Blog Section

About Free Radical Damage

Aside from impaired energy production, damage to the mitochondria leads also to increased production of toxic molecules called free radicals. Compounds called antioxidants act as free radical scavengers by initiating reactions that make free radicals non-toxic to cells. Evidence indicates that damage by free radicals is a contributing factor to the pathology of HD. Consequently, compounds with antioxidant properties are being studied to see if they can serve as possible treatments for HD.

Free Radicals and Antioxidants

Free radicals are atoms or molecules that are highly reactive with other cellular structures because they contain unpaired electrons. Free radicals are natural by-products of ongoing biochemical reactions in the body, including ordinary metabolic processes and immune system responses. Free radical-generating substances can be found in the food we eat, the drugs and medicines we take, the air we breathe, and the water we drink. These substances include fried foods, alcohol, tobacco smoke, pesticides, air pollutants, and many more. Free radicals can cause damage to parts of cells such as proteins, DNA, and cell membranes by stealing their electrons through a process called oxidation. (This is why free radical damage is also called “oxidative damage.”) When free radicals oxidize important components of the cell, those components lose their ability to function normally, and the accumulation of such damage may cause the cell to die. Numerous studies indicate that increased production of free radicals causes or accelerates nerve cell injury and leads to disease.

freeradical-01

Antioxidants , also known as “free radical scavengers,” are compounds that either reduce the formation of free radicals or react with and neutralize them. Antioxidants often work by donating an electron to the free radical before it can oxidize other cell components. Once the electrons of the free radical are paired, the free radical is stabilized and becomes non-toxic to cells. Therapy aimed at increasing the availability of antioxidants in cells may be effective in preventing or slowing the course of neurological diseases like HD.

-E. Tan, 9-21-01