A SLAM-based Approach for Underwater Mapping
using AUVs with Poor Inertial Information

Marcus Hammond and Stephen M. Rock
Department of Aeronautics & Astronautics
Stanford University

Abstract—This paper presents a SLAM-based approach for
creating maps of underwater terrain using AUVs with poor
inertial information. The initial motivating application for this
work was mapping in the non-inertial frame of a free-drifting
Antarctic iceberg, but poor inertial information can also occur if
low-cost, high drift inertial instrumentation is used in standard
mapping tasks, or if DVL bottom lock is lost during the
mission. This paper presents a SLAM-based approach in which
features are extracted from concatenated multibeam data and
descriptors are created, allowing these features to be compared
against past terrain as the vehicle traverses the area. There
have been a number of previous research efforts that used
feature-based SLAM techniques for underwater mapping, but
they have generally made assumptions or relied on sensors that
are inconsistent with this paper’s motivating application, such
as a flat bottom, the availability of visual imagery, or manmade
fiducial markers. The method presented here uses natural terrain,
is robust to water turbidity, and can be used in areas with
vertical terrain like the walls of canyons and icebergs. Results
are presented on data collected from Monterey Canyon using a
vehicle with a high-grade IMU but that lost DVL bottom lock
during the mapping run.

I. INTRODUCTION

The work presented in this paper aims to enable high-
precision mapping of underwater surfaces using vehicles
equipped with low-precision inertial sensors and without ex-
ternal navigation aids. The initial motivating mission for this
work was a NASA ASTEP-funded mission to map free-
drifting icebergs as part of a larger goal of understanding life
in extreme environments. However, it is shown here that this
mission can be posed and solved in a form equivalent to the
more general problem of mapping with low-precision inertial
Sensors.

Mapping underwater surfaces using an AUV is typically
a multistep process. First, the AUV flies a pattern over the
surface collecting multibeam sonar data as well as navigation
data from an inertial navigation system (INS); second, an
accurate navigation history of the AUV is constructed offline;
and finally, the sonar measurements are projected from these
location estimates to form a point cloud, which can then
processed to produce a final map in a number of formats,
like discrete elevation map (DEM) or octree.

Obtaining a precise navigation solution is key to the process.
Finding this solution often involves a refinement step in which
sections of measured terrain surfaces (e.g. point clouds of
sonar data where trajectories cross) are correlated to calculate
corrections to the AUVs tracklines. This is known in the

Fig. 1. Features extracted from two passes of SONAR data on a canyon wall.
Red lines are hypothesized correspondences, based on comparing descriptors.
These correspondences can be used to correct errors in inertial measurement
to create accurate maps. Care must be taken to make the algorithm robust to
false matches (diagonal lines).

robotics community as Simultaneous Localization and Map-
ping, or SLAM. In underwater mapping, the typical approach
has been to use dense, data-driven correlation techniques that
do not require explicit representation of the environment, such
as ICP, to perform these corrections. While highly accurate,
good initial estimates of the AUVs tracklines are generally
required for these methods to ensure convergence of the
solution. This is often the case when mapping stationary
terrain using an AUV equipped with a high-precision INS
(e.g. < 0.05% of distance travelled), and when the DVL in
that system never loses lock on the terrain.

If the terrain is moving, as in the case of an iceberg, or if a
low-precision INS is used, then the errors in the tracklines can
be large, and convergence may fail when attempting to align
the sonar point clouds. For example, typical rotation rates of
an iceberg can be 5-10 deg/hr. At normal operating speeds



for AUVs, this can translate into an apparent dead-reckoning
drift of over 4% of distance traveled [1], even when using a
high-precision INS. For low-precision INS systems (e.g. using
calibrated MEMs gyros, and fluxgate magnetometer) drift rates
can be 1-5% DT even when operating over stationary terrain
(2] [3].

The problem of mapping an iceberg was addressed by
Kimball [4]. Specifically, he developed a SLAM technique in
which the motion of the AUV in the iceberg’s reference frame
could be estimated offline. However, his solution required
explicit modeling of the inertial motion of both the iceberg
and the AUV, and was difficult to scale to larger problems
with many loop closure events (instance where the same point
or feature is observed on repeated passes).

In [5], the iceberg mapping problem was reformulated to
eliminate the need for an inertial trajectory estimate, instead
developing all the equations in the icebergs frame of ref-
erence. Formulated in this way, the motion of the iceberg
is indistinguishable from a slowly time-varying gyroscope
drift, making the problem equivalent to an inertial navigation
and mapping problem with imperfect sensors. The advantage
of this formulation is that the resulting problem has been
thoroughly documented in the robotics literature, and a number
of methods have been developed to solve it.

For the application presented here, feature-based Graph-
SLAM was selected. GraphSLAM is scalable to large mapping
problems, tolerant of large errors in the initial trajectory
estimate. This process is enabled by extracting recognizable
features from the terrain and using these to establish corre-
spondence between measurements, as illustrated in Figure 1.

This paper describes the use of GraphSLAM to solve the
mapping problem when only low-precision inertial information
is present (Section III-A). It presents a technique for extracting
recognizable features of a terrain from point clouds of sonar
data (Section III-B). Finally, it demonstrates the feasibility of
the approach using field data collected in Monterey Canyon.

II. RELATED WORK
A. SLAM in other applications

Robotic mapping has been throroughly studied for decades.
For a good overview of general methodology, refer to [6].
Since a mobile sensor’s measurements are generally recorded
in the robot’s reference frame, a global map is highly cou-
pled with, and dependent upon, the accuracy of the robot’s
navigation solution. Even when aids like GPS are used, loop
closure is often fine-tuned via scan-matching techniques. This
means that nearly all mapping applications are in fact SLAM
problems.

A number of methods for solving the SLAM problem have
been proposed and studied extensively. These include EKF
SLAM, where the pose history and map feature locations
are modeled as a single multivariate Gaussian, GraphSLAM
where the problem is represented as a Probabilisitic Graphical
Model, and FastSLAM, which combines concepts from EKFs
and particle filters [7]. These and other methods have been
employed in a wide range of applications, from exploring

abandoned mines [8] and flooded sinkholes [9] to satellite
reconstruction [10].

The application discussed in this paper differs in two key
ways from the terrestrial SLAM applications discussed in
the literature. First, the applications typically have access to
GPS or relatively precise odometry to initialize correlation
algorithms for loop closure. The motivating problem for this
work has insufficiently precise inertial navigation to reliably
initialize scan-matching for loop closure. Data association
must be accomplished some other way, which leads to the
second challenge. The problem of data correspondence is more
difficult underwater. Mapping AUVs do not typically have
ranging sensors like Flash LIDAR or structured light cam-
eras that can instantaneously capture dense 3D point clouds
for correlation. Additionally, image feature-based SLAM is
limited by the attenuation of light in water: while it has been
done, applications have been limited to shallow depths and
low-turbidity conditions [11]. Again, this is inconsistent with
this paper’s motivating application, as the AUV operates in
conditions where extracting visual features reliably is impos-
sible (great depth, high turbidity, long standoff distances).

The method presented here assumes a single multibeam
sonar that returns roughly 500 range-azimuth pairs at each
ping, arranged in a fan pattern. With this arrangement, there
is not enough information or overlap to do scan-to-scan
matching. These sensing limitations are what has driven the
strategy to extract descriptive features from the available range
data, and use it to detect loop closure events to correct inertial
drift.

B. 3D Feature Extraction

The correspondence problem — recognizing when two mea-
surements correspond to the same point in physical space — is
a central part SLAM. Solving it is critical, as it is often the
only source of new information that can correct accumulated
odometry error. A 2006 survey of SLAM methods used for
underwater navigation reported that most successfully fielded
SLAM techniques up until that point used a data-driven scan
matching approach to solving the loop closure problem that
does not rely on an explicit representation of features. [12].
These methods typically rely on performing a grid search or
ICP correlation between dense point clouds; they work well
but can be computationally expensive and require a good initial
estimate of alignment to converge to the correct minimum.
[13]. The same survey lists a number of early attempts at
feature-based SLAM. In [14] and [15], a 2D scanning sonar
was used to track manmade sonar target features.

In the past few years there has been great interest and
progress made in the development of 3D point cloud feature
extraction among the terrestrial robotics community. Many of
these algorithms are closely related to 2D image features. This
is not surprising, as many of the image feature algorithms
treat images as if they were terrain maps, where the image
intensity of a given pixel can be thought of as terrain height.
Some well-known algorithms that use this idea are Harris
Corners [16], SIFT [17], and SURF [18]. The general approach



with all of these algorithms is that by considering not only a
single point or pixel, but a small neighborhood of points and
pixels, stable features can be identified and statistics extracted
such that the feature can be identified and matched by later
observations. Methods vary in their computational complexity,
robustness to noise, invariance under various combinations of
transformation, rotation, lighting, etc.

Early work in 3D point cloud feature extraction calculated
normal vector direction and local curvature information to
characterize interest points. Progress in 3D features has fol-
lowed along similar lines as their 2D counterparts, with the
development of algorithms like Point Feature Histograms and
Fast Point Feature Histograms [19], that are to large degree
orientation-invariant and useful for classifying different classes
of shapes.

Work in both 2D and 3D feature work has focused largely
on manmade environments, and being able to perform object
recognition from arbitrary vantage points. However, the natural
environments in which AUVs typically operate often have
much less relief, and far fewer right angles and sharp gradients
that are so prevalent in manmade structures. This causes
degraded performance in many of the standard methods. Addi-
tionally, in typical mapping tasks, certain parts of the robot’s
ego-motion are well known, and the features of interest are
usually fixed in the reference frame of the map, so orientation
invariance may in fact be undesirable. With this in mind, a
simple, custom approach to extracting features and finding
loop closure events will be described below. While the details
differ, the intuition that motivates the feature extraction is
similar to that of Harris Corners for 2D image processing.

III. APPROACH
A. GraphSLAM

Many techniques exist for solving the SLAM problem
described above. The method chosen here is GraphSLAM.

1) Algorithm Overview: The GraphSLAM algorithm mod-
els the process of mapping as a probabilistic graph with two
types of nodes: pose nodes and feature nodes. The pose nodes
represent the vehicle’s state at a given time. The feature nodes
represent the best estimate of the state of observed landmarks
or map features, including their locations and possibly any
identifying properties, such as color, albedo, etc. Successive
pose nodes are connected with odometry links, with process
noise modeled as Gaussian, as in Kalman filters and many
others. When a feature is observed by the sensor at time ¢ that
pose node is connected to the corresponding feature node via a
measurement link. These links are also modeled as Gaussian,
with the mean given by the measurement and the covariance
a function of the sensor and geometry. To represent all these
links, GraphSLAM uses the information form of the Gaussian.
A benefit of this is the ability simply to add information as it
comes in, postponing solution until all information has been
accumulated. A detailed explanation of the method is laid out
in [7].

Once constructed in this way, GraphSLAM exploits the
problem’s structure to solve efficiently even very large map-

(Image from MBARI)

Fig. 2. Location of test data collection.

ping problems. Specifically, the problem’s sparse, positive-
semidefinite structure allows for solution through the method
of conjugate gradients. In one notable example, a map of part
of Stanford’s campus was created using 105 poses and 108
observations in roughly 30 seconds of cpu time. [7]

The advantages of GraphSLAM are most apparent when
incorporating loop closure events, where the same feature is
observed at least twice, separated by a long span of time.
It is able to use these links to correct errors accumulated
during long periods of integrated odometry. In GraphSLAM
with known correspondence, these events are known a priori
and require no special treatment. In the more challenging
GraphSLAM with unknown correspondence, correspondence
can be discovered incrementally, with links being made (and



even broken) as the solver works toward finding a solution [7].
2) Application to Underwater Mapping: GraphSLAM re-
quires a state representation for poses and for features, a
process model, and a measurement model.
The state representation used for the canyon wall mapping
mission described in Section IV is

Xt:[a?yzuqusz/J]T (1)

The first three terms are the 3-DOF position in the iceberg’s
frame of reference. u, v, w are the body components of veloc-
ity in the iceberg frame (i.e. the values reported by the DVL).
¢, 0, ¥ are the vehicle’s roll, pitch, and heading in the iceberg
frame, respectively.

In the case of the iceberg, the single greatest source of
uncertainty is the iceberg’s rotation, so the normal state can
be augmented by a bias term as:

Xt:[gcyzuvw(bﬁzljbz}T 2)

where b, is the apparent gyro drift in the z-axis due to iceberg
rotation.

It should be noted that these representations are not unique.
If it is suspected that the vehicle’s DVL has a bias, this can also
be appended to the state. In general, the state representation
and the inclusion of error terms will be a function of the error
characteristics of the particular vehicle, sensor, and mission
profile. It is up to the user to find a representation that
adequately describes the observations, but avoids overfitting
the data.

The process is modeled as Gaussian, such that

Xiyar ~ N (X; +dX, %)) 3

where dX is obtained by integrating the current odometry
measurements over the time interval dT'

JITIRY (#yo(t) dt
0
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and ¥, is the process noise covariance. The zero values
appearing in dX indicate that the quantities are expected to
change only very slowly over time. If a higher fidelity motion
model exists to describe the process, these might be nonzero.

Feature locations and descriptors m; are also modeled as
Gaussian, with measurements tying features to the poses at
which they were observed. The measurements z; ; are them-
selves represented as a 3-dimensional vector in the vehicle’s
reference frame with some uncertainty ellipse, as well as an
abstract descriptor, d, that captures other information useful
for determining correspondence.
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;
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This information yields a graph constraint of the form

h(ae,my))T Q7" (2,5 — hlwe,my)) (6)
with the expected measurement

h(ze,my) = RY(t)T (m; — x4) (7)

(21,5 —

where () is the measurement covariance matrix and ‘RY(¢) is
the rotation matrix of the vehicle at time ¢.

B. Extracting Features from Terrain

Using the above measurement model for loop closure is
predicated on the ability to detect stable, recognizable features
in the terrain. In this context, stability means that the feature is
likely to be detected from multiple viewpoints and at different
times, and its location is unambiguous. Recognizability means
that a feature can be identified as having been observed
previously. Extracting stable points from 3D point cloud data
involves identifying areas of high curvature. This is generally
straightforward. Building recognizable feature descriptors is
more challenging.

AUVs used for bathymetric mapping are typically outfitted
with multibeam sonars, which use interferometry to calculate
range and bearing to many individual points in a single ping.
These measurements can be represented as vectors of known
length and direction in the vehicle frame emanating from
the sensor in a fan pattern as shown in Figure 3. The scans
recorded at each time step are concatenated incrementally to
form a point cloud of the surface. If the terrain is moving, or if
there are large errors in the odometry, the map will appear to
warp, causing inconsistencies over time. However, over short
time scales, the effects of this warping are small, and can be
ignored. Using these submaps built from data collected over
short intervals, features can be extracted.

The solution presented here uses a simple custom method
that combines elements of several existing algorithms. The
approach uses a cascading filter based on curvature to identify
points that are likely to be stable over time. First, the data is
cleaned of spurious outlying points in a scanwise fashion. For
each point in the cleaned data set, the curvature & is calculated.
If the curvature is not sufficiently high, the point is rejected
as a possible feature.

2 + (y//x/ _ x//y/)Q

3/2

2

o \/(Z//y/ _ y//zl) + (xllzl _ Zl/xl)
(I’Q +y/2 —|—Z’2)
®)
Each point with sufficient curvature is then analyzed relative
to its neighbors in the submap built from multiple scans. Its
k-nearest neighbors are extracted and an eigendecomposition
is performed on the patch to determine normal vector di-
rection and 3D-curvature magnitude. If this curvature metric
is sufficiently high, the point is labeled a feature. For a
detailed discussion of this and other methods for extracting

3D curvature of interest points, refer to section 4.3 of [20]
Through empirical analysis, it was found that the inclination
of the normal vector from the horizontal was the most reliable



Fig. 3. Orientation of multibeam SONAR with respect to AUV. Graphic
courtesy of Peter Kimball

Fig. 4.
circled in blue are likely feature candidates. The yellow tick marks indicate
inclination of the normal above the horizontal

Sonar returns off a canyon wall. Red points are outliers. Returns

discriminator of possible matching features between swaths.
Using this, corresponding features were identified between in
pre-processing, using random sample consensus (RANSAC)
[21] and iterative closest point (ICP) using a 4D Mahalanobis
distance metric based on 3D feature position and normal
inclination.

dist = [z4, ;]T W [21, 5] )

The weights W for this metric were chosen based on the
uncertainty covariance for each of the four axes. The inliers

that remained after RANSAC were the correspondences used
in the GraphSLAM framework.

C. Ceres Solver

To solve the SLAM problem described above, the Ceres
Nonlinear Least Squares Graph Solver developed by Google
was used. It provides a number of highly optimized solvers
and has a flexible user interface allowing great control over
the problem definition.

IV. RESULTS

The mapping approach described above was applied to pre-
viously collected data from Soquel Canyon in Monterey Bay,
shown in Figure 2. The data were recorded using MBARI’s
mapping AUV, configured with its multibeam sonar mounted
as shown in Figure 3. The vehicle flew three passes by a nearly
vertical wall of the canyon at three different depths, as shown
in Figure 5. For this paper, data from two of the overlapping
passes were used. The data set consists of 90 minutes of 3
Hz odometry data (15k poses). Of the roughly 3.5 million
raw sonar returns recorded during this time, 4086 made it
through the pre-processing feature extraction step, and 157
were found to correspond to an earlier obervation. These 157
correspondences are what drives the GraphSLAM algorithm,
allowing it to compensate for integrated dead reckoning errors.
The terrain opposite the wall, which was imaged on the return-
leg between passes, is relatively flat and no stable features
were observed in the region.

A. Feature Extraction on Natural Terrain Data

Figure 5 shows features extracted from three passes by
the canyon wall. The green points are raw sonar returns,
after cleaning. The red, black, and cyan markers show points
that met the curvature criteria to be counted as features. The
different colors correspond to on which pass the observation
was made.

A trajectory in UTH and depth

5,884 R - é e
\\/ 4,0708.

Fig. 5. Features extracted from three passes by the wall of Soquel Canyon,
looking Southeast. Color coded by pass.



(b) After GraphSLAM

Fig. 6. Sonar data from Soquel Canyon in Monterey Bay before and after
correction via GraphSLAM, looking South. Note that the inconsistency in the
canyon wall due to imperfect inertial guidance is eliminated.

B. Drift Correction on Soquel Canyon Map Data

Figure 6 shows the results of GraphSLAM on data collected
from two passes by a steep wall of Soquel Canyon in Monterey
Bay. The wall is roughly 1.5km in length. DVL lock was
lost during the run, resulting in a misalignment of 5 to 10
meters between the two swaths of wall data, even with high-
grade inertial measurements. The resulting misalignment is
most visible in the top right corner of Figure 6(a).

The algorigthm successfully fuses the two swaths of sonar
data into a single, self-consistent map, while leaving the high
frequency characteristics of the data mostly intact. It was found
that both the convergence rate and the resulting map accuracy
as compared with maps generated using high-grade IMU and
scan-matching for loop closure were sensitive to the relative
weights put on the different terms in the measurement and
odometry residual blocks in the SLAM optimization solver.
Care must be taken when weighting these terms, so that the
errors are spread realistically over the unknown quantities,
based on the uncertainty of each.

C. Robustness to Large Heading Uncertainty

To test the algorithm’s ability to recover from the types of
errors encountered with free-drifting iceberg mapping tasks, a
large heading bias was injected into the navigation data. The
resulting warping can be seen in Figure 7(b).

The GraphSLAM algorithm was initialized with this large
heading bias using the iceberg state representation described
above. The results can be seen in Figure 8. While the two
passes have been resolved into one self-consistent wall, some
warping persists in the resulting map. However, for many

(a) Soquel Canyon “truth” data as reported by high-grade IMU and
scan-matching for loop closure.

(b) Data corrupted with heading bias

Fig. 7. Soquel Canyon data showing the effects of a large time-varying
heading bias, simulating the effects of unmodeled iceberg motion or low-
grade sensors. Blue points represent the trajectory. Green points are sonar
sounding locations.

applications, such as Terrain Relative Navigation, warping is
tolerable, so long as the map is self-consistent.

D. Summary

The problem of mapping with imperfect inertial informa-
tion, whether from low-precision instruments or environmental
motion was posed as a GraphSLAM problem. This problem
was then solved on field data collected in Monterey Canyon.
To enable this solution method, features were extracted from
the natural terrain and used for data correlation on multiple
passes. Additionally, robustness of the algorithm to large
initial errors was demonstrated by adding a heading rate bias,
consistent with the magnitude of motion that could be expected
when mapping an iceberg. In both cases, GraphSLAM was
able to use terrain information to estimate its navigation errors
and create a self-consistent map.



Fig. 8. Results of GraphSLAM on Soquel Canyon data after being initialized
with large heading bias to simulate unmodeled iceberg motion. Data from two
passes by the wall have been resolved, but some warping remains.
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