Uncertainty in IAMs

Massimo Tavoni

POLITECNICO DI MILANO

IAMs

IAMs Draw from and Serve Other Climate Science Research

Typical IAM output

Scenarios

Model comparisons

Which type of uncertainty?

Economic growth

Economic growth

Technolology deployment

Ranking of energy technologies (Based on share in electricity production) IAM-Expert ranking (full set)

Expert

Ask "technology experts" on expected deployment of technologies in 2050. Also confront with model results. Compare results experts/models

Method

Van Sluisveld et al., Expert elicitations on future patterns of energy system change (in prep)

Diagnostics

Mitigation costs

Impacts

Decision criteria

Complexity vs uncertainty

van Zelm et al

Complexity vs uncertainty

Schoups et al

Communicating Climate Science

Figure SPM.5 The implications of different 2030 GHG emissions levels (left panel) for the rate of CO₂ emissions reductions from 2030 to 2050 (middle panel) and low-carbon energy upscaling from 2030 to 2050 and 2100 (right panel) in mitigation scenarios reaching about 450 to about 500 (430 – 530) ppm CO₂eq concentrations by 2100. The scenarios are grouped according to different emissions levels by 2030 (coloured in different shades of green). The left panel shows the pathways of GHG emissions (GtCO₂eq/yr) leading to these 2030 levels. The black bar shows the estimated uncertainty range of GHG emissions implied by the Cancún Pledges. The middle panel denotes the average annual CO₂ emissions reduction rates for the period 2030–2050. It compares the median and interguartile range across scenarios from recent intermodel comparisons with explicit 2030 interim

An experiment with climate negotiations

- Elicitation of Priors of long term °C
- Providing information on a specific long term scenario (3 Treatments)

Design/2

- Elicitation of Posteriors given Information
- 230 negotiatiors at COP21 in Paris. Replicated with MBA students

Priors

	<2°C	2-3	°C	3-4°C	>4	So
1 -	t	1 - •	- 1	- t -	1	• •
0.9	++	0.9	- 0.9	- + -	- 0.9	-
0.8	+ -	0.8	- 0.8	- + ·	- 0.8	t- -
0.7	-	0.7	- 0.7		0.7 -	t- t
0.6	ŧ	0.6	- 0.6		0.6 -	-
0.5	+ +	0.5	- 0.5		- 0.5	-
0.4	-	0.4	- 0.4		- 0.4	-
0.3	-	0.3 -	- 0.3		- 0.3	-
0.2	-	0.2	- 0.2		0.2 -	-
0.1		0.1 -	- 0.1		0.1 -	
0	۔	0	- 0		0-	-

Anchoring on Beliefs

Impact of display format

