

Understanding Aggregate Economic Impacts The JRC PESETA II project

Juan-Carlos Ciscar, European Commission Snowmass, 24 July 2014

1. PESETA II, process model approach

Communities

Information flow process

- 2. River floods economic analysis
- 3. Abrupt climate change
- 4. Future research

1. PESETA approach: Integration with process models (deriving point estimates, rather than via damage functions)

Benefit from process models' knowledge

Building climate impact modeling capabilities within JRC

- Existing data and resources within JRC: process models
- Operational and research models
- Learning-by-doing within JRC

To support the EC services on adaptation policy

- EU adaptation strategy (2013
- DG AGRI, CLIMA, ENER, ENV, MOVE, REGIO, Others

Project overview

3 steps

- 1. Start with high space-time resolution of climate data, common to all impacts (considers spatial correlation) Climate modelling community 2. Use of bottom-up biophysical impact models Biophysical impact community 3. Integration of market impact results under an economic model
 - Economics

Stage 1. Climate data input per impact category

European Commission

Sector	Input variables	Time resolution	Spatial Resolution	
	Maximum air temperature	Daily	25*25, 50*50 Km²	
	Minimum air temperature			
	Total Precipitation			
Agriculture	Global solar radiation			
Agriculture	Air relative humidity maximum and minimum			
	Wind speed			
	Reference evapotranspiration			
	Vapour pressure deficit			
	Average Temperature		Country	
Energy	Average Precipitation	Daily		
	Wind Speed			
	Maximum, Minimum and Average Temperature	Daily	25*25, 50*50 Km ²	
	Precipitation			
	Humidity			
River Floods, Droughts	Windspeed			
	Solar + thermal radiation			
	Albedo			
	Dewpoint temperature			
	Average Air Temperature		25*25, 50*50 Km ²	
Forest Fires	Relative Humidity	A		
Forest Fires	Wind Speed	Annual		
	Average Precipitation			
Transport infrastructure	Average Temperature		25*25, 50*50 Km ²	
	Maximum Temperature	Daily		
	Extrene Precipitation			
To stars	Average Temperature, wind speed,			
Iourism	precipitation and humidity	Daily	NUTS 2 Regions	
	Average Temperature	Annual; Monthly		
Forest Species Habitat Suitability	Maximum Temperature	Monthly		
	Minimum Temperature	Monthly 25 25, 50 50 Kh		
	Average Precipitation	Annual; Monthly		
Human Health	Maximum Temperature (June-September)	Daily	NUTS 2 Pagions	
	Average Temperature	Dally	NUTS Z REGIUNS	

Stage 2. Biophysical Modelling

Stage 3. Economic modelling

- Multi-sector, multi-country Computable General Equilibrium (CGE) model (GEM-E3 model)
 - Idealised setup without market imperfections or rigidities
 - Market equilibria in long term
 - Ignores short-term adjustment costs
- CGE as an accounting framework: direct and indirect effects; includes cross-sectoral and crosscountry effects
- Comparative static framework: impact of future climate change (2080s) on today's economy
- Assuming only private adaptation

losses

European Commission

Communities

Modelling teams

- Climate modellers (physicists)
- Biophysical impact modellers (agriculture engineers, industrial engineers, coast engineers, physical geographers, biologists, physicists, forest engineers)
- Economic modelling (economists, engineers)
- Horizontal support (software engineer)

Advisory and review board

- Physicists
- Economists
- Engineers

Authors

Coordination	JC Ciscar (ed.), L Feyen, C Lavalle, A Soria, F Raes	
Climate data pre-processing	M Rozsai	
Climate bias corrected data	A Dosio	
Agriculture biophysical	M Donatelli, A Srivastava, D Fumagalli, S Niemeyer	
Agriculture CAPRI	S Shrestha, P Ciaian, M Himics, B Van Doorslaer	
River floods	R Rojas, L Feyen, A Bianchi	
Droughts	G Forzieri, L Feyen, R Rojas, A Bianchi	
Energy	P Dowling	
Transport	F Nemry, H Demirel	
Forest Fires	A Camia, G Libertà, J San Miguel	
Habitat Suitability	D de Rigo, G Caudullo, J San Miguel, JI Barredo	
Tourism	S Barrios, N Ibañez	
Human Health	D Paci	
Economic, CGE analysis	JC Ciscar, M Perry, D van Regemorter, J Pycroft, T Revesz, B Saveyn, T Vandyck, Z Vrontisi	
Tipping points	D Ibarreta, F Nemry	
Land use modelling	C Lavalle, C. Baranzelli, I Vandecasteele, F Batista e Silva	

(1) Selection of climate and socio-economic projections:
Proposed by climate team, according to the needs and available data
Decided by coordination team, in consultation with all sectoral teams

 (2) Data preparation/transformation
Climate data (central web site): from cell to country-level or aggregated cell
Economic data: from country to sub-country-level

Information flow process (2/2)

(3) Information lacking

Downscaling of socioeconomic data to subnational level Dynamic evolution of population and GDP Agriculture 2080s and Coastal impacts results not @ JRC (decision to use results from FP7 ClimateCost)

(4) Challenges

Dynamic assessment: decision to go static Adaptation: heterogeneous across sectors Communication, Press Note:

> Aggregation & economic message "What if global temperature?" Benefits of mitigation (underestimation of benefits) Uncertainty

EU Regions

Reference run: headlines

- Agriculture: EU agriculture productivity could be reduced by 10% in the 2080s; by 20% in the Southern Europe region
- Energy: EU Energy demand could fall by 13% (with an increase in Southern Europe)
- River floods: Flood damages could more than triple and people affected almost double
- Droughts: EU cropland affected by droughts could multiply by seven (reaching 700,000 km2/year). People affected by droughts could also multiply by seven (reaching 144 million/year)

Reference run: headlines (cont.)

- Forest fires: Forest fires could more than double in Southern Europe (reaching 800,000 Ha)
- Transport infrastructure: Damages due to climate change could increase by 50%
- Coasts: Sea floods could more than triple
- Tourism: tourism expenditure could drop by €15 billion/year, with Southern Europe half of that
- Tree species habitat suitability of Albies alba: shift towards Northern and higher elevation areas
- Human health: Mortality could double (reaching 100,000 deaths/year)

Welfare change (%GDP), Reference and 2°C EU and regional breakdown

European Commission

Transboundary effects (Welfare change, million €)

	Coast / Central Europe North	Agriculture / Southern Europe
Northern Europe	-491	-173
UK & Ireland	-1,677	-798
Central Europe north	-20,518	-1,380
Central Europe south	-1,966	-1,209
Southern Europe	-1,530	-14,979
EU	-26,181	-18,540

2. River floods

1. Daily and 25 km climate data

2. Hydrological model (LISFLOOD)

3. Damages as capital losses and obliged consumption, lead to welfare losses

Results for 2080s

 Annual people affected and direct economic damages could double, compared to past control (static economy)

- Economic damage could be much higher with economic growth (more assets exposed).

Commission

Welfare impacts of river floods in worst, reference and best cases (€ million)

	Worst case	Reference	Best case
Northern Europe	-493	212	-26
UK & Ireland	-13,462	-2,965	110
Central Europe north	-3,702	-469	-383
Central Europe south	-9,818	-3,210	-57
Southern Europe	-4,489	-1,037	-2,603
EU	-31,965	-7,469	-2,958

River Floods Relative change in Expected annual damage

Reference Run Reference Variant 1

Reference Run Reference Variant 2

European Commission

Reference Run Another Variant

River Floods Relative change in Expected annual damage

Reference Run Another Variant

3. Abrupt Climate Change, integrated modelling

Approach in PESETA II project

Selection of climate tipping points relevant for Europe

- Arctic Sea-Ice melting
- Melting of Alpine glaciers
- Greenland Ice sheet meltdown
- West Antarctic ice sheet collapse
- Collapse of the Atlantic Thermohaline Circulation
- Persistent blocking events of the jet stream

"Reverse engineering" (Lenton and Ciscar, 2013):

- 3. Biophysical impacts to economic impacts
- 2. Climate change to biophysical impacts

1. Abrupt climate change to (regional) climate change. 2012 Workshop

Scoping work

4. Future research

Some lessons from PESETA I, II

- Need of strong horizontal coordination
- Value-added from Interdisciplinary work
- Involve <u>communication</u> team from the beginning
- Advisory and review board
- Biophysical and disaggregated focus

Possible plan for PESETA III (2015-2016). Focus on

- Extreme events
- 2020-2030 time horizon
- Adaptation measures
- Economics of adaptation (FP7 ECONADAPT)

- Impacts in the Rest of the World (beyond Europe) GAP Project, FP7 HELIX project
- Focus on non-market effects (e.g. ecosystem services), Catastrophic impacts
- Macroeconomic growth model (MaGE, CEPII)
- CGE dynamic assessment (maximum entropy)
- Stochastic analysis

A tool to integrate knowledge from different disciplines

- Based on literature review, but inconsistency problems
- From historical observations (statistical analysis), but extrapolation beyond sample, instability of the function
- From process model simulations, but can be complex functions

USA damage functions

India damage functions

Yield changes

GDP changes

China ΔYield-ΔT function

Thanks for your attention!

juan-carlos.ciscar@ec.europa.eu

http://peseta.jrc.ec.europa.eu/