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Abstract—This paper explores the feasibility of incorporating
non-interferometric sidescan sonar data into a Terrain-Relative
Navigation (TRN) filter. Standard TRN methods using downward-
looking ranging sensors work well in general, but can lose
accuracy when flying over terrain low in information, i.e. flat.
The incorporation of side-looking information could potentially
augment TRN performance in locally flat terrain. Sidescan sonar
is chosen for incorporating side-looking information due to its
low cost, low power and because is it a sensor commonly found
on AUVs. Specifically, a method is presented to correlate acoustic
shadows in a measured sidescan signal with shadows predicted
based on the bathymetry map. These acoustic shadows are
significant drops in the sidescan sonar intensity signal in the
time-of-flight data. Results are presented using field data from
Monterey Bay Aquarium Research Institute (MBARI) Dorado-
class AUV runs that demonstrate the viability of using sidescan
sonar acoustic shadow information for TRN.

I. INTRODUCTION

Terrain-Relative Navigation (TRN) is an emerging tech-
nology for localization of autonomous underwater vehicles
(AUVs). TRN solutions rely on the correlation of a bathymetric
terrain map with downward-looking range measurements, for
example the four ranging beams of a doppler velocity log
(DVL). TRN has been demonstrated successfully in the field
with meter-level accuracy [1], however, when flying over
terrain low in information, i.e. flat, TRN accuracy can be
degraded [2].

The incorporation of side-looking information holds the po-
tential to augment TRN performance over flat terrain. Specif-
ically, if there is bathymetric information port or starboard,
fusing side-looking information with standard downward-
looking measurements could enable a more accurate navigation
estimate. While there are multiple sensors that could measure
these side-looking data, including multibeam sonars, interfero-
metric sidescan sonars as in [3], and non-interferometric sides-
can sonars, this paper focuses on the use of non-interferometric
sidescan sonars because they are ubiquitous in the AUV
community, and are comparatively less expensive and lower
power than multibeam sonars and interferometric sidescan
sonars.

This paper demonstrates the feasibility of non-
interferometric sidescan sonar as a sensor for TRN. Navigation
results are presented using AUV field data that demonstrate
TRN performance using sidescan sonar data comparable to
DVL-based TRN. Specifically, methods to correlate sidescan
sonar signals with a bathymetric terrain map for aid in TRN

(a) Sidescan sonar image (starboard)

(b) Acoustic shadows

Figure 1: Sidescan sonar image and acoustic shadows. (a)
The starboard sidescan image is composed of return intensities
for measured time of flight, stacked vertically across multiple
measurements made over a run of roughly 500m distance
travelled. (b) The acoustic shadows, shown in black, are large
drops in intensity, and are extracted by thresholding.

by exploiting acoustic shadow data are presented. Acoustic
shadows are significant drops in sidescan sonar intensity
signal in the time of flight domain. Figure 1 shows starboard



sidescan sonar signals accumulated over roughly 500m of
vehicle distance travelled, along with identified acoustic
shadows.

A. Sidescan Sonar Returns

Sidescan sonar operates by emitting a single pulse of
acoustic energy into the water column, then listening for return
signal, as illustrated by Figure 2. Sidescan sonar data comprise
return intensities for time of flight values, as opposed to range
in given beam directions as with a multibeam sonar or DVL.
As such, there is an unavoidable ambiguity in extrapolating
spatial information from sidescan sonar data, and some as-
sumption, e.g. flat bottom, must be made in order to do so.

Sidescan sonar data is primarily used in the context of
sidescan imagery. These images are often used for detection
of man-made objects on the seafloor, e.g. pipelines, ships, or
mines as in [4].

To incorporate sidescan sonar data into a TRN filter, a
measurement model must be defined that takes as inputs
a map and expected vehicle pose and outputs an expected
sensor signal, which can then be correlated with a measured
sensor signal. Forming a measurement model for sidescan
sonar intensity return values is difficult, as sidescan intensity
returns are complex functions of grazing angle, terrain surface
composition, and water properties [5]. Further, there are gains
and filters applied to the raw signal internal to the sensor
which are often, as is the case with this work, unknown to the
operator. As such, predicting the intensity signal accurately
requires more than a vehicle pose estimate and bathymetry
map alone. Acoustic shadows in the intensity signal, however,
are determined primarily by line of sight occlusion due to the
geometry of ensonified terrain relative to the sonar transducer,
and are subsequently well-suited to bathymetry-based correla-
tion techniques.

II. RELATED WORK

Sidescan sonar returns have been successfully utilized in
navigation solutions in the past, however these solutions differ
from the approach presented in this paper. Some work has
focused on the use of sidescan images to eliminate navigation
drift by matching sidescan image features across multiple
sidescan images, assuming a flat seafloor to extrapolate spatial
information from sidescan returns. For example, in [6] a
method is proposed to detect and match landmarks in sidescan
imagery by level set evolution on Haralick feature maps, where
the nature of the landmark registration is similar in nature
to visual feature matching. Also, the work of Fallon et al.
[7] matched sidescan image features across multiple sidescan
images and fused the spatial matching with acoustic ranging
from a surface vessel for navigation drift mitigation.

In a similar vein, sidescan sonar has been used in AUV
Simulataneous Localization and Mapping (SLAM) solutions in
the context of landmark detection and matching for improved
navigation. In [8], distinctive features are identified in the
sidescan sonar imagery, and matched across images to estimate
and track landmark positions. These landmark correspondences
are used to improve the navigation estimate in order to project
a more smooth and consistent sidescan map. Once again, a

Figure 2: Sidescan sonar acoustic pulse and return diagram.
The top diagram depicts a single pulse of acoustic energy
(green) emitted at a given timestep. Intensity returns are
recorded by time of flight and stitched together vertically to
produce the sidescan sonar time of flight image shown in the
lower diagram. Blue indicates low intensity returns in the
sidescan image. The low return area in the middle of the
sidescan image denotes the minimum time of flight returns
according to the AUV altitude and minimum return angle.
Note: the horizontal axis is time of flight, unlike the usual
display in distance (e.g. meters) when a flat bottom assumption
has been employed.

flat bottom assumption was necessary in order to extrapolate
spatial information from sidescan sonar returns.

The work presented in this paper differs from these past
works in that the presented method produces a navigation
estimate with respect to an a priori terrain map, rather than
relative to previous sidescan images. Further, in this work
there is no need for a flat bottom assumption in order to
disambiguate the sidescan sonar returns, as expected signals
are generated from a bathymetry map and projected into the
sidescan sonar time of flight domain, which is an unambiguous
mapping.

III. METHOD

For TRN, a measurement model must be defined that
allows the correlation of a measurement to an expected mea-
surement. The correlation methods presented in this paper
detect acoustic shadows in the measured sidescan sonar signal
and correlate them with expected shadows. Expected shadows
are generated for a given pose estimate with respect to a stored
terrain map by first extracting a bathymetry profile along the
scan plane from the terrain map. Occluded terrain points are



identified in the profile according to line of sight from the
sonar transducer, and these points are projected into the time
of flight domain to generate expected shadows by the following
relation:

τ =
2r

c
(1)

where τ is the time of flight, r is the range from the sonar
transducer to the terrain point and c is the local speed of
sound estimate. Measured shadows are identified by simple
intensity thresholding, where the threshold used in this work
is 0.7 of the maximum return intensity. Figure 3 provides an
example of scan plane bathymetry profile extraction, expected
shadow generation, and identification of a measured shadow
using AUV field data. It should be noted that all intensity
values for the sidescan sonar data presented in this paper are
the logarithms of the raw sidescan intensity returns.

(a) Sidescan plane bathymetry terrain profile

(b) Expected visibility in time of flight domain

(c) Sidescan sonar measurement

Figure 3: Measured and expected acoustic shadow identifi-
cation. (a) Bathymetry terrain points along sidescan scan-
plane. Red points are occluded according to line of sight
from sonar transducer. (b) Expected visibility in the time of
flight domain for a given pose estimate. Expected acoustic
shadows are identified in red. (c) Sidescan measurement, with
identified acoustic shadows identified in red. Note: the vertical
alignment of the top figure bathymetry occlusions with the
time of flight occlusions is incidental; for example, were the
altitude different, this alignment would not be preserved, and
in general should not be expected.

The alignment of expected and measured acoustic shad-
ows drives measurement weighting, which is used in non-
parametric filtering (e.g. particle filter or point mass filter) to
determine the confidence in a given pose estimate. For each
pose estimate, expected shadows are generated and correlated
against measured shadows.

Two correlation methods were developed and tested. The
first is an XOR correlation method that treats all shadows
with equal confidence according to line of sight geometry. The
second method weights expected shadows differently based on

how occluded a given terrain point is, according to what the
authors have termed “differential height”. The details of each
method are presented below.

A. XOR Correlation

The basis of the XOR correlation method lies in rewarding
shadow alignment, and penalizing shadow misalignment. The
time of flight domain is binned in the range [τmin, τmax] into K
bins. The maximum time considered, τmax, corresponds to the
maximum time of flight measured by the sidescan sonar sensor.
The minimum time considered, τmin, was set as a multiple
of the altitude in order to rule out the minimum range being
measured as a “shadow”. In this work that multiple of altitude
was set to 1.4.

A flat misalignment probability α is assigned when an
XOR condition is satisfied for which there is shadow aligned
with non-shadow. For this work, α = 0.48. The measurement
weight for a given pose estimate i for timestep t, wt

i , is then the
product of all individual measurement contributions over all K
time of flight bins. The measurement contribution is either α,
if there is shadow misalignment, or (1−α) when either shadow
or non-shadow are aligned, as given by the following equation:

wi
t =

K∏
k=1

1{ek ⊕mk}︸ ︷︷ ︸
misalignment

α+ (1⊕ 1{ek ⊕mk})︸ ︷︷ ︸
alignment

(1− α)

where

ek =

{
0 expected shadow
1 otherwise

mk =

{
0 measured shadow
1 otherwise

(2)

where ⊕ denotes an XOR operation. For numerical reasons,
due to the large value of K, these weights are evaluated as
sum of log weights over the K bins, and then the sum is
exponentiated in order to arrive at the measurement weight
for the pose i and timestep t.

B. Differential Height Correlation

Some expected shadow assignments are more likely than
others based on the pose estimate and the terrain map. A slight
grazing occlusion should be trusted less than the occlusion
expected behind a large mound.

One way to quantify the confidence in expected shadow
assignments is by the calculation of “differential heights”.
For terrain point m in the scan plane of pose estimate i, a
differential height value, δzim, is calculated that reflects how
occluded or visible the terrain point is. Figure 4 illustrates the
meaning of differential height.

If the point is occluded according to line of sight from the
sonar transducer, the differential height is the terrain height
difference at point m necessary to make the point visible,
and this value is negative. Similarly, if the point is visible
according to line of sight, its differential height is the terrain
height difference necessary to make it occluded, and this value



Figure 4: Differential height diagram. Shown is the differential
height necessary to make a visible terrain point, m, occluded.
Terrain points shown in green.

is positive. Equation 3 provides the definition of differential
height.

δzim = min
j

(xm
zj
xj
− zm),∀j = 1, 2, . . . ,m− 1 (3)

In order to translate differential heights into probabilities,
the differential height values are passed through a sigmoid
function, given by the following relation:

pm = 0.5 + λ
δzm − µ√

γ2 + (δzm − µ)2
(4)

where pm is the probability that terrain point m is visible,
µ shifts the mean differential height, and γ and λ adjust
the sigmoid shape. For the results presented in this work,
µ = −1, γ = 1, λ = 0.1. Shifting the mean differential
height by µ accounts for the observed behavior that expected
shadows are overly predicted by pure line of sight when
compared to measured shadows. Further, the λ value of 0.1
is chosen rather than the full possible value of 0.5 in order
to account for measurement uncertainty as a means to prevent
filter overconfidence, as detailed in [9]. Figure 5 provides a
plot of the sigmoid given by Equation 4.

Once differential heights have been calculated for each
terrain point in the scan plane, these values are projected
into the time of flight domain, according to the relation given
by Equation 1, and linearly interpolated in order to obtain a
differential height function in the time of flight domain.

The measurement weight for a given pose estimate i for
timestep t, wt

i , is given by:

wi
t =

K∏
k=1

1{mk = 1}︸ ︷︷ ︸
measured visible

P i
k + 1{mk = 0}︸ ︷︷ ︸

measured shadow

(1− P i
k) (5)

Figure 5: Sigmoid function given by Equation 4 with param-
eters µ = −1, γ = 1, λ = 0.1

where P i
k is the probability of visibility for time of flight bin

k and pose estimate i obtained from the differential height
method.

C. Non-parametric Filter

This work is intended for use with non-parametric navi-
gation filters. Examples of such filters include particle filters
and point mass filters (PMFs), both of which are extensively
used in AUV navigation solutions, and detailed in [10]. For
this work, a PMF was chosen for its ease of implementation.

For simplicity, the PMF estimated state is 2-D north and
east vehicle position x = [xN , xE ]T . A grid of discrete state
hypotheses was instantiated about a nominal position.

For each timestep, an estimate mean and covariance are
evalulated by:

x̂ =

NN∑
i=1

NE∑
j=1

[
xN (i)

xE(j)

]
w(i,j) (6)

Σx =

NN∑
i=1

NE∑
j=1

(

[
xN (i)

xE(j)

]
− x̂)(

[
xN (i)

xE(j)

]
− x̂)Tw(i,j) (7)

where w(i,j) is the weight for cell (i, j) of the point mass filter.

IV. EXPERIMENTAL RESULTS

Results were obtained using field data from Monterey Bay
Aquarium Research Institute (MBARI) Dorado-class AUV
runs that demonstrate the feasibility of sidescan sonar as a
sensor for TRN. The field data was collected in the Gulf of
California. The vehicle was outfitted with a Kearfott SeaDevil
INS/DVL, along with a Reson 7125 200 kHz multibeam sonar
and Edgetech 110 kHz chirp sidescan sonar. Data was obtained
through the use of MB-System software [11].

Figure 6 is a result for a run of roughly 500m distance trav-
elled. This dataset comprises the mapping run used to generate
the bathymetry map, and thus the “Mapping Trajectory” shown
in Figure 6 is assumed to be truth. The bathymetry map is a
1-meter resolution digital elevation map (DEM).



(a) (b)

(c) (d)

Figure 6: Terrain-relative navigation estimates on Gulf of California dataset using sidescan sonar XOR correlation (SS-TRN),
sidescan sonar differential height method (SS-DH-TRN), and standard TRN (DVL-TRN) for a field trial. Mean estimate tracks
shown on all plots. (a) Full track, SS-TRN covariance ellipses plotted. (b) Zoomed in on converged region with SS-TRN
covariance ellipses plotted. (c) Full track, SS-DH-TRN covariance ellipses plotted. (d) Zoomed in on converged region with
SS-DH-TRN covariance ellipses plotted.



The area of terrain shown in Figure 6 contains good
topographical information directly beneath the AUV trajectory,
as well as to the starboard side of the trajectory, and as such
enables a fair comparison of the relative performance of DVL-
based TRN and sidescan sonar-based TRN methods.

Shown in Figure 6 is the point-mass-filtered trajectory
estimate obtained through correlation of sidescan sonar to
the bathymetry map using the XOR correlation method (SS-
TRN), along with the independent estimate obtained through
the differential height method (SS-DH-TRN). For each method,
a point mass filter was run with a discrete grid 250m by 250m
with 5m spacing in north and east directions. Each grid cell
location was propagated in time according to the north-east
changes from the mapping trajectory. For comparison, the TRN
estimate obtained through standard DVL-based TRN (DVL-
TRN) is also plotted in Figure 6. It should be noted that the SS-
TRN and SS-DH-TRN estimates were obtained independently
of each other and of the DVL-TRN estimate, i.e. no sensor
fusion was exploited for these estimates.

The convergence of the SS-TRN and SS-DH-TRN es-
timates highlights the promise of the presented correlation
methods for TRN. The SS-DH-TRN mean estimate converges
closer to the mapping trajectory than the SS-TRN mean
estimate, as shown in Figure 6. Further, tighter covariance
ellipses are observed for SS-DH-TRN than for SS-TRN. Figure
7 presents the standard deviations for DVL-TRN, SS-TRN,
and SS-DH-TRN estimates, showing that the sidescan sonar-
based estimators have confidence in the range of the DVL-
based estimator once converged, though the sidescan sonar-
based estimators take longer to converge.

The behavior of the sidescan sonar-based filters in the
above results can be explained with the help of Figure 8 by
observing terrain features starboard of the vehicle path. Shown
in Figure 8 is the terrain map with the mapping trajectory
plotted, along with the sidescan sonar signals stitched together
over the run into an image. There are two major shadow areas
visible. The upper acoustic shadow region is generated by a
large mound located roughly 125m starboard of the vehicle
track. This is a large feature that produces a strong shadow
region. The lower acoustic shadow region is caused by a
more subtle topographical change. This region occurs due to a
gradual downward slope starboard of the vehicle that produces
a grazing occlusion. The appearance of the acoustic shadow
region from this less substantial feature is exciting for the
prospect of using sidescan sonar for TRN, as it demonstrates
that large terrain features (e.g. mounds) are not required for
strong shadows to be observed.

Figure 9 shows the alignment of expected shadows to
measured shadows for the SS-TRN Maximum Likelihood
(ML) PMF grid cell using the XOR correlation method. The
alignment is not perfect, but the expected shadows do align
qualitatively well with the measured shadows. The slight mis-
alignment can be attributed to a number of factors, including
the fact that the simplified sensor model employed in this
work does not fully capture the complex physics of acoustic
propagation and sidescan sonar dynamics.

Differential heights and the visibility probabilities derived
from differential heights are shown in Figure 10 for the SS-
DH-TRN ML pose estimate. As detailed in Section III-B,

(a) North standard deviations

(b) East standard deviations

Figure 7: Standard deviations for DVL-TRN, SS-TRN, and
SS-DH-TRN estimators.

Figure 8: Terrain features leading to acoustic shadows in sides-
can sonar signal. (Left) Terrain map with mapping trajectory
plotted in red. (Right) Acoustic shadows in sidescan sonar
signal identified. The lower shadow region results from a
downward slope starboard of the vehicle. The upper shadow
region results from a large mound starboard.

the mean differential height value was shifted by 1 meter
(β = 1 from Equation 4), and the probabilities are biased
toward higher visibility, as seen by the fact that probabilities
for differential heights near zero are not centered about 0.5.



(a) Measured acoustic shadows

(b) Expected acoustic shadows in ML pose estimate

(c) Shadow alignment between measured and expected images

Figure 9: Measured and expected acoustic shadows. The mea-
sured acoustic shadows are large drops in intensity, and are
extracted by thresholding. The expected shadow signal is for
the SS-TRN Maximum Likelihood (ML) PMF pose cell. The
bottom plot shows alignment between expected and measured
shadows. Green indicates visibility alignment between the
measured and expected signal. Red indicates shadow alignment
between the measured and expected signal. Blue indicates
misalignment.

(a) Sidescan sonar image

(b) Differential height image for MLE pose estimate

(c) Visibility probability image for MLE pose estimate

Figure 10: Differential heights and probabilities for SS-DH-
TRN Maximum Likelihood (ML) PMF pose cell. (a) Sidescan
sonar intensity image. (b) Differential height image, values
in meters. Blue indicates more negative differential heights,
red indicates more positive differential heights. (c) Probability
image derived from differential heights, passed through the
sigmoid function given by Equation 4. Blue indicates lower
probability of visibility (more probable shadow), red indicates
more probable visible return.



(a)

(b)

Figure 11: SS-TRN PMF correlation peak about the mapping
position (0,0). Red indicates higher correlation. The plots show
that the correlation peak is offset from the mapping position
by roughly 10m, where this 10m is along the vehicle path.

A. Along-Track Estimate Offset

An issue with the results presented is an offset along
track in the estimated mean positions relative to the mapping
position. While it is clear that the estimators are converging
to the mapping trajectory as shown in Figure 6, the estimated
mean positions, once converged, trail the mapping position
by roughly 10 meters. This behavior can be observed by
the correlation peak offset from the origin for the SS-TRN
estimate, given by Figure 11, where the origin is the mapping
position.

There are several potential contributors to this along-track
offset. For example, there is the possibility of a timing offset
or lag in recording sidescan sonar data relative to the mapping
data. As the sidescan sonar data was processed on a separate
computer the possibility of a timing issue is real. Additionally,
there may be a contribution to the offset coming from a pitch
bias between the sidescan sonar transducer and the multibeam
sonar. Identifying the cause(s) of this along-track offset is the
subject of current work.

V. CONCLUSION

This paper demonstrated the feasibility of non-
interferometric sidescan sonar as a sensor for TRN.
Navigation results were presented using AUV field data
that demonstrated TRN performance using sidescan sonar
data comparable to traditional DVL-TRN performance in a
terrain area where there was good information available to
both sensing modalities.

As future work, more datasets will be processed to explore
the performance benefit of incorporating sidescan sonar data
into TRN over varied terrain. In particular, the collection of
field data over terrain where DVL-based TRN experiences
accuracy degradation (i.e. locally flat terrain) is planned, as
the ultimate goal of this work is to augment TRN accuracy
with sidescan sonar data in such terrain regions.
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