

Coupling energy-models for better representation of cross-sectoral dynamics

Keywan Riahi IIASA and Technical University Graz, Austria

Snowmass: Assessing Transformation Pathways Post-Paris and Implications for IA Research - 20 July 2016 IIASA, International Institute for Applied Systems Analysis

Key energy challenges

Energy Access

Climate Change

Energy Security

Water Scarcity

Land & Food

Local Air Pollution

Image sources: NASA, http://www.powernewsnetwork.com/white-house-releases-plan-to-cut-oil-imports-by-13-by-2025/1798/, http://wheresmyamerica.wordpress.com/2007/08/26/i-cant-see-my-america/, http://www.americanprogress.org/issues/green/report/2009/05/14/6142/energy-poverty-101/, http://today.uconn.edu/blog/2010/12/reclaiming-water-a-green-leap-forward/, http://te.wikipedia.org/wiki/%E0%B0%A6%E0%B0%B8%E0%B1%8D%E0%B0%A4%E0%B1%8D%E0%B0%B0%E0%B0%82:Forest_Osaka_Japan.jpg

IIASA Integrated Assessment Framework

IIASA Integrated Assessment Framework

IIASA Integrated Assessment Framework

Exogenous inputs from other models

(example: GHM/ESM for water impacts on electricity)

Streamflow

van Vliet et al., NCC, 2016

Water temperature

van Vliet et al., NCC, 2016

Affected fossil power plants

van Vliet et al., NCC, 2016

Emulators for linking energy to other systems/impacts

(examples: bioenergy & water adaptation)

Bio-GHG emulator for linking the energy and land-use model

Fricko & Havlik et al (surface based onGLOBIOM)

S Lu Liu et al, forthcoming

Overall diagram

4 GHM \times 5 GCM \times (1 hist + 4 RCP) = 100 combinations

Preliminary results

Global ISI-MIP data vs local flow information Upper Indus Basin

Khan & Khan, 2016

A model integration methodology

Develop "nesting" methodology of (sub-)national models within the global IAM framework

Systems Integration

(Example: water-energy nexus in Saudi Arabia)

Water constrained low-carbon energy pathways

 Integrated long-term development scenarios

S.C. Parkinson et al. (2016), *Environmental Science & Technology*

S

S

S.C. Parkinson et al. (2016), *Environmental Science & Technology*

S

Transmission – 2010 (base year)

Transmission Results – 2050

Water and GHG baseline

Transmission Results – 2050

GHG mitigation only

S

Transmission Results – 2050

Sustainable water management + GHG mitigation

S

science for global insight

Thank you!

IIASA, International Institute for Applied Systems Analysis