- 1. Miscellaneous
- 2. Case Studies
- 3. De novo Small Molecule Design

February 14, 2006

Guha Jayachandran (guha@stanford.edu), CS379A

Pareto Optimality

Case Studies

Topic

- Anything related to computational drug discovery (protease docking, example of focused libraries construction, new grid architectures, etc.)
- Journal article fine. If white paper or something like that, just check with me.
- Emphasize applications over methods
- If you want to do something different (like research proposal), let me know
- Present what was done, what techniques were used, and what you think
 - Quick: 5 minute presentation (March 14)
 - More detailed: ~1 page written (due by March 23)

De novo Small Molecule Design

Guha Jayachandran (guha@stanford.edu), CS379A

Paradigms

Luck

- Go out, collect samples, see if anything works
- Asprin and penicillin examples

Screening

- Experimental vs. virtual
- Various computational techniques
- Can't screen everything
- Design

Uses of Design

Goal

- Ligand that binds to receptor and can be synthesized (synthetic accessibility has been a big challenge)
- Maybe other goals like ADME (so multidimensional optimization)

Motivation

- Lead generation for screening
- Novel compounds and scaffold hopping
- Give new ideas to chemists

Choices

- Information input
 - Receptor based (need structure of receptor) or ligand based (use known ligands)
- Scoring function
 - Force field, knowledge based, empirical, similarity
- Structure assembly method
- Structure search algorithm

Example Construction Methods

From Schneider and Fechner (NRD 2005)

TOPAS Remaking Imanitib

Substitute fragments (so synthetically accessible)

50 generations to Gleevec

From Schneider and Fechner (NRD 2005)

Synthetic Accessibility

- Has been big problem in de novo design
 - A virtually ligand isn't very useful if it can't be made real
- One approach: build in what reactions are possible
- Use parts of known ligands (like in BREED)

Example Programs

Name (year)	Building blocks		Primary target constraints		Search strategy					Structure sampling					
	At	Fr	Rc	Li	DFS	BFS	Rnd	MC	EΑ	Gr	Lk	Lat	MD	Sto	Scoring function
HSITE/2D Skeletons ^{12,31,95} (1989)		Х	Х			Х				Fittin skele	g and atons	dippir	ng of pl	anar	Steric constraints and hydrogen bonds
3D Skeletons ³² (1990)		Х	Х		Х					Х					Steric constraints and hydrogen bonds
Diamond Lattice ³³ (1990)	Х		Х		Х							Х			Steric constraints and hydrogen bonds
BUILDER v1 ²⁸ (1992)		Х	Х		Х	Х						Х			Steric constraints and key interaction sites
LEGEND ²⁰ (1991)	Х		Х				Х			Х					Force field
LUD ^{13,14,96-98} (1992)		Х	Х			Х				Х	Х				Empirical scoring function (SCORE1; revised version SCORE2 in 1998)
NEWLEAD ³⁰ (1993)	Х	Х	Х			Х					Х				Steric constraints
SPLICE ⁶⁰ (1993)		Х	Х		Х						Х				Pharmacophore and steric constraints
GenStar34 (1993)	Х		Х		Х					Х					Steric constraints and ligand- enzyme contact
GroupBuild ¹⁸ (1993)		Х	Х		Х					Х					Force field
CONCEPTS39 (1993)	Х		Х					Χ					Х		Empirical scoring function
SPROUT ^{17,57-59} (1993)		Х	Х		Х	Х				Х	Х				Solvent accesible surface, hydrogen bonds, electrostatic and hydrophobic interactions
MCSS & HOOK ^{25,27} (1994)		Х	Х			Х					Х				Simplified van der Waals potential of non-polar interactions
GrowMol ²¹ (1994)	Х	Х	Х					Х		Х					Simple empirical scoring function
MCDNLG ⁶¹ (1995)	Х		Х					Χ						Х	Potential energy

At, atoms; BFS, breadth-first search; DFS, depth-first-search; EA, evolutionary algorithms; Fr, fragments; Gr, grow; Lat, lattice; Li, ligand; Lk, link; MC, Monte Carlo sampling with Metropolis criterion; MD, molecular dynamics; QSAR, quantitative structure–activity relationship; Rc, receptor; Pnd, random; Sto, stochastic.

Readings

- Combinatorial computational method gives new picomolar ligands for a known enzyme (Grzybowski, et. al.)
- BREED: Generating Novel Inhibitors through Hybridization of Known Ligands. Application to CDK2, P38, and HIV Protease (Pierce, Road, and Bemis)
- CONCERTS: Dynamic Connection of Fragments as an Approach to de Novo Ligand Design (Pearlman and Murcko)
- A genetic algorithm for structure-based de novo design (Pegg, Haresco, and Kuntz)