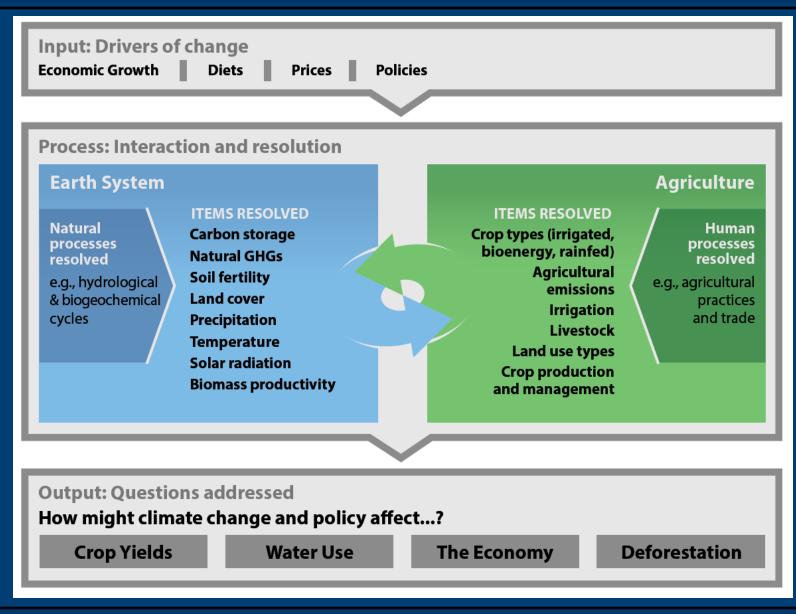
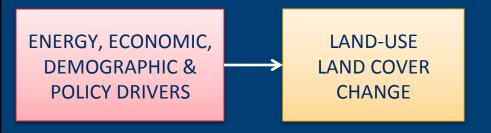


Coupling for IAM: LAND



Erwan Monier


Massachusetts Institute of Technology Snowmass 2016 Week 2

July 26, 2016

LAND IN INTEGRATED ASSESSMENT MODELS

"RCP LULCC FRAMEWORK"

"RCP LULCC FRAMEWORK"

- Resolution of agro-forestry sector in global economic model
 - Representation of various crop types
 - Managed and natural forests
 - Pastureland and natural grassland
 - Livestock
- Interaction with other sectors of the economy
- Representation of trade between various regions of the world
- Demand for agriculture
 - Crops for food & bioenergy
 - Forest products for construction and bioenergy

AGGREGATION OF ELECTRICITY IN IGSM

Regions	Industries	
United States	Crops	
Canada	Livestock	
Japan	Forestry	Coal
Australia-New Zealand	Food	
European Union	Coal	Gas Defined ail
Eastern Europe	Crude Oil	Refined oil
Russia plus	Refined Oil	Hydro Nuclear
Mexico	Gas	Wind
China	Electricity	Solar
India	Energy Intensive Industry	
East Asia	Other Industry	Biomass
Rest of Asia	Services	Natural gas combined cycle
Africa	Commercial Transportation	Integrated gasification
Middle East	Household Transportation	combined cycle
Brazil		
Latin America		

DISAGGREGATING CROPS IN IGSM

Regions	Industries	Paddy Rice
United States	Crops	Wheat
Canada	Livestock	Other grains
Japan	Forestry	Vegetables, fruits,
Australia-New Zealand	Food	& nuts
European Union	Coal	Oil Seeds
Eastern Europe	Crude Oil	Sugar Cane, Beet
Russia plus	Refined Oil	Fiber Crops
Mexico	Gas	Grass Biomass
China	Electricity	Woody Biomass
India	Energy Intensive Industry	Other Crops
East Asia	Other Industry	
Rest of Asia	Services	
Africa	Commercial Transportation	
Middle East	Household Transportation	
Brazil		
Latin America		

"MIT LULCC FRAMEWORK"

ENERGY, ECONOMIC, DEMOGRAPHIC & POLICY DRIVERS

+

CLIMATE IMPACTS ON LAND PRODUCTIVITY & GHG EMISSIONS LAND-USE LAND COVER CHANGE

"MIT LULCC FRAMEWORK"

LAND-USE

LAND COVER

CHANGE

- Requires climate information

 Climate driven by GHG & aerosols emissions (incl. LULCC w/o climate impacts)
- Requires coupling to a terrestrial ecosystem model / crop model
 - With representation of carbon-Nitrogen dynamics (GHG emissions)
 - Consistent physical and economic representation of crops
- Uncertainty analysis
 - Single crop model vs. crop emulator
 - Single climate model vs. multi-model ensemble vs. climate emulator

=> Different LULCC projection depending on climate / crop model simulation

"ENHANCED LULCC FRAMEWORK"

+

ENERGY, ECONOMIC, DEMOGRAPHIC & POLICY DRIVERS

+

CLIMATE IMPACTS ON LAND PRODUCTIVITY & GHG EMISSIONS CLIMATE & ECONOMIC IMPACTS ON IRRIGATION AVAILABILITY

LAND-USE LAND COVER CHANGE

"ENHANCED LULCC FRAMEWORK"

 ENERGY, ECONOMIC,
 +
 CLIMATE IMPACTS
 +
 CLIMATE IMPACTS

 DEMOGRAPHIC &
 +
 ON LAND
 +
 ECONOM

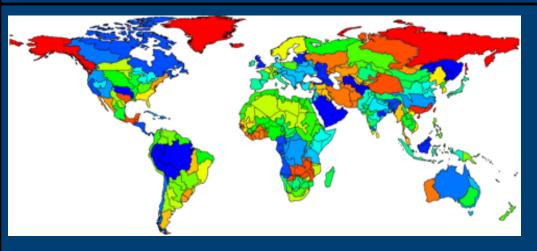
 POLICY DRIVERS
 +
 PRODUCTIVITY &
 ON IRR

 GHG EMISSIONS
 +
 AVAIL

CLIMATE & ECONOMIC IMPACTS ON IRRIGATION AVAILABILITY

LAND-USE LAND COVER CHANGE

- Requires <u>coupling</u> to a water resources management model
 - Competition for water between energy, agriculture and domestic uses
 - Water availability responds to climate change (i.e. runoff)
 - Water demand responds to climate change (i.e. irrigation needs)
- Requires disaggregation of rainfed and irrigated croplands in the economic model
- Requires estimating the cost and scope to expand irrigable land given available water resources

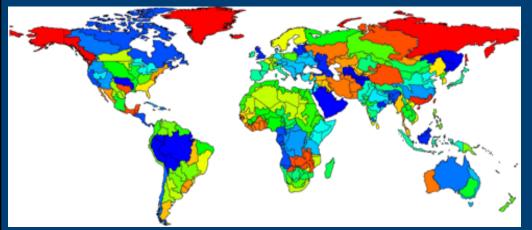

AGGREGATION IN THE STANDARD IGSM MODEL

Regions	Industries	Production factors		
United States	Crops	Capital		
Canada	Livestock	Labor		
Japan	Forestry	Coal resources		
Australia-New Zealand	Food	Oil resources		
European Union	Coal	Gas resources		
Eastern Europe	Crude Oil	Crop land		
Russia plus	Refined Oil	Harvested Forest land		
Mexico	Gas	Natural forest land		
China	Electricity	Managed pasture		
India	Energy Intensive Industry	Natural grass land		
East Asia	Other Industry			
Rest of Asia	Services			
Africa	Commercial Transportation			
Middle East	Household Transportation			
Brazil				
Latin America				

EXTENDING LAND TYPES IN THE IGSM

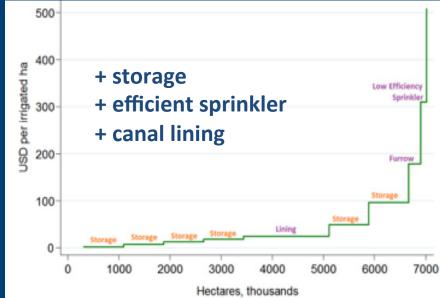
Regions	Industries	Production factors		
United States	Crops	Capital		
Canada	Livestock	Labor		
Japan	Forestry	Coal resources		
Australia-New Zealand	Food	Oil resources		
European Union	Coal	Gas resources		
Eastern Europe	Crude Oil	Rainfed Crop land		
Russia plus	Refined Oil	Irrigated Crop land		
Mexico	Gas	Harvested Forest land		
China	Electricity	Natural forest land		
India	Energy Intensive Industry	Managed pasture		
East Asia	Other Industry	Natural grass land		
Rest of Asia	Services			
Africa	Commercial Transportation			
Middle East	Household Transportation			
Brazil				
Latin America				

PRELIM. RESULTS: IRRIGATION CONSTRAINTS IN IGSM


282 Water Basins Interact with 17 IGSM Regions

In each basin:

- 10 storage upgrade options, each with a specific cost and amount of additional water available
- translates into additional hectares of irrigated land based on crop/climate characteristics
- Irrigation by lining canals and efficiency improvements (4 options @ different costs)


Source: Winchester et al. (2016) The Impact of Water Scarcity on Food, Bioenergy and Deforestation, GTAP Fall Meeting paper, also MIT JP report (forthcoming).

PRELIM. RESULTS: IRRIGATION CONSTRAINTS IN IGSM

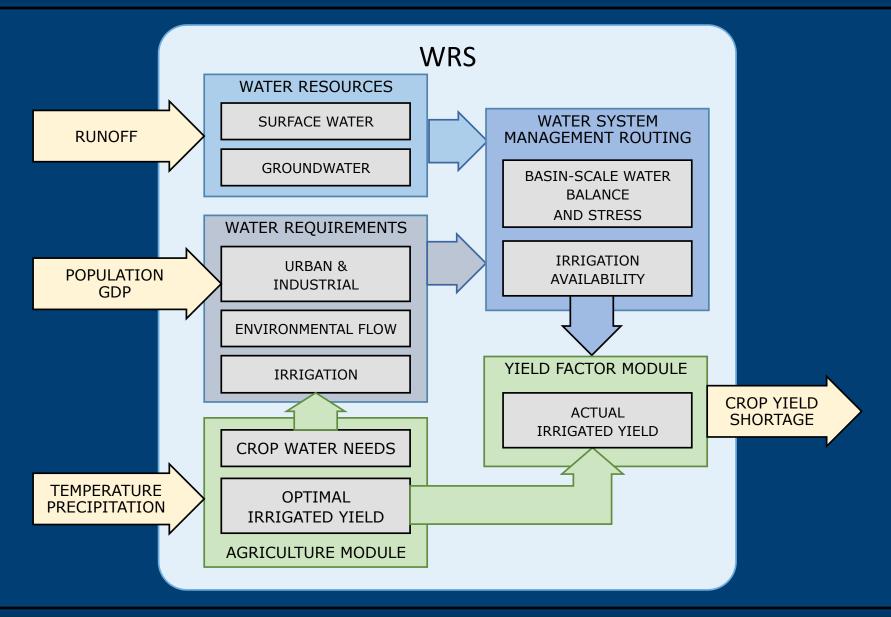
282 Water Basins Interact with 17 IGSM Regions

Supply curve for additional irrigable land in the Mississippi River water region

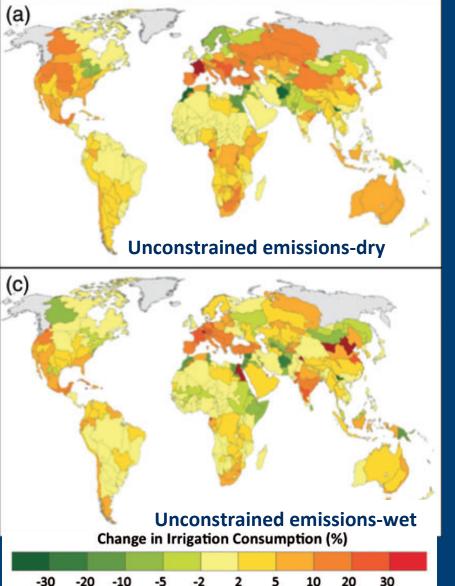
Source: Winchester et al. (2016) The Impact of Water Scarcity on Food, Bioenergy and Deforestation, GTAP Fall Meeting paper, also MIT JP report (forthcoming).

In each basin:

- 10 storage upgrade options, each with a specific cost and amount of additional water available
- translates into additional hectares of irrigated land based on crop/climate characteristics
- Irrigation by lining canals and efficiency improvements (4 options @ different costs)

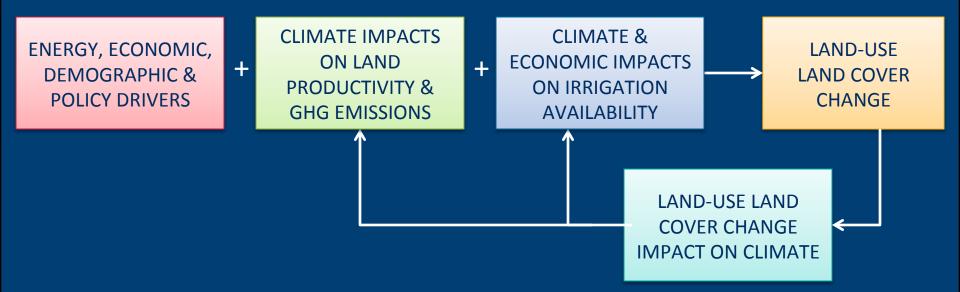

Effect of Water Limits on Land, billion hectares

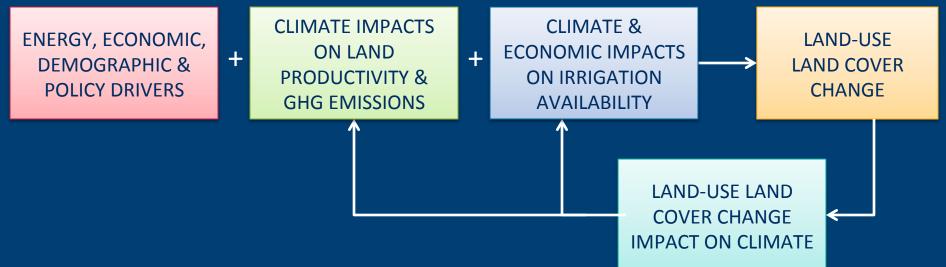
Scenario	Crop land type	2010	2025	2050
Proportional expansion,	rainfed	1.24	1.24	1.39
rainfed & irrigated	irrigated	0.34	0.35	0.39
Irrigated/rainfed split	rainfed	1.24	1.26	1.44
current water supply	irrigated	0.34	0.32	0.35
Irrigated/rainfed split	rainfed	1.24	1.28	1.46
80% water supply	irrigated	0.34	0.32	0.33


- Greater increase in rainfed land than reduction in irrigated land
- Irrigated land is more productive
- Total expansion by 2050: .20 (prop.); .21 (current); .23 (80%)

Source: Winchester et al. (2016) The Impact of Water Scarcity on Food, Bioenergy and Deforestation, GTAP Fall Meeting paper, also MIT JP report (forthcoming).

WATER RESOURCES SYSTEM (WRS) MODEL

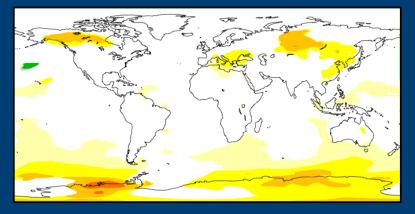

IRRIGATION REQUIREMENT UNDER GLOBAL CHANGE


- Climate change increases irrigation water requirements by 2050 in most regions
- Higher temperatures increase evapotranspiration except in a few areas where precipitation increases more
- Different climate model runs results in different pattern, magnitude and even sign of changes in irrigation consumption

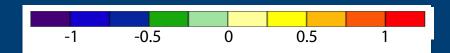
Source: Schlosser et al. (2014) The future of global water stress: An integrated assessment *Earth's Future* **2(8):** 341-361

"TOWARD A FULLY INTEGRATED LULCC FRAMEWORK"

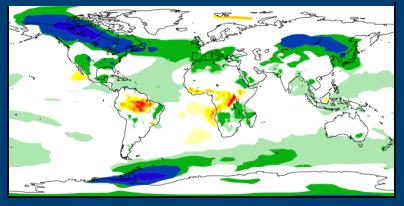
"TOWARD A FULLY INTEGRATED LULCC FRAMEWORK"

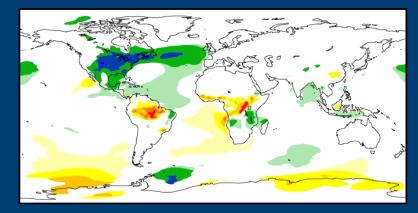


- Requires <u>coupling</u> with Earth System Model
- Focuses on feedback, but major challenge for uncertainty analysis
 - Single ESM
 - Computationally expensive
- Significant impact of LULCC on climate locally & regionally


=> could be a paradigm shift in LULCC modeling

LAND-USE CHANGE IMPACT ON CLIMATE


BIOGEOCHEMICAL IMPACTS (TEM) GHG LAND-USE CHANGE EMISSIONS


MARGINAL EFFECT OF LARGE-SCALE BIOFUEL DEPLOYMENT BY 2050

BIOGEOPHYSICAL IMPACTS (CLM) CHANGE IN ALBEDO & HYDROLOGY

TOTAL IMPACTS (MESM)

Source: Hallgren et al. (2013) Climate impacts of a large-scale biofuels expansion. GRL, 40(8), 1624-1630.

ALWAYS THE SAME ISSUES

ALWAYS THE SAME ISSUES

1) Spatial resolution / uncertainty analysis

- Low resolution
 - More robust downscaling from economic region to grid level
 - Better for uncertainty analysis
- High resolution
 - More relevant to end users
 - Better representation of processes (i.e. extreme events)

ALWAYS THE SAME ISSUES

1) Spatial resolution / uncertainty analysis

- Low resolution
 - More robust downscaling from economic region to grid level
 - Better for uncertainty analysis
- High resolution
 - More relevant to end users
 - Better representation of processes (i.e. extreme events)
- 2) Temporal resolution / coupling strategies
- Hourly-to-daily for extreme events
- 5-year time step for the economic model
- Is the mean land productivity and/or water scarcity the most relevant metrics to inform the economic model (instead of more detailed statistics)

MANY ISSUES NOT ADDRESSED IN THIS TALK

MANY ISSUES NOT ADDRESSED IN THIS TALK

- Natural disturbances (wildfires, storms, pest...)
- Natural plant migration
- Protected areas
- Expansion of available land through permafrost thaw
- Atmospheric chemistry (ozone damage, nitrogen deposition...)
- Past land legacy effects impact present and future GHG fluxes and land productivity (past land transitions/irrigation practices)

THANK YOU

ANY QUESTIONS?