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ABSTRACT. Noniterative, unconditionally stable numerical techniques for solving
condensational and dissolutional growth equations are given. Growth solutions are
compared to Gear-code solutions for three cases when growth is coupled to
reversible equilibrium chemistry. In all cases, results from the new growth schemes
matched Gear-code solutions nearly exactly when growth and equilibrium calcula-
tions were operator-split with a 1 s time interval. Results also matched well for a 15
s interval. With a 15 s interval, the growth-equilibrium schemes can be used in a
three-dimensional model. Longer operator splitting intervals, in some cases, induced
oscillations in concentrations caused by delays in feedback between equilibrium and
growth calculations. Simulation results indicated that gases and aerosols were closer
to equilibrium when the relative humidity was 90% than when it was 40%.
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INTRODUCTION

Among the processes affecting the size dis-
tribution and composition of atmospheric
aerosols and cloud drops are condensation,
dissolution, and evaporation. Several nu-
merical methods have been developed to
simulate condensation and evaporation.
These include finite element methods (e.g.,
Varoglu and Finn, 1980; Tsang and Brock,
1986; Tsang and Huang, 1990), discrete size
bin methods (e.g., Gelbard and Seinfeld,
1980; Toon et al., 1988; Rao and McMurry,
1989), the cubic spline method (e.g., Mid-
dleton and Brock, 1976), modified upwind
difference methods (e.g., Smolarkiewicz,
1983; Tsang and Korgaonkar, 1987), and
moments methods (e.g., Friedlander, 1983;
Whitby, 1985; Lee, 1985; Brock et al., 1986).
Dissolution and evaporation in dilute solu-
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tions have also been simulated in a number
of papers (e.g., Schwartz, 1984; Chameides,
1984; Jacob, 1986; Pandis and Seinfeld,
1989; Bott and Carmichael, 1993; Sander et
al., 1995). One paper proposed a model
that simulates dissolution and evaporation
in concentrated solutions (Wexler and Se-
infeld, 1991).

Numerical studies of aerosols require that
growth and chemistry equations be solved
at high ionic strengths. Only the last paper
listed above considered growth in aerosols
at high ionic strengths, but results were not
reported for three dimensions. Because
aerosols affect spatial gas and radiative
fields, their simulation in three-dimensions
is important. In this paper, noniterative,
unconditionally stable solutions to conden-
sational and dissolutional growth equations
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are given. Both schemes are computation-
ally fast; yet, to simulate aerosol growth at
high ionic strengths, they must be coupled
to an equilibrium solver, which is slower.
The coupled growth/equilibrium model
discussed is still fast enough to be used in
three dimensions. Predictions from the
model are compared to those from a cou-
pled ordinary differential equation
solver /equilibrium scheme for three cases.

GROWTH EQUATIONS

An equation describing condensational
growth of a component g onto particles of
size i and subsequent reversible reaction is

Loi g, (c )+ Lo
a K€ SaiCon )| 5]
(1)

(Jacobson, 1997a), where ¢, ; is the mole
concentration of species q in size bin i
(moles cm™* air), C, is the ambient vapor

mole concentration oOf species g in the gas
phase (moles cm > air), C, , ; is the surface
vapor mole concentration’ of a condensmg
species over a flat surface (moles cm ~* air),
k, ; is the mass transfer rate between the
gas phase and all particles of size i ™D,
Sg.i 1s the saturation ratio at equilibrium,
and (dc, ; ,/dt), is the rate of change in

particle Concentration of the species due to-

reversible equilibrium reactions (e.g., disso-
ciation, precipitation, etc.).

The mass transfer rate in Eq. (1) can be
approx1mated as k,;,=nmr, De,, where
n; is the number concentratlon 1 of particles
of size i (partic. cm™?), r, is the fluctuating
radius of a single partlcle and Deff is an
effective diffusion coefficient (cm? s~ ') that
accounts for the geometry of vapor colli-
sion with small particles and ventilation of
heat and vapor during sedimentation of
large particles containing liquid water. One
expression for D'l is given in Jacobson and
Turco (1995).

For condensational growth, C_ | ; is often
parameterized empirically or calculated
from the Clausius—Clapeyron equation. For
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dissolutional and surface reaction growth,

_s.; is a function of particle composition.
The surface vapor concentration of a solu-
ble, nondissociating species over a dilute
solution is

m

cC =—_9%t
45! 1000R*TH,,
Cq,i Cq.i
= L =1 (2)
¢, R*TH, H;

where m, ; = 1000c, ;/m,c,, ; is the molal-
ity of spec1es q in solution (mole kg "), R*
is the ideal gas constant (L atm mole™!
K™Y, T is temperature (K), H, is the
Henry s constant of the species (moles kg™!
atm™'), ¢, 1s the mole concentration of
dissolved gas g in size bin i (moles cm -
air), c,, ; is the mole concentration of liquid
water in size bin i, m, is the molecular
welght of water (g mole™'), and H,,
;R*TH,. Substituting Eq. (2) into Eq
(1) g1ves

dc, . dc, ;
q,1 ‘I' q,!
=k |C -5 +|— ,
dt ""( ”’H’ ) ( dt )eq

3

which is the rate of change of ¢, ; due to
dissolutional growth / evaporatlon

When strong acids or bases dissolve in
solution, they dissociate. Hydrochloric acid
(HCl) and ammonia (NH,) dissociate to
H*/Cl” and NHj /OH, respectively. In

such cases, H, ; in Eq. (3) can be replaced

with
, m, w lR TKHCI
HCL_,i= —, (4)
mH*,i'Yi,H*/Cl'
*
, _ My Y g+, Cp i R¥TK
Hyyy = ’

Yi,NH}

(5

respectively. In Egs. (4) and (5), the K’s are
equilibrium coefficients of the reactions,
HCl(g) ® H"+ CI~ and NH;(@ +H'e
NH} , respectively. In Eq. (4), y is an activ-
ity coefficient of an electrolyte pair in a
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mixture containing many electrolyte pairs.
In Eq. (5)

2
Yi g+ Yi,u+/Noj
N2
Yi,NH; Yi,NH} /NO;
2
Yi,ut/c1-
Yi,NH} /Cl-

A derivation of Egs. (4) and (5) is given in
Jacobson (1997b). Nitric acid (HNO,) dis-
solution can be treated in a manner analo-
gous to that of HCI dissolution. In Egs.
(3-), my+ ;, v ., ,and (dc, ;/dt),, must
be obtained with a chemical equilibrium
solver. The solver used here is EQUISOLV
(Jacobson et al., 1996).

To conserve mass between the gas phase
and all size bins of the particle phase, the
gas-conservation equations,

dc &
d_tq =-X [kq,i(cq _S;»icq»s’i)]’ ™
i=1

ac Ng c,
—4__Yy k,.(c -8, "") (8)
dt = q, q q, Hq,,i

are written for Eqgs. (1) and (3), respec-
tively, where, Ny is the number of particle
size bins.

SOLUTION TO DISSOLUTIONAL
GROWTH
Equations (3) and (8) represent Ny +1
equations that must be solved simultane-
ously during dissolutional growth calcula-
tions. The scheme presented here, is called
the analytical predictor of dissolution (APD)
scheme. It requires no iteration, conserves
mass exactly, and is unconditionally stable.
The solution to the dissolutional growth
equations is obtained by first assuming that
the final concentration of component g in
size bin i is calculated by integrating Eq.
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(3). The resulting expression is

!
_ Hq,i,tflcq,t
cq,i,t— S’
q,i,t—1
!
Hq,i,tflcq,t
+ Cq,i,tfl - S/
q,i,t—1
’
hSq,i,t—lkq,i,t—l
XCXp T (9)
Hq,i,t—l

where the subscripts ¢ and ¢— 1 indicate
the current time and one time step back-
ward, respectively, and 4 is the time step
size(s). This equation relies on a final con-
centration, C,,, which is currently un-
known. All final aerosol and gas concentra-
tions are constrained by the mass-balance
equation,

Np Np
Cq,t + Z (Cq,i,t) = Cq,tfl + Z (Cq,i,t—l)

i=1 i=1
=C,,. (10)

Substituting Eq. (9) into Eq. (10) and solv-
ing for C, , gives

N
Coint ZE=BI< Cqrii—1

[ hS, ki ]
[i-en] Bt
q,i,t—1 J

C,i= T , (an
q,i,t

1+IX !
+ N8
Y

q,i,t—1

[ hS, kg1 ]
x(l—exp e o Lld )}

1
Hq,i,lfl

which is the final gas concentration. This
concentration is substituted into Eq. (9) to
determine final aerosol concentrations.
Observation of Egs. (11) and (9) indicate
that neither can result in a negative con-
centration or a concentration greater than
C,:- Also, since Eq. (11) is derived from
Eq. (10) and Eq. (10) is substituted into Eq.
), C,,+Lic,;, must always equal C,,.
Unconditional stability occurs when the ab-
solute-value difference between a numeri-
cal and exact solution is bounded for all
time, regardless of the time step (Celia and
Gray, 1992). Because solutions from Egs.
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(9) and (11) are bounded between zero and
C,..> regardless of the time step, the APD
scheme is unconditionally stable. To
demonstrate, assume a gas dissolves in three
particle size bins, where k_ ; ,_; = 0.00333,
0.00833, and 0.0117 s~ !, for the respective
bins. Also, H;,6 =4.0, Sq,t 1=1.0, and
Cii-1=0 ng m~? for all bins and Cpin
=10 wg m~>. After two hours, the APD
scheme predicted C, , = 0.769, c, ; , = 3.08,
C,2,=3.08, and c,;,=3.08 ug m>, re-
gardless of whether the time step was 0.1,
10, 60, 600, or 7200 s. In sum, the APD
scheme conserves mass and is uncondition-
ally stable.

SOLUTION TO CONDENSATIONAL
GROWTH

Equations (1) and (7), together, represent
Ny + 1 ordinary differential equations when
the (dc, ;/dt)., terms are split out. The
method presented to solve these equations
is called the analytical predictor of condensa-
tion (APC) scheme. The scheme does not
require iteration, conserves mass exactly,
and is unconditionally stable.

The APC solution is obtained by assum-
ing that the final concentration of compo-
nent g in size bin i can be integrated from
Eq. (1). A resulting implicit expression is

Cq.i,t = Cq,iyi-1
thk, ;i (Cpi—80:-1Cq 5001
12)
where C, , is currently unknown. All final

aerosol and gas concentrations are con-

strained by Eq. (10). Substituting Eq. (12)

and Eq. (10) and solving for C, , gives
th 1

_ +hZN l{kq it— ls yit— lcq s i,t*l}

B 1+hENe (kg (o)

(13)

The concentration from Eq. (13) cannot fall
below zero but can increase above the total
available mass of the species in the system.
In such cases, gas concentration is limited
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by C,,=min[C, ,C]. This value now
serves as an estimate and is substituted into
Eq. (12). Equation (12) is limited by ¢, ; , =
max[c, ; ,,0] to prevent evaporation beyond
the total mass existing in each size bin. To
ensure mass conservation when the latter
limits are used, the final gas concentration
is calculated as

C tot Z cq it (14)
i=1

As with the APD scheme, the APC
scheme is unconditionally stable. C, , and

;.; are always bounded by 0 and C,oi» and
Cg .+ Xic,;, always equals Cy,. To
demonstrate assume a gas transfers be-
tween and among three particle size bins,
where k,;, . = 0.00833, 0. 001667 and
0.00667 s, for the respective bins, S
= 1.0 for all three bins, ¢, ; ;1= § and
0 g m~? for the respective bins, C =3
pgm>, and C, ;, ;=1 pgm™ "After
four hours, the APC scheme predlcted Co:
=10, ¢, 1,=218, ¢, ,,=5.36, and cq3,
=146 ug m3 regardfess of whether the
time step was 01 10, 60, 600, or 7200 s.
Thus, the APC scheme conserves mass and
is unconditionally stable.

SIMULATIONS UNDER ATMOSPHERIC
CONDITIONS

Here, simulation results of condensation
and dissolution coupled to equilibrium are
shown for three cases representing typical
conditions in coastal urban air. In all cases,
the initial particle size distribution and
composition contained four modes—one
nucleation, two subaccumulation, and one
coarse particle mode. The particles were
assumed initially to contain only sulfuric
acid, sodium chloride, elemental carbon,
and nonreacting organic carbon. Sixteen
size bins were used. The diameter of the
smallest bin was 0.02 pwm, and the volume
ratio of adjacent size bins was 5.0. Figure 1
shows the initial distribution of water and
ionic components in the particles when the
relative humidity (r.h.) was 90% and the
temperature was 298 K. The size bin struc-
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FIGURE 1. Initial model size distribution for r.h.=
90% and T=298 K.

ture used was the full-moving structure
(e.g., Jacobson, 1997a). With this structure,
particles in each size bin grow and evapo-
rate to their exact sizes.

For the first case, dissolutional growth
was coupled to equilibrium at r.h. = 90%,
over a four-hour simulation period. The
dissolving species were HNO,, NH,, and
HCIl. After each time interval of growth,
equilibrium was recalculated in each size
bin, affecting the initial aqueous molality
for the next dissolution calculation. Figure
2 shows a comparison of results from the

& 30
e 3
325 O ]
£ 20 o
g 15 3
S 10 a3
FEE] N . 5=

; Cr Na HS ]
vg, 1] swwws swwws rre ey P IVTSYTITTA A

0 05 1 15 2 25 3 35 4

Time From Start (hours)

FIGURE 2. Time-series comparison of APD/
EQUISOLYV results to SMVGEAR II/EQUISOLYV re-
sults when a 1 s interval was used between growth and
equilibrium. The solutions from both methods lie al-
most exactly on top of each other. Also shown are
equilibrium solution (circles), calculated from EQUI-
SOLYV alone. Initial conditions were r.h.=90%, T =298
K, §1N03(g) =30, NH;(g) =10, and HCl(g) =0 pug
m~°.
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APD/EQUISOLV scheme to those from
the SMVGEAR II/EQUISOLV scheme
when the time interval between growth and
equilibrium was 1 s in both cases. Figure 2
also shows that the growth /equilibrium so-
lutions nearly matched a pure equilibrium
solution after about two hours, indicating
that gas and aerosol phases were almost in
equilibrium when the relative humidity was
high. Figure 3 shows a case where the time
interval between growth and equilibrium
calculations was increased to 15 s. A time
interval of 30 s (not shown) produced
smooth, but slightly less accurate results. A
time interval of 60 s (not shown) produced
oscillations in sulfate and bisulfate concen-
trations caused by delays in feedback be-
tween dissociation reactions and growth
calculations.

For the second case, dissolutional growth
was coupled to equilibrium at r.h.=40%.
All other conditions were the same as those
for the first simulation. Figure 4 shows a
comparison of APD/EQUISOLV to
SMVGEAR II/EQUISOLYV solutions
when the time interval between growth and
equilibrium calculations was 10 s. The two
solutions matched almost exactly. Figure 4
also shows that growth /equilibrium results
converged to pure equilibrium results. In
this case, convergence took more than 10
days. In the atmosphere, perturbations, such
as emissions, chemistry, and transport af-
fect gas and aerosol concentrations over
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w25 E NO° E
3¢ A 3
‘g 20 HO0x01 3
gls cr s0,? E
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FIGURE 3. Time-series plot of APD/EQUISOLYV re-
sults when the time interval between growth and equi-
librium was 15 s. Compare to Fig. 2.
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FIGURE 4. Time-series comparison of APD/
EQUISOLV results to SMVGEAR 11/ EQUISOLYV re-
sults when a 10 s interval was used between growth
and equilibrium. The solutions from both methods lie
almost exactly on top of each other. The figure also
shows equilibrium solutions (circles), calculated from
EQUISOLYV alone. Circle values are Na,SO,=0.583;
NaCl = 0.596; NaNO; = 18.6; (NH,),S0,=0; NH,Cl=
12.8; NH,NO;=19.2; and (NH,);H(SO,),=5.68 ug
m 3. Initial conditions were r.h.=40%, T=298 K,

HNO, (g) =30, NH;(g) =10, and HCI(g) =0 pg m "~ 3,

much shorter time periods. Thus, when the
relative humidity is low, gases may not reach
equilibrium with aerosols. Figure 5 shows
the APD/EQUISOLYV solution when the
interval between growth and equilibrium
calculations was 15 s. A time interval of 60
s (not shown) produced oscillations in con-
centrations of several species.

For the third case, cloud drop formation
and with gas absorption were simulated.
Growth processes accounted for included

88X

—
S W

N # oBA4 RAMRS AALAL AAAAJ
% »

alb ot b bonaianld

NH Cl
(N}{é)';H(so‘)i
NSO,

paalaa e SO T

80 160 240 320 400 480 560
Time From Start (hours)

Summed Concentration (g m)

S W

FIGURE 5. Time-series plot of APD/EQUISOLYV re-
sults when the time interval between growth and equi-
librium was 15 s. Compare to Fig. 4.
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dissolution of HNO,(g), NH(g), and HCI(g)
and condensation of H,SO,(g) and H,O(g).
Conditions for the simulation are described
in the caption for Fig. 6. The figure shows a
time-series comparison of the
APD/APC/EQUISOLV solution to the
SMVGEAR II/EQUISOLYV solution when
the time interval between growth and equi-
librium was 10 s. The solutions from the
two schemes matched exactly for almost all
species. Figure 7 shows the size distribution
of liquid water initially, after growth, and
after evaporation, for the simulations shown
in Fig. 6. In the case of cloud drop growth,
a longer time interval of 60 s (not shown)
between growth and equilibrium calcula-
tions did not produce oscillations in con-
centrations because dilute solutions molli-
fied the feedback of dissociation reactions
on growth calculations.

COMPUTER TIMINGS

Computer timing tests were performed for
the cases shown in Figs. 3 and 5. Simulation
times shown are for growth and equilibrium

-11;40: T T T T 3
3sE 3
(] 3 . 3
s 3
K= E
3% [ woxooo _so % 3
Ezo_ N pd E
15 b~ E
Q o 3
© 10 N ]
———

%5__ N o 3
‘30..1...1..41...1.,-
1

0.2 0.4 0.6 0.8
Time From Start (hours)

c TIY

FIGURE 6. Time-series comparisons of APD/APC/
EQUISOLYV results to SMVGEAR 11/ EQUISOLYV re-
sults when a 10 s interval was used between growth
and equilibrium for both schemes. The two solutions
lie almost exactly on top of one another for all species
except liquid water. Initial conditions were T=298 K,
HNO,(g) =30, NH;(g) =10, HClI(g) =0, and H,SO,(g)
=15 pg m~>. At time zero, the r.h. was increased
from 90% to 100.001%. The r.h. was then reset to
100.001% after every 10 s growth calculation for the
first five minutes. After forty minutes, the r.h. was
reduced to 90%.
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FIGURE 7. Model size distribution initially, after
growth, and after evaporation obtained from the simu-
lation shown in Fig. 6. Growth solutions for both
APD /APC/EQUISOLV (APD) and SMVGEAR/
EQUISOLYV (SMV) are shown.

calculations, together. Equilibrium calcula-
tions took more than 90% of the total time
in both cases. Test were performed on the
Cray J-916, a vector processing machine
with a speed approximately one-fifth the
speed of a Cray 90. The simulation shown
in Fig. 3 required 0.179 s per grid cell per
hour of simulation on the Cray J-916. For a
20,000-cell grid, this translates to about 23.9
hours per day on the Cray J-916 and 4.78
hours per day on the Cray 90. The simula-
tion shown in Fig. 5 required 1.19 s per grid
cell per hour of simulation. For a 20,000-cell
grid, this translates to about 160 hours per
day on the Cray J-916 and 31.9 hours per
day on the Cray 90. The solution time for
the low relative humidity case was greater
than that for the high humidity case be-
cause more equilibrium equations were
solved in the former case. The computer
times of the APC and APD schemes, which
are noniterative, were approximately one-
half those of SMVGEAR 1II, which is itera-
tive. Because the matrix of partial deriva-
tives in SMVGEAR 1II was sparse and re-
quired no fill-in, SMVGEAR 1I speeds were
fast for this application.

CONCLUSIONS

Noniterative, unconditionally stable, mass-
conserving numerical schemes were devel-
oped to solve growth equations. The analyt-

Numerical Techniques to Solve Growth Equations 497

ical predictor of condensation (APC)
scheme solves condensational growth equa-
tions, and the analytical predictor of disso-
lution (APD) scheme solves dissolutional
growth equations. Results from the APD
and APC schemes were compared to
Gear-code (SMVGEAR II) results when
growth was coupled to an equilibrium solver
(EQUISOLV). In the three cases tested,
APD/APC/EQUISOLV solutions
matched SMVGEAR II /EQUISOLYV solu-
tions when the time interval between growth
and equilibrium was 1 s. Solutions were
also good when the time interval between
growth and equilibrium was 15 s. When the
latter time interval is used, the coupled
equilibrium /growth schemes can be used
in three-dimensions. Simulation results in-
dicated that, at a high relative humidity,
growth /equilibrium approached pure equi-
librium after about two hours. At a low
relative humidity, equilibrium was reached
after more than ten days.

This work was funded by grants from the Environmental
Protection Agency under assistance agreement 823186-
01-0, the Charles Lee Powell Foundation, and the Na-
tional Science Foundation under agreement ATM-
9504481.
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