Library Design

February 7, 2006

Guha Jayachandran (guha@stanford.edu), CS379A

Two Cases

- Choose what existing known compounds to screen
 - Basically an early stage of screening in the way we've talked about before
- Choose reagents to build a combinatorial library

Two Divergent Aims

Diversity

- This is combinatorial chemistry's original motivation
- Can be measured in various ways
- Cluster or partition compounds and take samples from each group

Focus

- Especially if you have information on structure
- If protein structure, then can do docking. If know active ligands, then can use similarity searching, etc.

Balance between two depends on amount of information available

Combinatorial Libraries

- Monomers/reagents combine together to form compounds
 - Some set of reagents allowed at each position of variability along scaffold. Make all possible combinations.
- Two main computational ways for selecting reagents
 - Reagent based choose reagents from each pool separately (whether based on diversity, focus, etc.)
 - Product based choose reagents based on the products yielded

Reagent Based and Product Based

- Product based selection is
 - Better because doesn't assume that variation sites on scaffold are independent
 - Slower because many more combinations when considering reagent combinations across variation sites together
 - More effective when aiming for some property across library (diversity, focus, etc.)
- Both have been used

Product Based Selection Steps

- Input: Reagents for each position
- Output: Library of reagents to use
- 1. Enumerate compounds
- Determine descriptors for compounds
- Screen compounds (perhaps with docking)
- Select reagents from previous step's hits, optimizing some criteria (diversity, etc.)
 - Either respecting combinatorial constraint (every reagent chosen for a position can react with the reagents chosen for other positions) for the sake of synthetic efficiency, or not (termed "cherry picking")

Multiobjective Library Design

- Optimize multiple properties at once (like cost, physiochemical properties, etc.)
- Multiobjective Genetic Algorithm (MOGA) is one method
 - Yields Pareto optimal solutions (where no other solutions exist that are better in all objectives)

Readings

- Combinatorial Library Design Using a Multiobjective Genetic Algorithm (Gillet, et. al.)
- Novel Dihydrofolate Reductase Inhibitors. Structure-Based versus Diversity-Based Library Design and High-Throughput Synthesis and Screening (Wyss, et. al.)
- Luddite: An Information-Theoretic Library Design Tool (Miller, et. al.)