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Abstract—Coalescent histories provide lists of species tree branches on which gene tree coalescences can take place, and their

enumerative properties assist in understanding the computational complexity of calculations central in the study of gene trees and

species trees. Here, we solve an enumerative problem left open by Rosenberg (IEEE/ACM Transactions on Computational Biology and

Bioinformatics 10: 1253-1262, 2013) concerning the number of coalescent histories for gene trees and species trees with a matching

labeled topology that belongs to a generic caterpillar-like family. By bringing a generating function approach to the study of coalescent

histories, we prove that for any caterpillar-like family with seed tree t, the sequence ðhnÞn�0 describing the number of matching

coalescent histories of the nth tree of the family grows asymptotically as a constant multiple of the Catalan numbers. Thus, hn � btcn,

where the asymptotic constant bt > 0 depends on the shape of the seed tree t. The result extends a claim demonstrated only for seed

trees with at most eight taxa to arbitrary seed trees, expanding the set of cases for which detailed enumerative properties of coalescent

histories can be determined. We introduce a procedure that computes from t the constant bt as well as the algebraic expression for the

generating function of the sequence ðhnÞn�0.

Index Terms—Catalan numbers, caterpillar-like trees, coalescent, enumeration, generating functions, phylogenetics
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1 INTRODUCTION

COALESCENT histories, mathematical structures repre-
senting combinatorially distinct ways in which a given

gene tree can coalesce along the branches of a given species
tree, are important in a variety of phylogenetic problems [6],
[14], [15]. They arise, for example, in proofs concerning the-
oretical properties of species tree inference algorithms [1],
[18], in empirical analyses of gene tree probability distribu-
tions [16], and in studies of gene trees under hybridization
[21]. Many of these applications trace to the appearance of
coalescent histories in a sum performed in a fundamental
calculation for inference of species trees from information
on multiple genetic loci, the evaluation of gene tree proba-
bilities conditional on species trees [5].

Owing to uses of coalescent histories in sets over which
sums are computed, as well as in state spaces of certain phy-
logenetic Markov chains [7], [10], [11], solutions to enumera-
tive problems involving coalescent histories contribute to an
understanding of the computational complexity of phyloge-
netic calculations. A recursion for the number of coalescent
histories for a given gene tree and species tree has been
established [13], and several studies have reported exact
numerical results and closed-form expressions for the num-
ber of coalescent histories for small trees and for specific
types of trees of arbitrarily large size [4], [5], [6], [13], [14],
[15], [19]. The latter computations have proceeded both by

solving or deploying the recursion in specific cases [13],
[14], [15], [19], as well as by identifying correspondences
between coalescent histories and other combinatorial struc-
tures for which enumerative results have already been
established [4], [5], [6].

One class of gene trees and species trees of particular
interest for enumeration of coalescent histories is the cater-
pillar-like families, trees that have a caterpillar shape, except
that the caterpillar subtree with r taxa is replaced by a
subtree of size r that is not necessarily a caterpillar subtree
(Fig. 1). For the simplest caterpillar-like family, the cater-
pillar trees themselves, if the gene tree and species tree
have the same caterpillar labeled topology with n taxa,
then, as reported in [5], the number of coalescent histories
is a Catalan number,

cn�1 ¼ 1

n

2n� 2

n� 1

� �
: (1)

For Tr-caterpillar-like families, in which the r-taxon sub-
tree of an n-taxon caterpillar species tree is replaced by an
r-taxon subtree Tr (Fig. 1), by employing the recursion,
Rosenberg [14] obtained the exact number of coalescent his-
tories for all n, for each Tr with r � 8, in the case that the gene
tree and species tree have the same labeled topology. Rosen-
berg [14] argued that in each of these cases, as n ! 1, the
number of coalescent histories is asymptotic to a constant
multiple of the Catalan numbers. A proof of this result has
been presented in full for each case with r � 5 [4], [13], [14],
and by computer algebra for cases with r ¼ 6, 7, and 8 [14].

Each case considered by [14] involved cumbersome
computations specific to the choice of Tr, limiting the gen-
erality of the approach. While no reason exists to suspect
that the method of [14] would not extend to larger r, it is
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desirable to find another method that is practical for a gen-
eral Tr. Here, using a substantially different strategy that
brings to studies of coalescent histories the methods of ana-
lytic combinatorics, we produce an enumeration result that
covers caterpillar-like families in general. We show that the
result of [14] applies to all caterpillar-like families, not only
those for which Tr has r � 8. That is, we demonstrate that
for any Tr, as n ! 1, the number of coalescent histories in
the Tr-caterpillar-like family is asymptotic to a constant
multiple of the Catalan numbers—thus extending a result
known only for r � 8 to arbitrarily large r. We describe a
method and symbolic tool for computing the constant.
Finally, we discuss the impact of the results in mathemati-
cal phylogenetics.

2 PRELIMINARIES

2.1 Species Trees and Coalescent Histories

We consider binary rooted leaf-labeled species trees, taking
a single arbitrary labeling (without loss of generality) to rep-
resent a given unlabeled species tree topology. We consider
an arbitrarily labeled species tree and its unlabeled tree
interchangeably, treating the labeling as implicit.

We examine coalescent histories for the case in which
gene trees and species trees have the same labeled topology
t, terming a coalescent history in this case a matching coales-
cent history. To be a matching coalescent history, a mapping
h from the internal nodes of t (viewed as the gene tree) to
the branches of t (viewed as the species tree) must satisfy
two conditions (Fig. 2): (a) for each leaf x in t, if x descends
from node k in t, then x descends from branch hðkÞ in t; (b)
for each pair of internal nodes k1 and k2 in t, if k2 descends
from k1 in t, then branch hðk2Þ descends from or coincides
with branch hðk1Þ in t. We henceforth consider only match-
ing coalescent histories, treating “matching” as implicit; we
also refer simply to histories for short.

2.2 Caterpillar-Like Families of Species Trees

For a binary species tree t with at least two taxa, we denote

by ðtðnÞÞn�0 the caterpillar-like family generated by seed tree

t. This family is recursively defined by taking tð0Þ ¼ t and

letting tðnþ1Þ be the tree obtained by appending tðnÞ and a
single leaf to a shared root (Fig. 1).

Our interest is in the number of matching coalescent his-
tories of tðnÞ for n � 0, a quantity we denote by hnðtÞ or sim-
ply hn. We note that whereas [14] indexed trees by their
numbers of taxa, here n represents the number of taxa
appended above the root of the seed tree, so that if seed tree

t has jtj taxa, then jtj þ n gives the number of taxa in tðnÞ.

2.3 Principles of Analytic Combinatorics

We rely on techniques of analytic combinatorics [8] to obtain
our enumerative results, and recall several key points. In
general, an integer sequence ðanÞn�0 can be associated with a
formal power series AðzÞ ¼ P1

n¼0 anz
n, also termed the gen-

erating function of the integers an. Considering z as a complex
variable, typically in a neighborhood of 0, features of the
functionAðzÞ are related to the growth of the coefficients an.

More precisely, generating functions, considered as com-
plex functions, enable analyses of the asymptotic growth of
the associated integer sequences through the analysis of
their singularities in the complex plane. In particular, under
suitable conditions, there exists a general correspondence
between the singular expansion of a generating function
AðzÞ near its dominant singularities—those nearest the
origin—and the asymptotic behavior of the associated coef-
ficients an (Chapter VI of [8]). We make use of theorems that
describe this correspondence.

2.4 Catalan Numbers

The Catalan sequence appears often in combinatorics [8],
[9], [17] and features prominently in our analysis. Rewriting
Eq. (1) with index n rather than n� 1,

cn ¼ 1

nþ 1

2n

n

� �
: (2)

The associated generating function is well known [17]:

CðzÞ ¼
X1
n¼0

cnz
n ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4z
p

2z
: (3)

By definition, if ½zn�fðzÞ denotes the nth term in the power
series expansion of fðzÞ at z ¼ 0, we have

cn ¼ ½zn�CðzÞ ¼ 1

2
½znþ1�ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p
Þ

¼ 1

2
½znþ1�ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p
Þ:

(4)

Here, 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p
is replaced by � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4z
p

, as the constant 1
does not contribute to the power series expansion for terms
of order nþ 1, with n � 0. Asymptotically, applying

Stirling’s formula n! � ffiffiffiffiffiffiffiffiffi
2pn

p ðn=eÞn to Eq. (2), the Catalan
sequence satisfies

cn � 4n

n3=2
ffiffiffi
p

p : (5)

Fig. 1. A caterpillar-like family of species trees ðtðnÞÞn�0. For a seed

tree t, by adding n � 0 branches each with 1 leaf, we obtain the nth

tree of the family, tðnÞ. If t has two taxa, then ðtðnÞÞn�0 is simply the cat-

erpillar family.

Fig. 2. Matching coalescent histories. (A) A matching coalescent history.
(B) A mapping from the internal nodes of a tree to its branches that does
not satisfy condition (a). Leaf B is descended from node k but does not
descend from branch hðkÞ. (C) A mapping from the internal nodes of a
tree to its internal branches that does not satisfy condition (b). Node k2 is
descended from node k1, but branch hðk2Þ is strictly ancestral to branch
hðk1Þ.
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3 THE NUMBER OF MATCHING COALESCENT

HISTORIES FOR CATERPILLAR-LIKE FAMILIES

We aim to find a procedure that evaluates the number of
coalescent histories hnðtÞ for matching gene trees and spe-
cies trees in the caterpillar-like family that begins with seed
tree t, and moreover, to show that

hnðtÞ � btcn; (6)

where the multiplier bt > 0 for the Catalan sequence is a
constant depending on t. In other words, we wish to dem-
onstrate that as n ! 1, hn=cn converges to a constant
bt > 0 that depends on the seed tree t.

First, in Section 3.1, we determine a lower bound for the
number of matching coalescent histories of the nth tree tðnÞ

of the caterpillar-like family with seed tree t. Next, in
Section 3.2, we introduce a concept of m-rooted histories of a

species tree tðnÞ. The section provides an iterative construc-

tion of the rooted histories of tðnþ1Þ from those of tðnÞ,
describing the construction by means of a convenient label-
ing scheme. We follow a commonly used combinatorial
enumeration strategy [2], [3] that determines a recursive
succession rule for successive collections of objects in a
sequence and then uses this rule to compute a generating
function. In Section 3.3, we use the iterative construction to
produce a bivariate generating function whose coefficients

hn;m are the numbers of m-rooted histories for trees tðnÞ. We
next obtain the generating function for the integer sequence
ðhnÞn�0 describing the number of matching coalescent histo-

ries for the tðnÞ. Finally, using the lower bound from Section
3.1, in Section 3.4, we apply methods of analytic combina-
torics to study the asymptotic behavior of hn.

3.1 Lower Bound for hn

For our asymptotic analysis, we will need an initial lower
bound for hn. To produce this bound, we first define V as
the tree with two taxa. Recalling that we index trees so that
the number of taxa in a tree exceeds by n the number of taxa
in the seed tree, we have [4], [13], [14]

hnðVÞ ¼ cnþ1:

We can then use a constructive procedure, illustrated in
detail in Fig. 3, to show that for any seed tree twith jtj � 2,

hnðtÞ � hnðVÞ ¼ cnþ1: (7)

For a seed tree t, we can superimpose V on t so that the root
rV of Vmatches the root rt of t (Fig. 3B). The two leaves of V
are identified with two of the leaves of t, one on each side of
the root of t. Generating caterpillar-like families by adding
n single branches separately to V and to t, the superposition

of V on t extends, so that VðnÞ is superimposed on tðnÞ

(Fig. 3C). The n caterpillar branches of tðnÞ and VðnÞ then
correspond.

Each matching coalescent history h of tðnÞ determines a

corresponding matching coalescent history h0 of VðnÞ by
considering the restriction of h to the set of internal nodes

of tðnÞ that correspond to internal nodes of VðnÞ (Fig. 3D).
Thus, for any seed tree t, the number of matching coales-

cent histories of tðnÞ is greater than or equal to that of VðnÞ.

In symbols, we have Eq. (7). We will use this result in
Section 3.4.

3.2 Iterative Generation of Rooted Histories

This section describes the iterative procedure that for a seed
tree t eventually enables us to determine a formula for hn.
First, in Section 3.2.1, we discuss m-rooted histories, which
extend the concept of matching coalescent histories, intro-
ducing an additional parameter m. Next, in Section 3.2.2,
we examine the relationship between rooted histories and
the extended coalescent histories of [13], importing results on
extended coalescent histories into the more convenient
framework of rooted histories. We expand our goal of enu-

merating matching coalescent histories for tðnÞ, considering
a more general problem of enumerating for m � 1 the

m-rooted histories of tðnÞ.
In Section 3.2.3, we define an operator V for constructing

the rooted histories of tðnþ1Þ from the rooted histories of tðnÞ.
Next, in Section 3.2.4, we introduce a labeling scheme that
in Section 3.2.5 enables us to switch from counting rooted
histories to counting multisets of labels. At the end of Sec-
tion 3.2, we will have converted our enumeration problem
into an enumeration that is more convenient for construct-
ing a generating function.

3.2.1 m-Rooted Histories

Consider a tree t with jtj � 2, and suppose that the branch
above the root of t (the root-branch) is divided into infi-
nitely many components. A matching coalescent history
mapping the internal nodes of t onto the branches of t is
said to be m-rooted for m � 1 if the root of t is mapped
exactly onto the mth component of the root (Fig. 4). It is
said to be rooted if it is m-rooted for some m. Branches are
numbered so that branch m ¼ 1 is immediately above
the root node, and m is greater for components that are
farther from the root.

For a rooted history h of a tree t, m ¼ mðhÞ denotes the
component of the root-branch of t that receives the image of
the root of t. Hn;mðtÞ denotes the set of m-rooted histories of

tðnÞ, andHnðtÞ ¼
S 1

m¼1Hn;mðtÞ the set of its rooted histories.

Fig. 3. Superposition of the caterpillar tree family on a caterpillar-like tree
family with arbitrary seed tree of size jtj � 2. (A) A seed tree t and the
seed tree V for the caterpillar family. (B) Superposition of V on t, so that

the roots rV and rt overlap. (C) Superposition of Vð2Þ (shaded internal

nodes) on tð2Þ (shaded and unshaded nodes). The n ¼ 2 caterpillar

branches in Vð2Þ and tð2Þ overlap, and rV still matches rt. (D) A matching

coalescent history of tð2Þ (dashed and dotted arrows) determines amatch-

ing coalescent history ofVð2Þ (dashed arrows) by ignoring arrows from the
unshaded nodes.
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The number of m-rooted histories of tðnÞ is hn;m ¼ jHn;mj,
and the number of 1-rooted histories hn ¼ hn;1 is also the
number of matching coalescent histories. Enumerating the

matching coalescent histories of tðnÞ is equivalent to enumer-
ating its 1-rooted histories.

3.2.2 Rooted Histories and Extended Histories

Rooted histories are closely related to extended coalescent
histories, as defined by [13]. We use this relationship to
study properties of rooted histories. Rosenberg [13] defined
the set of k-extended coalescent histories of a tree t with
jtj � 1 for integers k � 1; we also consider k ¼ 0 by setting
the number of 0-extended histories to 0.

A k-extended history is defined as a coalescent history for
a species tree whose root-branch is divided into exactly
k � 0 parts. In other words, the root-branch has exactly k � 0
possible components onto which a k-extended history
can map the gene tree root. Here we consider matching
k-extended histories, so that the internal nodes of a tree t are
mapped to the branches of t and its k components above the
root. For convenience, we refer to extended histories by the
index k, reserving the indexm for rooted histories.

By the definitions of k-extended and m-rooted histories,
for each k � 0, the set of k-extended histories of a tree is
exactly the set of all m-rooted histories with 1 � m � k.
Therefore, for a tree t with at least 2 leaves, if we label by
et;k its number of k-extended histories, then for each m � 1
the number ofm-rooted histories of t is

h0;m ¼ et;m � et;m�1: (8)

Note that for m ¼ 1, we explicitly use in Eq. (8) the fact that
et;0 is defined and equal to 0. In addition to setting et;0 ¼ 0
for any tree t, as in [13] we set et;k ¼ 1 for all k � 1 in the
case that t has exactly 1 leaf.

Suppose jtj � 1 and k � 0. Denote by tL and tR the left
and right subtrees of the root of t. We can compute et;k
recursively as in Theorem 3.1 of [13]:

et;k ¼
0 if jtj � 1 and k ¼ 0
1 if jtj ¼ 1 and k � 1Pk

i¼1 etL;iþ1etR;iþ1 if jtj � 2 and k � 1:

8<
: (9)

As was already observed in the remarks following Corol-
lary 3.2 of [13], by Eq. (9), for any tree twith jtj � 1, for posi-
tive integers k � 1, the function fðkÞ ¼ et;k is a polynomial
in k. With our extension to permit k ¼ 0, we can extend this
fact to k � 0 for jtj � 2: for any tree t with jtj � 2, and for

k � 0, we claim that the function fðkÞ ¼ et;k is a polynomial
in k. Note that in allowing k ¼ 0, we claim et;k is a polyno-
mial in k only for jtj � 2; for jtj ¼ 1, et;k is not a polynomial
in k because et;0 ¼ 0 and et;k ¼ 1 for k � 1.

To prove the claim, fix twith jtj � 2 and consider the var-
iable k over domain ½1;1Þ. We demonstrate that fðkÞ is a
polynomial in k for domain ½0;1Þ by showing that the
closed form for fðkÞ has a factor of k, so that our choice
et;0 ¼ 0 in Eq. (9) is compatible with the polynomial expres-
sion valid for k � 1.

Observe that for i � 1, etL;i and etR;i are polynomials in i,
say PtLðiÞ and PtRðiÞ. Replacing terms etL;iþ1 and etR;iþ1 in

the recursion in Eq. (9) by polynomials PtLðiþ 1Þ and

PtRðiþ 1Þ, we obtain

Xk
i¼1

etL;iþ1etR;iþ1 ¼
Xk
i¼1

PtLðiþ 1ÞPtRðiþ 1Þ ¼
Xk
i¼1

P 0ðiÞ; (10)

where P 0ðiÞ denotes a polynomial in i that results from the
product of PtLðiþ 1Þ and PtRðiþ 1Þ. By Faulhaber’s for-

mula for sums of powers of integers, symbolic sums of the

form
Pk

i¼1 i
p for a fixed integer p � 0 are polynomials con-

taining a factor of k in their closed forms (Section 6.5 of

[9])—for example,
Pk

i¼1 i
3 ¼ k2ðkþ 1Þ2=4. Thus, because

the polynomial P 0ðiÞ is a linear combination of terms of the

form ip, the closed-form expression for the sum
Pk

i¼1 P
0ðiÞ

appearing in Eq. (10) also has a factor of k. It therefore has
a value of 0 at k ¼ 0.

Functions et;k for trees twith 1 � jtj � 9 and k � 1 appear
in Tables 1, 2, 3, and 4 of [13]. For jtj � 2, as we have shown,
these example polynomials are divisible by the variable rep-
resenting the number of components of the root-branch. By
Eq. (8), we immediately obtain the following result.

Proposition 1. For any tree t with jtj � 2 and for m � 1, the
number h0;m of m-rooted histories of t is a polynomial in m

that can be computed by the difference in Eq. (8) using et;k as
in Eq. (9).

As an example of Proposition 1, consider the tree
t ¼ ððA;BÞ; ðC;DÞÞ, identifying this arbitrary labeling with
the unlabeled tree ððÞðÞÞ. By applying the recursive proce-
dure in Eq. (9), we find that for k � 0, the number of

k-extended coalescent histories for t is et;k ¼ 1
6 kð2k2þ 9k þ

13Þ [13]. The difference Eq. (8) yields that for m � 1, the
number of m-rooted histories of t is h0;m ¼ et;m � et;m�1 ¼
m2 þ 2mþ 1.

3.2.3 Rooted Histories of tðnþ1Þ from Those of tðnÞ

This section introduces an operator V that generates the

rooted histories of tðnþ1Þ from those of tðnÞ. For each rooted

history h0 of tðnþ1Þ, there exists exactly one rooted history h

of tðnÞ with h0 2 VðhÞ. Recalling the definitions of the sets

Hn;mðtÞ and HnðtÞ of m-rooted and rooted histories of tðnÞ,
we define V as follows.

Definition. Let PðXÞ ¼ fx : x � Xg denote the power set of set
X, and fix tree t. The operator V is a function

V : HnðtÞ ! PðHnþ1ðtÞÞ;

Fig. 4. Rooted histories of a tree. (A) A 3-rooted history. The root-branch
is divided into infinitely many components, the third of which receives
the image of the root. (B) A 1-rooted history. The number of 1-rooted
histories corresponds to the number of matching coalescent histories of
the tree.
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where for a rooted history h 2 HnðtÞ, VðhÞ is the set of rooted
histories h0 2 Hnþ1ðtÞ for which the restriction of h0 to tðnþ1Þ

excluding its most basal caterpillar branch coincides with the

rooted history h of tðnÞ.

Denote by b1; b2; . . . ; bnþ1 the caterpillar branches in tðnþ1Þ,
from the least basal b1 to the most basal bnþ1 (Fig. 5). Upon
removal of the most basal caterpillar branch bnþ1 from

tðnþ1Þ, the root of tðnþ1Þ—to which branch bnþ1 is attached—
is replaced by a demarcation between the first and second

components of the root-branch of tðnÞ. For instance, in
Fig. 5A, starting from tree t ¼ ððA;BÞ; ðC;DÞÞ, we consider

h000, a 3-rooted history of tð3Þ. By removing the most basal

caterpillar branch b3 of t
ð3Þ, we reduce to the 1-rooted history

h00 of tð2Þ (Fig. 5B). Next, by removing the caterpillar branch

b2 of tð2Þ, we reduce to the 2-rooted history h0 of tð1Þ

(Fig. 5C). By removing the remaining caterpillar branch b1
from tð1Þ, we reduce to the 2-rooted history h of t ¼ tð0Þ

(Fig. 5D). Therefore, by the definition of V, we have
h0 2 VðhÞ; h00 2 Vðh0Þ, and h000 2 Vðh00Þ.

By definition, V has the property that for each rooted his-
tory h0 2 Hnþ1ðtÞ, with n � 0, there exists exactly one rooted
history h 2 HnðtÞ such that h0 2 VðhÞ. In other words, for
each n � 0, the set of rooted histories Hnþ1ðtÞ can be parti-
tioned as a disjoint union,

Hnþ1ðtÞ ¼ t
h2HnðtÞ

VðhÞ: (11)

The setHnþ1ðtÞ is therefore generated without double occur-
rences of any rooted history by applyingV to the rooted his-
tories in HnðtÞ. It follows immediately that in performing n
iterations of V to obtain V½. . . ½V½V½H0��� . . .� from the set H0

of rooted histories of tð0Þ, all the rooted histories of tðnÞ are
generated exactly once.

3.2.4 Labels for Rooted Histories

The operator V, starting from the rooted histories of tðnÞ,
generates the rooted histories of tðnþ1Þ. In this section, we
introduce a labeling scheme, giving each m-rooted history h

of tðnÞ a label LðhÞ ¼ ðn;mÞ. We then describe how V acts on
the labels of the rooted histories, characterizing the set of
labels L½VðhÞ� ¼ fLðh0Þ : h0 2 VðhÞg. Our goal is to represent

each set Hn of rooted histories of tðnÞ by the multiset of its
labels, reducing the enumeration of jHn;mj to the problem of
counting certain ordered pairs ðn;mÞ iteratively generated
by simple rules that reflect how the rooted histories in Hnþ1

are generated according to rule V from the rooted histories
inHn by Eq. (11).

In our labeling, each rooted history h 2 HnðtÞ that maps

the root of tðnÞ onto the mth component of the root-branch

of tðnÞ receives label LðhÞ ¼ ðn;mÞ. Enumeration of
hn ¼ jHn;1j then reduces to enumeration of those rooted his-
tories labeled by ðn; 1Þ.

Note that a label ðn;mÞ does not uniquely specify an

m-rooted history of tðnÞ: a tree tðnÞ has in general many
m-rooted histories, each receiving the label ðn;mÞ. In other

words, if h; h 2 HnðtÞ and LðhÞ ¼ LðhÞ, then h and h are not

necessarily the same rooted history of tðnÞ. We will, however,

consider for n � 0 multisets of labels in which we find a copy

of the label ðn;mÞ for eachm-rooted history of tðnÞ.
To characterize how the operator V acts on the labels for

rooted histories, consider an m-rooted history h 2 HnðtÞ, so
that h maps the root of tðnÞ onto the mth component of the

root-branch of tðnÞ. This history is labeled LðhÞ ¼ ðn;mÞ. For
instance, taking the seed tree t ¼ ððA;BÞ; ðC;DÞÞ, the history
h of t ¼ tð0Þ depicted in Fig. 6A is labeled LðhÞ ¼ ð0; 3Þ,
whereas the history h of tð1Þ in Fig. 6C has LðhÞ ¼ ð1; 1Þ.

By applying V to a history h of tðnÞ with LðhÞ ¼ ðn;mÞ,
we produce a set of rooted histories VðhÞ � Hnþ1ðtÞ. The set
of labels for VðhÞ,

L½VðhÞ� ¼ fLðh0Þ : h0 2 VðhÞg;
is determined according to the rule:

L½VðhÞ� ¼ fðnþ 1;m0Þ : m0 � mg if m ¼ 1
fðnþ 1;m0Þ : m0 � m� 1g if m � 2,

�
(12)

where m0 denotes the value of the parameter m—the com-

ponent of the root-branch of tðnþ1Þ to which the root is

mapped—for the rooted histories h0 2 VðhÞ of tðnþ1Þ.
The rule in Eq. (12) distinguishes between two cases

depending on whether the value of the parameter
m ¼ mðhÞ of the generating rooted history h is equal to or
exceeds 1. In both cases, the set L½VðhÞ� contains infinitely
many labels, each with its first component equal to nþ 1, as

the labels refer to rooted histories of tðnþ1Þ. The value of the
second component m0 ranges in ½m� 1;1Þ if m � 2, and in
½1;1Þ ifm ¼ 1.

Recall that according to the definition of V, from an

m-rooted history h of tðnÞ (Figs. 6A and 6C), we generate an

m0-rooted history h0 2 VðhÞ of tðnþ1Þ (Figs. 6B and 6D) by

(i) choosing the component m0 of the root-branch of tðnþ1Þ

onto which h0 maps the root of tðnþ1Þ, and (ii) letting h0

Fig. 5. The relationships among rooted histories for sequential members
of caterpillar-like families. For a rooted history h000 of tð3Þ, with t ¼
ððA;BÞ; ðC;DÞÞ, the figure sequentially removes caterpillar branches. By

definition, a rooted history h0 of tðnþ1Þ belongs to the set VðhÞ if, by

removing the most basal caterpillar branch bnþ1 in tðnþ1Þ, we recover the

rooted history h of tðnÞ. Note that when we remove the basal caterpillar

branch bnþ1 from tðnþ1Þ, the root of tðnþ1Þ—to which the branch bnþ1 is
attached—becomes the boundary between the first and second compo-

nents of the root-branch of tðnÞ, and is depicted as a horizontal segment.
(A) h000 2 Vðh00Þ. (B) h00 2 Vðh0Þ. (C) h0 2 VðhÞ. (D) h. For each rooted his-
tory, the value of the parameter m, representing the component of the
root-branch that receives the image of the root, is shown.
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coincide with h on all nodes of tðnþ1Þ except the root. The
rooted history h0 coincides with h once we remove the most

basal caterpillar branch of tðnþ1Þ.
Fig. 6 illustrates both cases of Eq. (12). In step (i), infi-

nitely many choices of m0 are possible, because the root-

branch of tðnþ1Þ is divided into infinitely many parts. The

most basal caterpillar branch in tðnþ1Þ is attached at the bor-
der between the first and second components of the root-

branch of tðnÞ. Thus, the addition of the ðnþ 1Þst caterpillar
branch eliminates a component of the root-branch, so that if
the starting rooted history h has m � 2 (Fig. 6A), then the

root of tðnÞ maps to component m� 1 of the root-branch of

tðnþ1Þ. The root of tðnþ1Þ can map to this same branch, or to
any branch m0 with m0 � m� 1. For instance, in Fig. 6B, one
of the rooted histories h0 generated by a rooted history h
withm ¼ 3 hasm0 ¼ m� 1 ¼ 2.

If h has m ¼ 1, however, then production of h0 is slightly
different (Fig. 6C). By definition, the parameterm for a rooted
history cannot be smaller than 1. The valuem0 ¼ m� 1 is not

permitted, and m0 remains greater than or equal to m ¼ 1
(Fig. 6D).

3.2.5 Counting the Labels of Rooted Histories

The labeling scheme in Section 3.2.4 encodes the application
of the operator V to the rooted histories of tðnÞ. Now that we
have described the set of labels L½VðhÞ� arising from the
label LðhÞ according to the rule in Eq. (12), the problem of
counting a set of rooted histories becomes a problem of
counting the set of the associated labels along with their
multiplicities—or the multiset of the labels.

For n � 0 andm � 1, we useV
�ðn;mÞ� to denote, with an

abuse of notation, the set of labels L½VðhÞ� when LðhÞ ¼
ðn;mÞ. Recalling that iterative application of V to the rooted

histories H0 of tree tð0Þ generates the rooted histories Hn of

tðnÞ, the enumeration of jHn;mj for tree t ¼ tð0Þ becomes a
problem of counting those labels of the form ðn;mÞ that are
generated when we iteratively apply the operator V as
V½. . . ½V½V½L0��� . . .� starting from the multiset of labels
L0 ¼ fLðhÞ : h 2 H0ðtÞg (Fig. 7).

Eq. (12) characterizes the set of labels L½VðhÞ� of the
rooted histories in VðhÞ in terms of the label LðhÞ of rooted
history h. If LðhÞ ¼ ðn;mÞ, then V

�ðn;mÞ� denotes the set of
labels L½VðhÞ�. Thus, converting the notation from histories
to labels, Eq. (12) becomes

V
�ðn;mÞ� ¼ fðnþ 1;m0Þ : m0 � mg if m ¼ 1

fðnþ 1;m0Þ : m0 � m� 1g if m � 2.

�
(13)

For the seed tree t, we count hn;m ¼ jHn;mj by evaluating the
number of occurrences of the ordered pair ðn;mÞ in the mul-
tiset Ln defined as

Ln ¼ L½HnðtÞ� ¼ fLðhÞ : h 2 HnðtÞg: (14)

In symbols, we have

hn;m ¼ jf‘ 2 Ln : ‘ ¼ ðn;mÞgj: (15)

By Eq. (11), each multiset Ln is generated iteratively
(Fig. 7). We start with the multiset of labels

L0 ¼ fLðhÞ : h 2 H0ðtÞg: (16)

For each n � 0, the multiset Lnþ1 is obtained as

Lnþ1 ¼ ]
ðn;mÞ2Ln

V
�ðn;mÞ�; (17)

Fig. 6. Generation of rooted histories of tðnþ1Þ from rooted histories of

tðnÞ, as given by rule V applied to seed tree t ¼ ððA;BÞ; ðC;DÞÞ. To
obtain rooted histories of tðnþ1Þ (right) from rooted histories of tðnÞ

(left), we choose the component m0 of the root-branch of tðnþ1Þ onto

which the root of tðnþ1Þ is mapped (solid arrows). The smallest
among infinitely many possible choices are depicted. For all nodes

of tðnþ1Þ except the root, the rooted history generated for tðnþ1Þ coin-

cides with the generating rooted history of tðnÞ (dashed arrows).

(A) A case with m � 2. A 3-rooted history h of tð0Þ, labeled ð0; 3Þ, is
shown. (B) VðhÞ for h in (A). 2-, 3-, and 4-rooted histories of tð1Þ
belonging to VðhÞ are shown and are labeled ð1; 2Þ, ð1; 3Þ, and ð1; 4Þ,
respectively. Because m � 2, m0 � m� 1 as in eq. (12). (C) A case

with m ¼ 1. A 1-rooted history h of tð1Þ, labeled ð1; 1Þ, is shown. (D)

VðhÞ for h in (C). 1- and 2-rooted histories of tð2Þ belonging to VðhÞ
are shown and are labeled ð2; 1Þ and ð2; 2Þ, respectively. Because
m ¼ 1, m0 � m.

Fig. 7. Iterative application of a rule for generating the multiset of the
labels of the rooted histories of a tree tðnÞ. The iterative procedure
starts with the multiset L0 that contains those labels of the form
fð0;mÞ : m � 1g associated with the rooted histories of a seed tree

t ¼ tð0Þ. In the first step of the iteration, we apply V (Eq. (13)) to each
label of L0. In the second step, we apply V to each label resulting from

the first step, and so on. The number of m-rooted histories of tðnÞ corre-
sponds to the number of labels ðn;mÞ, considered with their multiplicity,
generated after the nth step of the iteration.
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where the symbol ] denotes the union operator for multi-
sets. Thus, in M ¼ M1]M2, if an element x appears n1 times
in M1 and n2 times in M2, then it appears n1 þ n2 times in
M. Eq. (17) provides an iterative generation of the labels for
the rooted histories of Hnþ1ðtÞ from the labels of the rooted
histories ofHnðtÞ, retaining information about the multiplic-
ity of occurrences of each label.

3.3 Rooted Histories and Generating Functions

We have now obtained Eq. (15), which gives an equivalence
between the number of m-rooted histories of tðnÞ and the
number of labels ðn;mÞ in the multiset Ln, and Eqs. (16) and
(17), which give through V (Eq. (13)) an iterative procedure
that generates the family of multisets ðLnÞn�0. In this sec-

tion, we translate the iterative procedure into algebraic
terms, determining the generating function associated with
the integer sequence ðhnÞn�0.

First, in Section 3.3.1, we characterize a generating func-
tion gðyÞ for the sequence ðh0;mÞm�1. Next, in Section 3.3.2,
we deduce an equation satisfied by the bivariate generating
function F ðy; zÞ for ðhn;mÞn�0;m�1. In Section 3.3.3, we solve

the equation, obtaining the desired generating function fðzÞ
for the sequence ðhn;1Þn�0. This generating function can be

written in turn as a function of gðyÞ.

3.3.1 Generating Function for ðh0;mÞm�1

In this section, we characterize the generating function gðyÞ
that counts for a given seed tree t the labels in the multiset
L0 describing the labels of the rooted histories of t.

Fix the seed tree t. Recalling the equivalence in Eq. (15),
define the generating function

gðyÞ ¼
X

ð0;mÞ2L0

ym ¼
X1
m¼1

h0;my
m; (18)

the mth coefficient of whose power series expansion pro-
vides the number h0;m of labels ð0;mÞ appearing in L0. By
Proposition 1, h0;m can be expressed as a polynomial in the
variable m and can thus be decomposed as a finite linear

combination of terms of the formmk, where k is a non-nega-
tive integer. That is, for a certain finite set of non-negative
integers with largest elementK,

h0;m ¼
XK
k¼0

wkm
k; (19)

where the wk are constants.
We introduce generating functions gmk , one for each k

from 0 toK, in which themth coefficient ismk:

gmkðyÞ ¼
X1
m¼1

mkym: (20)

Because K is finite, the desired generating function gðyÞ can
be written as a finite linear combination of this new collec-
tion of generating functions gm0ðyÞ; gm1ðyÞ; . . . ; gmK ðyÞ. More
precisely, by substituting in Eq. (18) the polynomial in
Eq. (19) and switching the order of summation, we obtain

gðyÞ ¼
XK
k¼0

wkgmkðyÞ: (21)

We now state a lemma that characterizes the generating
functions gmkðyÞ.
Lemma 1. For each non-negative integer k from 0 to K, the gen-

erating function gmkðyÞ in Eq. (20) is rational with denomina-

tor ð1� yÞkþ1. That is, gmkðyÞ has the form

gmkðyÞ ¼ P ðyÞ
ð1� yÞkþ1

;

where P ðyÞ is a polynomial in y.

Proof. We proceed by induction on k. If k ¼ 0, then by
Eq. (20), gm0ðyÞ ¼ 1=ð1� yÞ � 1 ¼ y=ð1� yÞ. Assume the
inductive hypothesis for gmkðyÞ. Applying Eq. (20) to
gmkþ1ðyÞ, we can recover gmkþ1ðyÞ as

gmkþ1ðyÞ ¼ y
@gmkðyÞ

@y
; (22)

which by the quotient rule for derivatives is a rational
function with denominator ð1� yÞkþ2. tu
The proof of the lemma gives a recursive procedure in

Eq. (22) to compute the functions gmkðyÞ. By Eq. (21), we
immediately obtain from the lemma a result about the gen-
erating function gðyÞ.
Proposition 2. The generating function gðyÞ whose mth coeffi-

cient ½ym�gðyÞ is the number of m-rooted histories h0;m of a
seed tree t can be written as a finite linear combination

gðyÞ ¼
XJ
j¼1

qj
yaj

ð1� yÞb ; (23)

where b � 1 and J � 1 are positive integers, each aj is a non-
negative integer, and the qj are constants.

As an example, we show how the procedure in Proposi-
tion 2 can determine the generating function gðyÞ for
t ¼ ððA;BÞ; ðC;DÞÞ, the same example seed tree for which
we computed the polynomial h0;m via Proposition 1. Recall

from Section 3.2.2 that h0;m ¼ m2 þ 2mþ 1. To obtain the
generating function gðyÞ that has coefficients ½ym�gðyÞ ¼
m2 þ 2mþ 1; we sum generating functions for monomials

m2, 2m, and 1. We already know gm0ðyÞ, and by applying
Eq. (22), we have

gm0ðyÞ ¼ y

1� y

gm1ðyÞ ¼ y
@gm0ðyÞ

@y
¼ y

ð1� yÞ2

gm2ðyÞ ¼ y
@gm1ðyÞ

@y
¼ yðyþ 1Þ

ð1� yÞ3 :

Thus,

gðyÞ ¼ gm0ðyÞ þ 2gm1ðyÞ þ gm2ðyÞ ¼ y3 � 3y2 þ 4y

ð1� yÞ3 : (24)
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In Eq. (24), gðyÞ is written as in Eq. (23), taking b ¼ 3, J ¼ 3,
ða1; a2; a3Þ ¼ ð1; 2; 3Þ, and ðq1; q2; q3Þ ¼ ð4;�3; 1Þ.

3.3.2 Bivariate Generating Function for ðhn;mÞn�0;m�1

Given t, the polynomial nature of h0;m in m enabled us to
obtain a generating function for h0;m. We now use the itera-
tive procedure in Eq. (17) to determine an equation that
characterizes the bivariate generating function with coeffi-
cients hn;m. We represent each label of the form ðn;mÞ by a
symbolic algebraic expression in the variables y and z, so
that ðn;mÞ is replaced by znym. Let L ¼ [1

n¼0Ln be the multi-

set of all m-rooted histories for all trees tðnÞ. Considering y
and z as complex variables in two sufficiently small neigh-
borhoods of 0, we aim to characterize the bivariate function
F ðy; zÞ that admits the expansion

F ðy; zÞ ¼
X

ðn;mÞ2L
znym;

where the sum is over all labels in the multiset L and thus

has a term for each m-rooted history of each tðnÞ. In partic-
ular, the function F ðy; zÞ is the bivariate generating func-
tion of the integers hn;m, and its Taylor expansion can be
written as

F ðy; zÞ ¼
X1
m¼1

X1
n¼0

hn;m znym; (25)

where the coefficients hn;m appear explicitly.
By differentiating F ðy; zÞ with respect to y and then

taking y ¼ 0, we obtain

@F

@y
ð0; zÞ ¼

X1
n¼0

hn;1z
n: (26)

Thus, for each n � 0, we have

hn ¼ hn;1 ¼ ½zn�
�
@F

@y
ð0; zÞ

�
:

By representing each label of the form ðn;mÞ by the sym-
bolic expression znym and assuming the complex variables y
and z are sufficiently close to 0, the recursive generation in
Eq. (17) of the multisets of labels L0; L1; L2; . . . determines
an equation for F ðy; zÞ, demonstrated in Appendix 1:

F ðy; zÞ 1� z

yð1� yÞ
� 	

¼ gðyÞ � z
@F

@y
ð0; zÞ: (27)

Eq. (27) holds if the complex variables y and z are in two
sufficiently small neighborhoods of 0, and it characterizes
the generating function F ðy; zÞ.

3.3.3 Generating Function for ðhn;1Þn�0

We now have an equation satisfied by the bivariate generat-
ing function F ðy; zÞ. Further, we have Eq. (26), which dem-
onstrates that the desired generating function for the

sequence ðhnÞn�0 is obtained from @F
@y ð0; zÞ. By applying the

kernel method [2], [12], we can determine the power series
@F
@y ð0; zÞ from Eq. (27).

The idea of the method consists of coupling the two vari-
ables ðz; yÞ as ðz; yðzÞÞ in such a way that two conditions

hold. First, (i) substituting y ¼ yðzÞ cancels the kernel of the
equation, that is, the factor 1� z=½yð1� yÞ� on the left-hand
side of Eq. (27). Second, (ii) for z near 0, the value of yðzÞ
remains in a sufficiently small neighborhood of y ¼ 0, so
that Eq. (27) still holds near z ¼ 0 after substituting y ¼ yðzÞ.
This condition is required, as the power series expansion in
Eq. (25) for F ðy; zÞ has been assumed to be valid in a neigh-
borhood of ðy; zÞ ¼ ð0; 0Þ, and the derivation of Eq. (27)
relies on the fact that y and z are sufficiently close to 0. If the
two conditions hold, then

z
@F

@y
ð0; zÞ ¼ gðyðzÞÞ;

so that gðyðzÞÞ must be a power series for z ¼ 0, because so

must be z @F
@y ð0; zÞ.

The required substitution couples y and z in such a way

that 1� z=½yð1� yÞ� ¼ 0, so that yðzÞ ¼ ð1	 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p Þ=2. To
determine whether to take the negative root y1ðzÞ or the pos-
itive root y2ðzÞ, we note that if z is near 0, then y1ðzÞ
approaches 0, so that y1ðzÞ lies in a neighborhood of y ¼ 0
and gðy1ðzÞÞ admits a power series expansion for z near 0.
For y2ðzÞ, however, if z is near 0, then y2ðzÞ approaches 1,
and thus, gðy2ðzÞÞ is not a power series for z near 0 due to
the pole of the function gðyÞ at y ¼ 1 (Proposition 2). The
only solution satisfying both (i) and (ii) is consequently

Y ðzÞ ¼ y1ðzÞ ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p

2
; (28)

which, with the generating function CðzÞ of the Catalan
numbers as in Eq. (3), satisfies Y ðzÞ ¼ zCðzÞ. Substituting
y ¼ Y ðzÞ in Eq. (27), we have @F

@y ð0; zÞ ¼ gðY ðzÞÞ=z, yielding
the following result.

Proposition 3. Fix tree t. Let gðyÞ be the generating function
associated with the polynomial h0;m (Eq. (18)). Let Y ðzÞ be as
in Eq. (28). Then the generating function fðzÞ ¼ P1

n¼0 hnz
n

is given by

fðzÞ ¼ @F

@y
ð0; zÞ ¼ gðY ðzÞÞ

z
¼ g

�
1� ffiffiffiffiffiffiffiffi

1�4z
p
2

�
z

: (29)

The proposition thus determines the generating function
fðzÞ ¼ gðY ðzÞÞ=z for the integer sequence describing the
number of matching coalescent histories of species trees in

the caterpillar-like family ðtðnÞÞn�0. The function g depends

on the seed tree t, whereas Y ðzÞ is fixed in Eq. (28) and does
not depend on t.

As an example, recall that for t ¼ ððA;BÞ; ðC;DÞÞ, in
Eq. (24), we have computed the generating function g for

the number h0;m ofm-rooted histories of t ¼ tð0Þ. By Proposi-
tion 3, the generating function for the number hn of match-

ing coalescent histories of tðnÞ is

fðzÞ ¼
X1
n¼0

hnz
n ¼ g

�
1� ffiffiffiffiffiffiffiffi

1�4z
p
2

�
z

¼ 4ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p Þð3� zþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p Þ
zð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4z
p Þ3 :
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Taking the Taylor expansion of f , we obtain

fðzÞ ¼ 4þ 13zþ 42z2 þ 138z3 þ 462z4 þ 1;573z5

þ 5;434z6 þ 19;006z7 þ 67;184z8 þ . . .
(30)

The coefficients hn accord with the enumeration of matching
coalescent histories reported in Corollary 3.9 of [13] and
Table 3 of [14] for caterpillar-like families with seed tree
t ¼ ððA;BÞ; ðC;DÞÞ, except that those results tabulated num-
bers of coalescent histories by the number of taxa, whereas
here, we use the index of the caterpillar-like family. Thus, in
this example, the coefficient of zn gives the number of match-
ing coalescent histories for a tree with nþ 4 taxa, as jtj ¼ 4.
Shifting the index in the formula from [13], [14] to agree with
our indexing scheme, we obtain ½ð5ðnþ 4Þ � 12Þ=ð4ðnþ 4Þ �
6Þ�cðnþ4Þ�1 ¼ ½ð5nþ 8Þ=ð4nþ 10Þ�cnþ3 for the number of

matching coalescent histories of tðnÞ. This formula gives pre-
cisely the coefficients in the Taylor expansion in Eq. (30).

3.4 Asymptotic Behavior of hn

From Proposition 3, we have the generating function f

that counts matching histories of tðnÞ for a given fixed seed
tree t. Applying techniques of analytic combinatorics as
introduced in Section 2.3, we can determine the asymptotic
behavior of the coefficients of the generating function

~fðzÞ ¼
X1
n¼1

hn�1z
n ¼ zfðzÞ ¼ gðY ðzÞÞ; (31)

with Y ðzÞ as in Eq. (28). To simplify notation, we work with
~f instead of f .

First, in Section 3.4.1, we obtain an asymptotic equiva-
lence between hn and btcn, where bt is a constant depending
on the seed tree t, and the cn are the Catalan numbers
(Eq. (1)). Next, in Section 3.4.2, we produce a general proce-
dure to determine the constants bt, employing this proce-
dure to obtain values of bt for all seed trees t with jtj � 9.
We demonstrate that our values of bt accord with constant
multiples of the Catalan numbers previously obtained
according to a different method [14] for seed trees with
jtj � 8.

3.4.1 A General Asymptotic Result

Recall that given t, Proposition 2 provides a procedure to
determine the rational function g in Eq. (31). Writing g as
the finite linear combination in Eq. (23), the values of b, J ,
and the ðajÞ1�j�J and ðqjÞ1�j�J can all be computed.

As noted in Section 2.3, the expansion of ~f at its domi-
nant singularity characterizes the asymptotic behavior of
the coefficients hn�1. Appendix 2 obtains this expansion at

the dominant singularity z ¼ 1
4,

~fðzÞ ¼ at þ bt

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p

2

�
	Oð1� 4zÞ (32)

� at þ bt

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p

2

�
; (33)

with

at ¼
XJ
j¼1

2b�ajqj (34)

bt ¼
XJ
j¼1

2bþ1�ajðaj þ bÞqj: (35)

Note that in Eq. (32), the seed tree affects only the con-
stants at and bt computed in Eqs. (34) and (35) from g, as
written in the linear combination in Eq. (23). Excluding the
constant at that does not influence the asymptotic behavior

of the coefficients, the main term of the expansion of ~fðzÞ
(Eq. (33)) is the product of bt and the generating function

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p
=2, whose nth coefficient is Catalan number cn�1

(Eq. (4)).
Theorem VI.4 of [8] indicates that under conditions satis-

fied by ~f , the asymptotic coefficients of a generating func-
tion as n ! 1 are obtained from the expansion of the
function at the dominant singularity; moreover, the error
term in the asymptotic coefficients can be computed from
the error term in the singular expansion. Applying the theo-
rem to the expansion in Eq. (32), we obtain the asymptotic

behavior of the coefficients ½zn�~fðzÞ ¼ hn�1.

Proposition 4. For any seed tree t, when n ! 1, the number hn

of matching coalescent histories for tðnÞ satisfies

hn�1 ¼ ½zn�~fðzÞ � bt½zn�
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p

2

�
	O

�
4n

n2

�

¼ btcn�1 	O
�
4n

n2

�
; (36)

where bt is a constant that depends on t. The constant bt is
computed in Eq. (35) once the function g, defined in Eq. (18),
is written as the linear combination in Eq. (23).

We immediately obtain the following corollary, corre-
sponding to our initial claim in Eq. (6).

Corollary 1. For any seed tree t, there exists a constant bt > 0
(Eq. (35)) such that when n ! 1,

hn � btcn: (37)

Proof. The result follows from Proposition 4 by noting that
if bt > 0, then

lim
n!1

hn�1

btcn�1
¼ 1	 lim

n!1
Oð4n=n2Þ
btcn�1

¼ 1:

Note that we are claiming bt > 0. From the definition
of bt in Eq. (35), because the qj are permitted to be nega-
tive, it is not immediately clear that bt > 0. Proposition 4
eliminates the possibility that bt is negative, as hn�1 is
necessarily positive. To show that bt 6¼ 0, note that by
Eq. (36), bt ¼ 0would give

hn�1 ¼ O
�
4n

n2

�
; (38)
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so that hn�1=ð4n=n2Þ would remain bounded by a con-
stant as n ! 1.

We now apply the lower bound hn � cnþ1 from Eq. (7).
By Eq. (7), we have

hn�1

4n=n2
� cn

4n=n2
¼

ffiffiffi
n

p
ffiffiffi
p

p cn
4n=ðn3=2

ffiffiffi
p

p Þ :

As n ! 1,
ffiffiffi
n

p
=

ffiffiffi
p

p
diverges to1, while cn=½4n=ðn3=2

ffiffiffi
p

p Þ�
converges to 1 by Eq. (5). Therefore, the sequence

hn�1=ð4n=n2Þmust diverge and Eq. (38) cannot hold. Thus,
bt 6¼ 0. tu
As an example of Corollary 1, consider t ¼ ððA;BÞ;

ðC;DÞÞ. By decomposing the function g of Eq. (24) as in
Eq. (23), we have already obtained the parameters b, J ,
ðajÞ1�j�J , and ðqjÞ1�j�J in Section 3.3.1. Therefore, comput-

ing bt as in Eq. (35), we obtain

bt ¼ 21þ3�1ð1þ 3Þð4Þ þ 21þ3�2ð2þ 3Þð�3Þ
þ 21þ3�3ð3þ 3Þð1Þ ¼ 80:

Eq. (37) then produces hn � 80cn. Note that the limit

hn � 5
4 cnþ3 produced for this tree from hn ¼ ½ð5nþ 8Þ=ð4n þ

10Þ�cnþ3 in Section 3.3.3 agrees with the limiting result
hn � 80cn. Recalling Eq. (2),

hn

cn
¼ 5nþ 8

4nþ 10

cnþ3

cn
� 5

4

2nþ6
nþ3


 �
=ðnþ 3Þ

2n
n

� �
=ðnþ 1Þ � 5

4
43 ¼ 80:

3.4.2 Determining bt from the Seed Tree t

We have shown in Corollary 1 that the number of matching
coalescent histories hn for the caterpillar-like family tðnÞ is,
for a constant bt, asymptotic to btcn. We can now assemble
our results to describe a procedure that given a seed tree t
with jtj � 2 determines both the generating function with
coefficients hn and the constant bt.

(i) Determine by Eq. (9) the polynomial et;k in k � 0 that
counts k-extended histories of t.

(ii) Compute from Eq. (8) the polynomial in m that
counts for m � 1 the number of m-rooted histories
of t.

(iii) Obtain the generating function gðyÞ ¼ P1
m¼1 h0;my

m

with coefficients h0;m by using Proposition 2.
(iv) Determine the generating function fðzÞ ¼ P1

n¼0 hnz
n

with coefficients hn by applying Proposition 3.
(v) Write gðyÞ as a linear combination according to

Eq. (23), determining the values of b, J , and the aj
and qj.

(vi) Compute the asymptotic constant bt from Eq. (35).

We have programmed this procedure in Mathematica;
starting from a given seed tree t, our program CatFamily.

nb can automatically compute for the caterpillar-like family

tðnÞ the generating function with coefficients hn and the
asymptotic constant bt. Using this program, we have evalu-
ated bt for each seed tree with nine taxa, collecting the
results in Table 1.

Recall that Rosenberg [14] reported the asymptotic con-
stant multiples of the Catalan numbers, b


t , which represent

asymptotic numbers of coalescent histories for seed trees
with up to 8 taxa, indexing the results by the number of taxa
m rather than by the index n of the caterpillar-like family.

Also recall that for seed tree t, tree tðnÞ has m ¼ jtj þ n taxa
(Fig. 1). In the notation of [14], writing Atm;1 as the number
of matching coalescent histories in the caterpillar-like tree
with seed tree t andm � jtj taxa, we have hn ¼ Atm;1:

By Eq. (5), we have the asymptotic equivalence

cn � cnþk=4
k for each positive integer k. Therefore,

Atm;1 ¼ hn � btcn � bt

4jtj�1
cnþjtj�1 ¼ b


t cm�1; (39)

where the asymptotic constant bt of Corollary 1 is normal-
ized to obtain

TABLE 1
Asymptotic Constants bt with hn � btcn, for Seed

Trees t with Nine Taxa

Values of bt appear for each of the 46 unlabeled species trees with nine taxa. For
each species tree t, we also provide the constant b
t ¼ bt=4

8 (Eq. (40)). Trees are
listed in increasing order by rank as defined in Section 2 of [14]. In the left col-
umn, each seed tree t belongs to a caterpillar-like family ð~tðnÞÞn, with j~tj < 9.
In these cases, we recover the values of b
t as determined in Table 3 of [14].
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b

t ¼

bt

4jtj�1
: (40)

This computation converts the asymptotic constant multiple
bt of cn into a corresponding multiple b


t of cm�1, as reported
in [14] for small trees. Comparing Table 1 with Table 3 of
[14], we see that for the cases examined by [14], the values
of b


t we compute from the associated bt agree with the val-
ues that were previously reported. This agreement is unsur-
prising; our method for calculating the constants bt and b


t

is simply a computational implementation based on our the-
orems, and the agreement confirms the validity of the
implementation. Although [14] considered only jtj � 8, our
method applies for arbitrary jtj.

Evaluation of bt proceeds quadratically in jtj. The recur-
sive step (i) requires at most jtj � 1 recursive calls, one for
each internal node of t. Step (ii) is a polynomial subtraction
at most linear in jtj, producing the polynomial h0;m with
order at most equal to the order of et;m minus 1—that is, at
most jtj � 2. Step (iii) determines the generating function
gðyÞ (Eq. (18)) from h0;m and the generating functions
gmkðyÞ (Eq. (20)). For each k with 0 � k � jtj � 2, gmkðyÞ is
computed in k recursive calls of Eq. (22). As the order of
h0;m is at most jtj � 2, the total cost for calculating gðyÞ is
thus quadratic in jtj. Steps (iv), (v), and (vi) do not involve
recursion and are at most linear in jtj. Thus, because step
(iii) is the most expensive step, we see that the cost of the
procedure that determines the asymptotic constant bt
increases as Oðjtj2Þ.

4 CONCLUSIONS

In this paper, we have solved a problem left open by [14]
on determining the number of coalescent histories for
gene trees and species trees that have a matching labeled
topology and that belong to a generic caterpillar-like fam-
ily. We have proven that for any seed tree t, the integer
sequence ðhnÞn�0, whose nth element represents the num-

ber of matching coalescent histories of the caterpillar-like

tree tðnÞ, grows asymptotically as a constant multiple of
the Catalan numbers, that is, hn � btcn, where the con-
stant bt > 0 depends on the shape of the seed tree t.
Rosenberg [14] had previously obtained this result for
seed trees with at most eight taxa; here, by using a succes-
sion rule for recursive enumeration and then applying
techniques of analytic combinatorics, we have not only
proven the existence of the constant bt for seed trees of
any size, we have also produced a procedure that com-
putes bt as well as the expression for the generating func-
tion of the integers ðhnÞn�0.

The numerical results on the constants bt extend the
empirical observation of [14] that the caterpillar-like fami-
lies that produce the largest numbers of matching coales-
cent histories are those whose seed tree has a high level of
balance. By extending from seed trees with jtj � 8 taxa to
those with jtj ¼ 9, we observe that the constants bt for the
caterpillar-like families with the largest and smallest num-
bers of matching coalescent histories become further sepa-
rated, so that for n large, many more coalescent histories
exist by which a gene tree can match the species tree for
some species trees than for others. For the 9-taxon seed tree

with the largest b

t , b



t � 8:12 compared to b


t ¼ 1 for the
seed tree with the smallest b


t . Our procedure for evaluating
bt and b


t as a function of the seed tree can now enable fur-
ther systematic analyses of the correlates of the constants bt

and b
t , to facilitate additional explorations of determinants
of the numbers of matching coalescent histories.

Nevertheless, although the constants bt and b

t do

depend on the seed tree, we have shown that otherwise, all

caterpillar-like families are asymptotically equivalent in

their numbers of matching coalescent histories. Computa-

tion time is often a challenge in phylogenetic problems, as

the discrete structures of phylogenetics can grow rapidly in

number with the number of taxa. Our results contribute to

the study of computational complexity in phylogenetics, as
the complexity of the evaluation of probabilities important

in characterizing gene tree distributions [5] is proportional

to the number of coalescent histories. That all caterpillar-

like families have the same growth pattern up to a constant

suggests that as the number of taxa increases, such evalua-

tions will be comparably complex for all caterpillar-like

trees. In large trees, the caterpillar branches contribute to

the asymptotic growth of the number of matching coales-
cent histories—which follows a multiple of the Catalan

numbers—and the seed tree only to the constant by which

the Catalan numbers are multiplied.
The extent to which other tree families follow the Catalan

sequence in their numbers of matching coalescent histories
remains unknown, though we have recently found a family,
the lodgepole family—defined iteratively by setting �0 to a
tree with one taxon and sequentially forming �nþ1 by
appending �n and a cherry to a shared root—for which the
number of matching coalescent histories grows faster than
with a constant multiple of the Catalan numbers [6]. Further
analysis of this heterogeneous behavior of the increase in
the number of coalescent histories will be useful in perform-
ing comparisons of coalescent history algorithms with algo-
rithms that obtain similar phylogenetic probabilities but
that do not rely on coalescent histories [20]. The use of our
substantially different approach employing analytic combi-
natorics opens new methods for theoretical analysis of coa-
lescent histories and can potentially assist in understanding
when Catalan-like growth, the rapid growth of the lodge-
pole family, and intermediate or perhaps still faster growth
patterns will apply.

We note, however, that our strategy for evaluating the
asymptotic properties of the number of coalescent histories
in caterpillar-like families has, like the work of [14], relied on
the fact that the difficulty of the general problem of enumer-
ating coalescent histories is partly evaded by restricting
attention to caterpillar-like trees. In the recursion for the
number of coalescent histories given a matching gene tree
and species tree [13, Eq. (1)], a term arising from the subtree
with fewer branches collapses to 1 for the caterpillar case,
greatly simplifying the recursion. This reduction enabled the
work of [14] for caterpillar-like families, and it also enables
our approach of iteratively adding single-taxon branches to
define the operator V and the generating function for hn;m.
Thus, in enumerating coalescent histories for matching
lodgepole gene trees and species trees, we proceeded by a
different method, establishing a bijection between coalescent
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histories and established combinatorial structures [6]. We do
expect, however, that a generating function approach will be
fruitful in other scenarios, perhaps including cases with gene
trees and species trees that are caterpillar-like, but non-
matching.

APPENDIX 1
THE EQUATION FOR F ðy; zÞ
In this appendix, we complete the derivation of Eq. (27) sat-
isfied by F ðy; zÞ. In the generating function F ðy; zÞ (Eq. (25)),
each monomial znym corresponds to a label ðn;mÞ 2 Ln that

in turn represents an m-rooted history of tðnÞ. Recall that the
multisets of labels L0; L1; L2; . . . (Eq. (14)) can be iteratively
generated according to Eq. (17) through the operator V

defined in Eq. (13), starting from the multiset L0. Also recall
that by considering the multiset of labels L ¼ [1

n¼0Ln, we

can write F ðy; zÞ ¼ P
ðn;mÞ2L z

nym: We use the iterative gen-

eration of the family of multisets ðLnÞn�0 to obtain an equa-

tion for F .
By Eq. (13), for n � 0 and m � 2, for each occurrence in

Ln of a label ðn;mÞ, a copy of each label in set

V
�ðn;mÞ� ¼ fðnþ 1;mþ jÞ : j � �1g

belongs to the multiset Lnþ1. Thus, in algebraic terms, each
time that an expression znym with n � 0 and m � 2 is
counted in the generating function F—written znym 2 F in

what follows—the terms znþ1
P1

j¼m�1 y
j appear in F as well.

Summing over all znym 2 F with n � 0 andm � 2, we obtain

X
znym2F :n�0;m�2

�
znþ1

X1
j¼m�1

yj
�

¼ z

y

X
znym2F :n�0;m�2

�
znym

X1
j¼0

yj
�
:

(41)

Similarly, for n � 0 and m ¼ 1, for each occurrence in Ln

of a label ðn; 1Þ, a copy of each label in set V
�ðn; 1Þ� ¼ fðn þ

1; jÞ : j � 1g appears in multiset Lnþ1. Thus, for each term

zny 2 F , with n � 0, the terms znþ1
P1

j¼1 y
j are counted in F

as well. Summing these terms for all zny 2 F with n � 0,

X
zny2F :n�0

�
znþ1

X1
j¼1

yj
�

¼ zy
X

zny2F :n�0

�
zn

X1
j¼0

yj
�
: (42)

Notice that the sum of the expressions in Eqs. (41) and
(42) is the algebraic representation of the multiset of labels
L n L0. More precisely, each term znym 2 F associated with
a label ðn;mÞ 2 Ln, with n � 1, is counted—and counted
exactly once—in the sum of Eqs. (41) and (42). Therefore, to
complete the description of F , we require only those terms

z0ym associated with labels ð0;mÞ 2 L0. These terms are rep-
resented

X
ð0;mÞ2L0

z0ym ¼
X1
m¼1

h0;my
m ¼ gðyÞ; (43)

considering that h0;m ¼ jf‘ 2 L0 : ‘ ¼ ð0;mÞg (Eq. (15)) and

that by definition, gðyÞ ¼ P1
m¼1 h0;my

m (Eq. (18)).

We can now equate the full generating function F ðy; zÞ to
the sum of Eqs. (43), (41), and (42), obtaining

F ðy; zÞ ¼ gðyÞ þ z

y

X
znym2F :n�0;m�2

�
znym

X1
j¼0

yj
�

þ zy
X

zny2F :n�0

�
zn

X1
j¼0

yj
�
:

Applying the fact that
P1

j¼0 y
j ¼ 1=ð1� yÞ for y near 0 in the

complex plane, we then have

F ðy; zÞ ¼ gðyÞ þ z

yð1� yÞ
� X

znym2F :n�0;m�2

znym
�

þ zy

1� y

� X
zny2F :n�0

zn
�
: (44)

By Eq. (25) and the fact that the multisets Ln of labels

ðn;mÞ form-rooted histories of tðnÞ have hn;m elements,

X
zny2F :n�0

zn ¼ @F

@y
ð0; zÞ

X
znym2F :n�0;m�2

znym ¼
� X

znym2F :n�0;m�1

znym
�
�
� X

zny2F :n�0

zny

�

¼ F ðy; zÞ � y
@F

@y
ð0; zÞ:

Substituting in Eq. (44), the last two expressions yield

F ðy; zÞ ¼ gðyÞ þ z

yð1� yÞ
�
F ðy; zÞ � y

@F

@y
ð0; zÞ

�

þ zy

1� y

@F

@y
ð0; zÞ;

(45)

which can be rewritten as in Eq. (27).

APPENDIX 2
THE DOMINANT SINGULARITY AND SINGULAR

EXPANSION OF ~fðzÞ
This appendix obtains the singular expansion of ~fðzÞ
described in Eq. (32). In Eq. (31), we have defined ~fðzÞ as a
composition ~fðzÞ ¼ gðY ðzÞÞ, with the internal function Y ðzÞ
as in Eq. (28) and the external function gðyÞ as in Eq. (23).
Owing to the presence of the square root in the expression
for Y ðzÞ, the dominant singularity of the internal function
Y ðzÞ—the singularity nearest the origin of the complex

plane—is at z ¼ 1
4. Computing the value of Y ðzÞ at its domi-

nant singularity, we obtain Y ð14Þ ¼ 1
2. In particular, we have

Y ð14Þ < 1, where 1 is the radius of convergence of the finite

series corresponding to the external function g in ~f . Indeed,
it immediately follows from Proposition 2 that y ¼ 1 is the
dominant singularity of gðyÞ.

As detailed in Section VI.9 of [8], on dominant singulari-
ties of compositions, we are in the setting of the subcritical
case, in which the inequality Y ð14Þ < 1 implies that the domi-
nant singularity of gðY ðzÞÞ coincides with the dominant

singularity z ¼ 1
4 of the internal function Y ðzÞ rather than the
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dominant singularity y ¼ 1 of the external function gðyÞ. The
desired singular expansion of ~fðzÞ ¼ gðY ðzÞÞ at the dominant

singularity z ¼ 1
4 can be obtained by inserting y ¼ Y ðzÞ in the

regular (non-singular) expansion of gðyÞ at y ¼ Y ð14Þ ¼ 1
2.

To recover the expansion of gðyÞ at y ¼ 1
2, we expand and

then sum each term qj½yaj=ð1� yÞb� of the finite linear combi-

nation in Eq. (23). At y ¼ 1
2, each of these terms is an analytic

function, and we can thus use Taylor’s formula to produce

the desired expansion. We obtain at y ¼ 1
2

qj
yaj

ð1� yÞb ¼ 2b�ajqj þ 2bþ1�ajðaj þ bÞqj
�
y� 1

2

�

	O
��

y� 1

2

�2�
:

By summing over the indices 1 � j � J of Eq. (23), the

expansion of gðyÞ at y ¼ 1
2 is

gðyÞ ¼ at þ bt

�
y� 1

2

�
	O

��
y� 1

2

�2�
; (46)

with the constants at and bt defined as in Eqs. (34) and (35).
Plugging y ¼ Y ðzÞ from Eq. (28) into Eq. (46), we finally

obtain the singular expansion of ~fðzÞ at z ¼ 1
4 as in Eq. (32).
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