s1
:

(25)

The area under q1(s1) is

Z 2

1
q1ðs1Þds1 ¼ ln  22

1
2
� 0:1931472:

Summing the areas under Q1(s1) and q1(s1), the total
area B under F1 as s1 ranges from 0 to 2 is

B ¼
Z 1

0
Q1ðs1Þds1 þ

Z 2

1
q1ðs1Þds1 � 0:3215994:

If we instead consider M = s1/2, we find that F1 is confined
to �0.1607997 of the space of possible pairs of values (M,
F). The fraction of the area A under the upper bound on F
contributed by the most frequent allele over the entire in-
terval s1 2 (0, 2) is B/A � 0.4484877. This quantity can be
interpreted as the mean contribution of the most frequent
allele to the maximum value of F, and it indicates a substan-
tial role for the most frequent allele. Indeed, for s1 2 [1, 2),
q1(s1)/q(s1) = 1/2. The contribution made by the most
frequent allele to the upper bound on F appears in Figure 3.

Bounds on M

Our derivation of the bounds on F as functions of the frequency
M of the most frequent allele enables us to provide bounds
on M as functions of F by taking the inverse of the functions
q(s1) and Q(s1). For 0 , F , 1, we show that the bounds on
the frequency of the most frequent allele in terms of F are

s1 2
"

1

Øð1þ FÞ=2Fø

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Øð1þ FÞ=2Fø2 1ÞF2 1
ðØð1þ FÞ=2Fø2 1ÞðF þ 1Þ

s !
;

2
1þ F

#
: (26)

At the trivial case of F = 1, s1 must equal 1, and for F = 0,
s1 lies in the open interval (0, 2).

Figure 3 The contribution to F, at the upper bound, that is made by the
most frequent allele (green line). The contribution by the most frequent
allele is computed from Equations 24 and 25. For comparison, the upper
bound on F is shown as a black line.
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Bounds on s1 for two alleles

We first consider the two-allele case. By definition of s1,
regardless of the value of F, s1 can be no smaller than 1,
and when s1 = 1, Fðs1Þ ¼ d21. For any F 2 [0, 1], it is
possible to choose allele frequencies p11 and p21 so that
d1 ¼ jp11 2 p21j ¼

ffiffiffi
F

p
and s1 = p11 + p21 = 1. We simply

set p11 ¼ ð1þ ffiffiffi
F

p Þ=2 and p21 ¼ ð12 ffiffiffi
F

p Þ=2. Thus, the lower
bound of s1(F) = 1 can be achieved across the full domain
F 2 [0, 1].

For the upper bound on s1, recall that the upper bound
on F in terms of s1 (Equation 7) is a continuous monoton-
ically decreasing function on the interval s1 2 [1, 2). We can
therefore obtain the upper bound on s1 as the inverse of this
function. Thus, for F 2 [0, 1], the bounds on s1 are:

s1ðFÞ 2
�
1;

2
1þ F

�
: (27)

The corresponding bounds on M = s1/2 appear in Figure 4.

Lower bound on s1 for an unspecified number of alleles

For the general case, we obtain lower and upper bounds on
F, considering all possible choices for the number of distinct
alleles. It is useful to first recall that the function Q(s1) for
the upper bound on F for s1 2 (0, 1) is monotonically increas-
ing, while the function q(s1) for the upper bound on F for s1 2
[1, 2) is monotonically decreasing. We can therefore invert
Q(s1) and q(s1), so that the lower bound on s1 as a function
of F is obtained by solving Q(s1) = F for s1 and the upper
bound by solving q(s1) = F for s1. For the lower bound, we
perform the inversion piecewise. For integers J $ 2, if s1 2
[1/J, 1/(J 2 1)), then Q(s1) 2 [1/(2J 2 1), 1/(2J 2 3)).
Therefore, for J $ 2, if Q 2 [1/(2J 2 1), 1/(2J 2 3)), then

the lower bound on s1 lies in [1/J, 1/(J2 1)). For this interval
on Q, Ø(1 + Q)/(2Q)ø = J, and in this region, the lower bound
on s1, which we term r(F), also satisfies Ør(F)ø = J. We solve
Equation 10 for s1 for Q 2[1/(2J 2 1), 1/(2J 2 3)), where
both Øs21

1 ø and Ø(1 + Q)/(2Q)ø are equal to J:

rðFÞ ¼ 1
J

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J2 1ÞF2 1
ðJ2 1Þð1þ FÞ

s !
; (28)

A negative root is discarded because it yields values that are
incompatible with the definition that s1 $ si for all i . 1.
The upper and lower bounds appear in Figure 5.

Upper bound on s1 for an unspecified number of alleles

From Equation 13 and Figure 2, we see that for any F 2 [0,
1], the upper bound on s1 is $1. Because Equation 13 is
continuous and monotonically decreasing, we can take the
inverse of this function to compute the upper bound on s1 as
a function of F. The upper bound R(F) on s1 is

RðFÞ ¼ 2
1þ F

; (29)

the same upper bound as for the two-allele case (Equation
27).

F and Homozygosity of the Total Population

The relationship between F and the frequency of the most
frequent allele can be used together with the relationship
between homozygosity and the frequency of the most fre-
quent allele (Rosenberg and Jakobsson 2008; Reddy and
Rosenberg 2012), to find a relationship between F and ho-
mozygosity, again in the setting of two populations. The

Figure 4 The upper and lower bounds on the frequency M of the most
frequent allele as functions of F, for the two-allele case. The bounds are
computed from Equation 27.

Figure 5 The upper and lower bounds on the frequency M of the most
frequent allele as functions of F, for the general case of any number of
alleles. The bounds are computed from Equations 29 and 28.
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homozygosity that we consider, H in Rosenberg and Jakobsson
(2008), corresponds to the homozygosity of the total pooled
population HT. We first note that given any HT 2 (0, 1), the
lower bound on F is zero. For example, for any HT, F =
0 is obtained by using the equality condition in Theorem
1ii of Rosenberg and Jakobsson (2008) to specify a list of
allele frequencies with sum of squares HT and then assign-
ing that same list of frequencies to both of the component
subpopulations.

Upper bound on F given HT for an unspecified number
of alleles

Rosenberg and Jakobsson (2008) showed that the value of
HT constrains the frequency M of the most frequent allele to
a narrow range. We have already determined the upper
bound on F as a function of M. Thus, we can obtain an upper
bound on F as a function of HT by taking the maximum value
of the upper bound over the range of possible values of M
allowed under the results of Rosenberg and Jakobsson
(2008) for a given value of HT. This approach does not guar-
antee that the upper bound on F that we obtain in terms of
HT is strict; nevertheless, the approach happens to produce
a strict bound for HT 2 [1/2, 1). For HT 2 (0, 1/2), it is
possible to produce a strict bound by writing F in terms of HT.

To obtain the bound for HT 2 (0, 1/2), we substitute
s2
i 2 4p1ip2i for d2i in Equation 4 to write

F ¼ HT 2
PI

i¼1p1ip2i
12HT

: (30)

Because
PI

i¼1p1ip2i $ 0, we obtain the bound

F#
HT

12HT
: (31)

Given HT, equality is obtained in Equation 31 whenPI
i¼1p1ip2i ¼ 0. In other words, for HT 2 (0, 1/2), F is

maximized when each allele occurs in only one of the
two populations. To see that the upper bound is strict, note
that when

PI
i¼1p1ip2i ¼ 0, labeling the homozygosities of

the two populations by H1 and H2, HT = (H1 + H2)/4. As
HT , 1/2, 2HT , 1, and we can choose H1 = H2 = 2HT.
Using the equality condition in Theorem 1ii of Rosenberg
and Jakobsson (2008), we can specify a set L of exactly
Ø(2HT)21ø allele frequencies whose sum of squares is HT.
We then construct a set of 2Ø(2HT)21ø alleles. In popula-
tion 1, the first Ø(2HT)21ø alleles in the set have exactly the
allele frequencies in L and the next Ø(2HT)21ø alleles have
frequency 0. In population 2, the first Ø(2HT)21ø alleles
have frequency 0, and the next Ø(2HT)21ø alleles have
the frequencies in L.

For HT 2 [1/2, 1), HT/(1 2 HT) $ 1, so Equation 31
provides only the trivial bound of F # 1, and another ap-
proach is needed. For any HT 2 [1/2, 1), using Theorem 1ii
of Rosenberg and Jakobsson (2008),M $ 1/2. For M$ 1/2,
the upper bound on F as a function of s1 is monotonically
decreasing in s1, and consequently, the upper bound on F as

a function of HT is obtained by evaluating q(s1) at the small-
est value of s1 permitted by HT. Theorem 1ii of Rosenberg
and Jakobsson (2008) indicates that this smallest allowed
s1 satisfies

s1=2 ¼ M ¼ 1

ØH21
T ø

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ØH21

T øHT 2 1
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ØH21

T ø21
q

!
:

By replacing s1/2 in Equation 16 with this expression, we
have

F# ØH21
T ø

1þ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ØH21
T øHT 21

q
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ØH21

T ø2 1
q �2 1

¼ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HT 2 1

p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HT 2 1

p ;

(32)

where the last step follows from the fact that ØH21
T ø ¼ 2

when HT 2 [1/2, 1).
For HT 2 [1/2, 1), the set of allele frequencies that

achieves the minimum M as a function of HT and the set
that achieves the maximum F as a function of M coincide.
Given HT,M is minimized by setting �p1 ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2HT 2 1
p Þ=2,

�p2 ¼ ð12 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HT 2 1

p Þ=2, and �pi ¼ 0 for all i $ 2. If these
mean frequencies are distributed between the two popula-
tions such that ðp11; p12; p21; p22Þ ¼ ð1; 0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2HT 2 1
p

; 12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HT 2 1

p Þ or ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HT 2 1

p
; 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HT 21

p
; 1; 0Þ, then the up-

per bound on F is achieved.
Figure 6 shows our upper bound on F as a function of the

total homozygosity HT. If HT is low, and particularly if HT is
high, then F is restricted to small values. High values of F are
possible only when HT is near 1/2. In fact, using Equations
31 and 32, F can exceed 1/2 only if HT lies in (1/3, 5/9).

The space between the upper and lower bounds on
F given HT

In the same manner as in our investigation of the bounds on
F as a function of M, we evaluate the area of the region
between the upper and lower bounds on F to find the mean
maximum F across the range of possible values of HT.

Because the lower bound on F is zero over the entire
interval HT 2 (0, 1), it suffices to evaluate the area A under
the upper bound on F. This area is

A ¼
Z 1=2

0

HT

12HT
dHT þ

Z 1

1=2

12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HT 2 1

p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HT 2 1

p dHT: (33)

The first term has indefinite integral 2HT 2 ln(1 2 HT) and
evaluates to ln 2 2 1/2. The second term has indefinite
integral 2HT þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H2 1

p
2 2 ln ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2H2 1
p Þ and evalu-

ates to 3/2 2 2 ln 2, so that A = 1 2 ln 2 � 0.3068528.
Note that F is substantially more constrained when HT 2

[1/2, 1) than when HT 2 [0, 1/2). The difference between the
areas under the upper bound for HT 2 [0, 1/2) and for HT 2
[1/2, 1) is 3 ln 2 2 2 � 0.0794415, a sizeable fraction of the
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sum of the two areas. Twice the difference in areas, or 6 ln 22
4 � 0.1588831, is the expectation of the difference between
the maximum value of F for a value of HT chosen uniformly at
random from (0, 1/2) and the maximum value of F for a value
of HT chosen uniformly at random from [1/2, 1).

Application to Data

We illustrate the bounds on F, M, and HT for a series of
examples using human polymorphism data from Rosenberg
et al. (2005) and Li et al. (2008). For each example, for each
locus, we assume that the allele frequencies in the data sets
are parametric allele frequencies. The parametric allele fre-
quencies are obtained in each of a pair of populations, and
they are then averaged to obtain parametric allele frequen-
cies for the total population. F, M, and HT are then com-
puted. The data set of Rosenberg et al. (2005) considers
1048 individuals genotyped for 783 microsatellites, and
the data set of Li et al. (2008) considers 938 unrelated
individuals genotyped for single-nucleotide polymorphisms
(SNPs); for all analyses, we restrict our attention to the 935
individuals found in both data sets. For the Li et al. (2008)
data, we examine only 640,034 SNPs studied by Pemberton
et al. (2012).

Example 1: Africans and Native Americans

Our first example considers microsatellites in 101 Africans and
63 Native Americans, and it is chosen to illustrate a relatively
wide range of values of F,M, and HT. Figure 7 shows F andM,
demonstrating that for the comparison of Africans and Native
Americans, F , 0.1 for most of the 783 loci. The mean value
of F is 0.05 with standard deviation 0.06, and the mean value
of M is 0.37 with standard deviation 0.11.

Similarly, Figure 8 plots F and HT for the 783 loci. The
mean HT is 0.25 with standard deviation 0.08. In both Fig-
ures 7 and 8, relatively few loci approach the upper bound
on F.

Example 2: High-diversity and low-diversity populations

The bounds on F as a function of M and HT indicate that
genetic diversity in a pair of populations has a strong effect
on the value of F between them. To illustrate this point, we
compare the values of F obtained from two populations each
with high within-population diversity to those obtained from
two populations with lower within-population diversity.

The Yoruba and Mbuti Pygmy populations are two
African populations with high genetic diversity; the Colom-
bian and Pima populations are Native American populations
with lower diversity. Figure 9A shows F and M computed
from the Yoruba and Mbuti Pygmy populations, and Figure
9B shows F and HT. The mean value of F is 0.04 with stan-
dard deviation 0.03, the mean value of M is 0.35 with stan-
dard deviation 0.11, and the mean value of HT is 0.24 with
standard deviation 0.08.

By contrast, in corresponding plots for the less diverse
Colombian and Pima populations, higher values of F, M, and
HT are apparent (Figure 9, C and D). In particular, because M
and HT tend to be nearer to 1/2, larger values of F are pos-
sible. The mean values of M and HT are much closer to 1/2
than in the African groups; the mean M is 0.50 with standard
deviation 0.15, and the mean HT is 0.38 with standard de-
viation 0.15. As is suggested by the fact that F can attain its
largest values whenM and HT lie near 1/2, the mean value of

Figure 6 The upper bound on F as a function of HT. The upper bound is
computed from Equations 31 and 32. The lower bound on F is 0 for all
values of HT.

Figure 7 F and the frequency of the most frequent allele (M) for 101
Africans and 63 Native Americans. At each of 783 microsatellite loci,
allele frequencies are computed separately for the two population
groups, and the total allele frequency is the average of the two group
frequencies. Each bin has size 0.01 · 0.01, and the upper bound on F as
a function of M is shown for comparison.
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F for the Native American groups is nearly twice as high as in
the African groups (mean 0.07, standard deviation 0.07).

Example 3: Single-nucleotide polymorphisms

Our third example considers SNPs in the same set of Africans
and Native Americans for which microsatellites were examined

in Figures 7 and 8. Figure 10 shows the joint distribution of
F and M as well as the mean and median of F for intervals
of M ranging from 1/2 to 1 with width 0.01. Mean values of
F decrease with M for M 2 (1/2, 1), and this decrease is
correlated with the decreasing value of the bound on F as
a function of M (r = 0.94). Compared with the mean, the
median value of F is less correlated with the value of the
bound, although it also declines with increasingM (r= 0.77).

For biallelic markers, for M . 1/2, at least one of the two
alleles must appear in both populations, and the upper
bound on F occurs when one of the populations has only
one allele. In Figure 10, for high values of M, more SNPs
approach the upper bound on F than for low values of M.
This result indicates that SNPs with high values of M are
more likely to have an allele found in one but not the other
of the two populations.

Discussion

The range of F depends on the level of diversity in the
markers considered. In this article, we have further shown
that not only does diversity constrain the range of F, the
frequency of the most frequent allele has a strong influence
on the values that F can take. When the frequency of the
most frequent allele is small or large, F is restricted to small
values far from one (Figure 2). In fact, considering all pos-
sible values of M, F is restricted on average to only �35.85%
of the space of possibilities. This extreme reduction in range
for F can be viewed as a consequence of our result that about
half of the contribution to the maximal F arises from the
most frequent allele (exactly half for s1 2 [1,2)). Using

Figure 8 F and homozygosity (HT) for 101 Africans and 63 Native Amer-
icans. At each of 783 microsatellite loci, allele frequencies are computed
separately for the two population groups, and the total allele frequency is
the average of the two group frequencies. Each bin has size 0.01 · 0.01,
and the upper bound on F as a function of HT is shown for comparison.

Figure 9 Relationships among F, M, and HT, for
pairs of African and Native American populations.
(A) F and M for 21 Yoruba and 15 Mbuti Pygmy
individuals. (B) F and HT for 21 Yoruba and 15
Mbuti Pygmy individuals. (C) F and M for 7 Colom-
bian and 14 Pima individuals. (D) F and HT for 7
Colombian and 14 Pima individuals. In each plot, at
each of 783 microsatellite loci, allele frequencies
are computed separately for the two populations,
and the total allele frequency is the average of the
two population frequencies. Each bin has size 0.01 ·
0.01, and the upper bound on F is shown for
comparison.
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results from Rosenberg and Jakobsson (2008) on the rela-
tionship between homozygosity and the frequency of the
most frequent allele, we have described a link between F
and homozygosity of the total population (HT) via separate
relationships of F and homozygosity to the frequency of the
most frequent allele. F is restricted by HT even further than
by M, to only �30.69% of the space of possibilities.

Our work extends knowledge of the connection between F
and genetic diversity, providing a framework for interpreting
a variety of features of values of F measured in population-
genetic data. We have presented empirical computations that
illuminate recently observed phenomena in human popula-
tion genetics. In particular, even without a formal under-
standing of the ways in which evolutionary processes and
the population-genetic models that encode them give rise
to values of M, HT, and F, the mathematical constraints link-
ing these quantities can aid in interpreting the patterns found
in the data.

Low FST values in human populations from Africa

Estimates of FST in human populations have been low in
Africa compared with other geographic regions, such as
among Native Americans (Rosenberg et al. 2002; Tishkoff
et al. 2009). This pattern appears to belie the extensive genetic
differentiation known to exist among African populations. For
example, using microsatellite loci, Tishkoff et al. (2009) iden-
tified a number of genetically distinctive subgroups of African

populations despite confirming that FST in Africa has an un-
expectedly small value. The apparent discrepancy between
the extensive genetic differentiation among populations in
Africa and counterintuitively low values of FST can be explained
using our results. Because Africa has high within-population
genetic diversity—including microsatellite homozygosities
well below 1/2 in many populations (Tishkoff et al. 2009,
Figure S2B)—the maximum FST for comparisons of African
populations at microsatellite loci is relatively constrained
compared with the maximum FST for comparisons of groups
that have less within-population diversity and mean homo-
zygosities nearer 1/2. Figure 9 shows that FST values com-
paring African populations are more constrained by M and
HT than are those comparing Native American populations.
Thus, the observation for microsatellites of low FST in Afri-
can populations can be attributed to high within-population
genetic diversities.

That FST is more tightly constrained for high-diversity
populations than for populations where HT � 1/2 has an
additional consequence. When considering two pairs of pop-
ulations with the same FST value and HT , 1/2, it is likely
that a pair of populations with higher within-group diversity
is more differentiated than is a pair of populations with rel-
atively low within-group diversity. In other words, the higher
the level of genetic diversity within a population, the greater
the extent to which raw values of FST underpredict the in-
tuitive level of differentiation among subpopulations; the re-
sult of Tishkoff et al. (2009) exactly follows this pattern.

Lower FST values for microsatellites than for SNPs

Computations of FST in human populations have generally
found that FST estimates based on multiallelic loci such as
microsatellites are lower than those obtained from biallelic
loci such as SNPs (e.g., Rosenberg et al. 2002; Li et al. 2008).
This observation is apparent in the difference between FST-
like computations from nearly the same sets of individuals
for microsatellites and for SNPs. When separating human
populations into seven geographic regions and computing
the within-population component of genetic variation, a quan-
tity analogous to 1 2 FST, Rosenberg et al. (2002) obtained
an estimate of 0.941 with microsatellites, whereas Li et al.
(2008) obtained 0.889 with SNPs. Our results provide a sim-
ple explanation for this difference. The SNPs of Li et al.
(2008) each have only two alleles, so for each locus, the
frequency of the most frequent allele is at least 1/2; further,
the minor alleles tend to be common, such that many of the
loci have M near 1/2. By contrast, the microsatellites in the
study of Rosenberg et al. (2002) have �12 alleles on average,
so M is typically smaller than 1/2 and often much smaller
(Rosenberg and Jakobsson 2008). Thus, for microsatellites,
because of lower frequencies of the most frequent allele and
higher levels of genetic diversity, the maximum value of F is
substantially more constrained than the corresponding max-
imum of F for SNPs (Figure 2). We can explain the difference
in the magnitudes of the Rosenberg et al. (2002) and Li et al.
(2008) FST values via this phenomenon.

Figure 10 Smoothed scatterplot of F as a function of M for 101 Africans
and 63 Native Americans, using SNP data. The shading reflects a two-
dimensional kernel density estimate using a Gaussian kernel with band-
width set to 0.007; the density was set to 0 outside the bounds on F as
a function of M. For each of 640,034 SNP loci, allele frequencies are
computed separately for the two population groups, and the total allele
frequency is the average of the two group frequencies. The mean and
median of F are computed for 50 bins of width 0.01 ranging from M =
1/2 to M = 1. The upper bound on F as a function of HT is shown for
comparison.
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Recently, attention has increasingly focused on biallelic
sites for which the rarer allele has low frequency (Keinan
and Clark 2012; Nelson et al. 2012; Tennessen et al. 2012).
In our terms, these are sites for which the frequency of the
most frequent allele, M, is high. Because F is tightly con-
strained for high values of M, we might expect that when
FST is calculated using sites with rare minor alleles, small
FST values will be produced. Indeed, Figure 10 shows that
when F is used to compare Africans with Native Americans
at SNP loci, mean values of F decrease as M increases from
1/2 to 1.

Conclusions

Measures of FST have often been used for making inferences
about such phenomena as population structure, migration
patterns, and range expansions. However, we have found
that without a proper understanding of the dependence of
FST on diversity and allele frequencies, FST can potentially
produce puzzling or misleading results. We have described
mathematical relationships between FST, the frequency of
the most frequent allele, and homozygosity that are useful
for interpreting the properties of differentiation measures
when features of allele frequencies and diversity statistics
vary across loci or populations—as they inevitably do in
typical scenarios.

Beginning with Charlesworth (1998), Nagylaki (1998),
and Hedrick (1999), recent studies have noted that FST is
constrained by diversity, and the issue was described as early
as in the work of Sewall Wright (Wright 1978, p. 82). Jost
(2008) generated new interest in the dependence of FST on
diversity, illustrating that the dependence can produce sub-
stantial discord between intuitions about and measurements
of differentiation levels. Jost (2008) also used amultiplicative
definition of diversity to propose a pair of new differentiation
indices that have the feature of reaching their maximum
value if and only if each allele is private to a single subpop-
ulation. In our view, the key to choosing and applying mea-
sures of differentiation lies not in “fixation on an index” (Long
2009), be it FST, the measures of Jost (2008), or other indices
that have recently been proposed (Meirmans and Hedrick
2011), but in developing an understanding of the ways in
which possible statistics relate both to intuitive aspects of
differentiation and to mathematical features of allele fre-
quencies and genetic diversity. In this context, FST remains
of particular interest on the basis of its long history of use in
population genetics and its connection to features of biolog-
ical models (Whitlock 2011). Our examples provide only
a few among many ways in which the mathematical prop-
erties we have obtained for FST can be used to interpret its
behavior in the analysis of empirical data.
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Appendix
The appendix provides the derivations of two integrals described in the main text.

Integral
R 1
0 Qðs1Þds1 (Equation 18)

To obtain
R 1
0 Qðs1Þds1, we first note that for any integer k $ 1, Øs21

1 ø ¼ kþ 1 if 1/(k + 1) # s1 , 1/k. We have

Z 1

0
Qðs1Þds1 ¼

Z 1

0

1þ s1
�
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1 ø2 1
��
Øs21

1 øs1 2 2
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��
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1 øs1 2 2
� ds1

¼ PN
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Z 1=k

1=ðkþ1Þ

"
2 12

2
2 1þ kðkþ 1Þs2

1 2 2ks1

#
ds1:

Defining D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2k2

p
, we then have

Z 1

0
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Integral
R 1
0 Q1ðs1Þds1 (with Q1 as in Equation 24)

To obtain
R 1
0 Q1ðs1Þds1, we first note that for any integer k $ 1, Øs21

1 ø ¼ kþ 1 when s1 2 ½1=ðkþ 1Þ; 1=kÞ. We have

Z 1

0
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The second term can be decomposed, defining
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1þ ð3kþ 1Þ=
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We have
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