

Understanding Aggregate Economic Impacts The JRC PESETA II project

Juan-Carlos Ciscar, European Commission Snowmass, 24 July 2014

Outline

1. PESETA II, process model approach

Communities

Information flow process

- 2. River floods economic analysis
- 3. Abrupt climate change
- 4. Future research

1. PESETA approach: Integration with process models (deriving point estimates, rather than via damage functions)

PESETA II Project strategy

Benefit from process models' knowledge

Building climate impact modeling capabilities within JRC

- Existing data and resources within JRC: process models
- Operational and research models
- Learning-by-doing within JRC

To support the EC services on adaptation policy

- EU adaptation strategy (2013)
- DG AGRI, CLIMA, ENER, ENV, MOVE, REGIO, Others

Project overview

Integrative, granular modelling

3 steps

1. Start with high space-time resolution of climate data, common to all impacts (considers spatial correlation)

Climate modelling community

- 2. Use of bottom-up biophysical impact models Biophysical impact community
- 3. Integration of market impact results under an economic model

Economics

Stage 1. Climate data input per impact category

Sector	Input variables	Time resolution	Spatial Resolution
Agriculture	Maximum air temperature	Daily	25*25, 50*50 Km²
	Minimum air temperature		
	Total Precipitation		
	Global solar radiation		
	Air relative humidity maximum and minimum		
	Wind speed		
	Reference evapotranspiration		
	Vapour pressure deficit		
Energy	Average Temperature		Country
	Average Precipitation	Daily	
	Wind Speed	•	
River Floods, Droughts	Maximum, Minimum and Average Temperature	Daily	25*25, 50*50 Km ²
	Precipitation		
	Humidity		
	Windspeed		
	Solar + thermal radiation		
	Albedo		
	Dewpoint temperature		
Forest Fires	Average Air Temperature	Annual	25*25, 50*50 Km ²
	Relative Humidity		
	Wind Speed		
	Average Precipitation		
Transport infrastructure	Average Temperature	Daily	25*25, 50*50 Km ²
	Maximum Temperature		
	Extrene Precipitation	·	
Tourism	Average Temperature, wind speed,		
	precipitation and humidity	Daily	NUTS 2 Regions
Forest Species Habitat Suitability	Average Temperature	Annual; Monthly	25*25, 50*50 Km ²
	Maximum Temperature	Monthly	
	Minimum Temperature	Monthly	
	Average Precipitation	Annual; Monthly	
Human Health	Maximum Temperature (June-September)	Deile	NUTS 2 Regions
	Average Temperature	Daily	

Stage 2. Biophysical Modelling

Stage 3. Economic modelling

- Multi-sector, multi-country Computable General Equilibrium (CGE) model (GEM-E3 model)
 - Idealised setup without market imperfections or rigidities
 - Market equilibria in long term
 - Ignores short-term adjustment costs
- CGE as an accounting framework: direct and indirect effects; includes cross-sectoral and crosscountry effects
- Comparative static framework: impact of future climate change (2080s) on today's economy
- Assuming only private adaptation

First-order climate impacts

Capital losses

Communities

Modelling teams

- Climate modellers (physicists)
- Biophysical impact modellers (agriculture engineers, industrial engineers, coast engineers, physical geographers, biologists, physicists, forest engineers)
- Economic modelling (economists, engineers)
- Horizontal support (software engineer)

Advisory and review board

- Physicists
- Economists
- Engineers

Authors

Coordination JC Ciscar (ed.), L Feyen, C Lavalle, A Soria, F Raes

Climate data pre-processing M Rozsai

Climate bias corrected data

A Dosio

Agriculture biophysical M Donatelli, A Srivastava, D Fumagalli, S

Niemeyer

Agriculture CAPRI S Shrestha, P Ciaian, M Himics, B Van Doorslaer

River floods R Rojas, L Feyen, A Bianchi

Droughts G Forzieri, L Feyen, R Rojas, A Bianchi

Energy P Dowling

Transport F Nemry, H Demirel

Forest Fires A Camia, G Libertà, J San Miguel

Habitat Suitability D de Rigo, G Caudullo, J San Miguel, JI Barredo

Tourism S Barrios, N Ibañez

Human Health D Paci

Economic, CGE analysis JC Ciscar, M Perry, D van Regemorter, J Pycroft, T

Revesz, B Saveyn, T Vandyck, Z Vrontisi

Tipping points D Ibarreta, F Nemry

Land use modelling C Lavalle, C. Baranzelli, I Vandecasteele, F Batista

e Silva

Information flow process (1/2)

(1) Selection of climate and socio-economic projections: Proposed by climate team, according to the needs and available data Decided by coordination team, in consultation with all sectoral teams

(2) Data preparation/transformation Climate data (central web site): from cell to country-level or aggregated cell Economic data: from country to sub-country-level

Information flow process (2/2)

(3) Information lacking

Downscaling of socioeconomic data to subnational level
Dynamic evolution of population and GDP
Agriculture 2080s and Coastal impacts results not @ JRC
(decision to use results from FP7 ClimateCost)

(4) Challenges

Dynamic assessment: decision to go static

Adaptation: heterogeneous across sectors

Communication, Press Note:

Aggregation & economic message

"What if global temperature?"

Benefits of mitigation (underestimation of benefits)

Uncertainty

EU Regions

Reference run: headlines

- Agriculture: EU agriculture productivity could be reduced by 10% in the 2080s; by 20% in the Southern Europe region
- Energy: EU Energy demand could fall by 13% (with an increase in Southern Europe)
- River floods: Flood damages could more than triple and people affected almost double
- Droughts: EU cropland affected by droughts could multiply by seven (reaching 700,000 km2/year). People affected by droughts could also multiply by seven (reaching 144 million/year)

Reference run: headlines (cont.)

- Forest fires: Forest fires could more than double in Southern Europe (reaching 800,000 Ha)
- Transport infrastructure: Damages due to climate change could increase by 50%
- Coasts: Sea floods could more than triple
- Tourism: tourism expenditure could drop by €15 billion/year, with Southern Europe half of that
- Tree species habitat suitability of Albies alba: shift towards
 Northern and higher elevation areas
- Human health: Mortality could double (reaching 100,000 deaths/year)

Welfare change (%GDP), Reference and 2°C EU and regional breakdown

Transboundary effects (Welfare change, million €)

	Coast / Central Europe North	Agriculture / Southern Europe
Northern Europe	-491	-173
UK & Ireland	-1,677	-798
Central Europe north	-20,518	-1,380
Central Europe south	-1,966	-1,209
Southern Europe	-1,530	-14,979
EU	-26,181	-18,540

2. River floods

River floods impact assessment

- 1. Daily and 25 km climate data
- 2. Hydrological model (LISFLOOD)
- 3. Damages as capital losses and obliged consumption, lead to welfare losses

Results for 2080s

- Annual people affected and direct economic damages could double, compared to past control (static economy)
- Economic damage could be much higher with economic growth (more assets exposed).

Welfare impacts of river floods in worst, reference and best cases (€ million)

	Worst case	Reference	Best case
Northern Europe	-493	212	-26
UK & Ireland	-13,462	-2,965	110
Central Europe north	-3,702	-469	-383
Central Europe south	-9,818	-3,210	-57
Southern Europe	-4,489	-1,037	-2,603
EU	-31,965	-7,469	-2,958

Reference Run Reference Variant 1

Reference Run Reference Variant 2

Reference Run Another Variant

Reference Run Another Variant

3. Abrupt Climate Change, integrated modelling

Approach in PESETA II project

Selection of climate tipping points relevant for Europe

- Arctic Sea-Ice melting
- Melting of Alpine glaciers
- Greenland Ice sheet meltdown
- West Antarctic ice sheet collapse
- Collapse of the Atlantic Thermohaline Circulation
- Persistent blocking events of the jet stream

Approach in PESETA II project

"Reverse engineering" (Lenton and Ciscar, 2013):

- 3. Biophysical impacts to economic impacts
- 2. Climate change to biophysical impacts
- 1. Abrupt climate change to (regional) climate change. 2012 Workshop

Scoping work

4. Future research

Towards PESETA III

Some lessons from PESETA I, II

- Need of strong horizontal coordination
- Value-added from Interdisciplinary work
- Involve <u>communication</u> team from the beginning
- Advisory and review board
- Biophysical and disaggregated focus

Possible plan for PESETA III (2015-2016). Focus on

- Extreme events
- 2020-2030 time horizon
- Adaptation measures
- Economics of adaptation (FP7 ECONADAPT)

Other research

- Impacts in the Rest of the World (beyond Europe) GAP Project, FP7 HELIX project
- Focus on non-market effects (e.g. ecosystem services), Catastrophic impacts
- Macroeconomic growth model (MaGE, CEPII)
- CGE dynamic assessment (maximum entropy)
- Stochastic analysis

Damage functions?

A tool to integrate knowledge from different disciplines

- Based on literature review, but inconsistency problems
- From historical observations (statistical analysis), but extrapolation beyond sample, instability of the function
- From process model simulations, but can be complex functions

USA damage functions

Yield changes

GDP changes

India damage functions

Yield changes

GDP changes

China **AYield-AT** function

Thanks for your attention!

juan-carlos.ciscar@ec.europa.eu

http://peseta.jrc.ec.europa.eu/