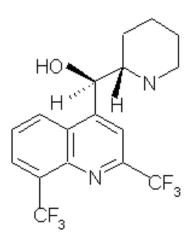
- 1. Miscellaneous Points
- 2. Molecular Mechanics and Simulation


January 24, 2006

Guha Jayachandran (guha@stanford.edu), CS379A

A Drug Sold as a Racemate

- Several antimalarial drugs have activity in multiple enantiomeric forms
- Mefloquine
 - Developed in the 1970s by Army as a chemical synthetic similar to quinine
 - Psychotropic side effects, vestibular damage
 - Sold as mixture of (+/-) R*,S* enantiomers
 - Some research suggests that one enantiomer is more effective against malaria, another binds to adenosine receptors in the central nervous system

Alternatives to Tanimoto

- Continuous form of Tanimoto (Jaccard coefficient) ranges from -1/3 to +1
- Soergel distance is 1 minus Tanimoto coefficient, measures dissimilarity
- Others
 - Hamming
 - Euclidean
 - Dice

Protein Structure Determination

- Nuclear magnetic resonance (NMR) and X ray crystallography
 - Online repository of structures at www.pdb.org
- Remember proteins are not rigid
- Crystallization is not always easy
 - GPCRs, for example
 - Alternative approaches when no structure

Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium

Naomi E. Chayen[†], Emmanuel Saridakis[†], and Richard P. Sear⁴⁵

†Biological Structure and Function Section, Division of Biomedical Sciences, Sir Alexander Fleming Building, Imperial College London, London SM7 2AZ, United Kingdom; and †Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

Nobel winner Emil Fischer. One may hear, "He must have a whisker from Fischer's beard," when someone crystallizes a difficult compound.

Molecular Mechanics and Dynamics

"Jigglings and Wigglings"

"...all things are made of atoms, and that everything that living things do can be understood in terms of the jigglings and wigglings of atoms."

- Richard Feynman

Motivations

 Same as we've discussed for other computational techniques

Easier/faster than experiment

- Complements experiment
 - Get atomistic resolution
 - Also finer time resolution

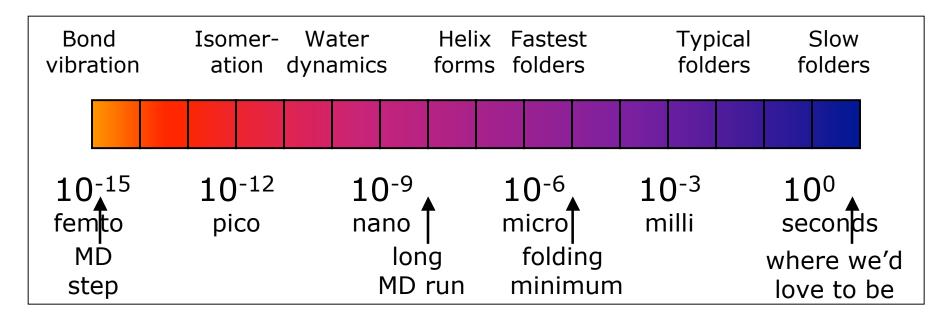
Uses of MD

- Sampling conformational space
 - Often need a Boltzmann or equilibrium sampling
 - We'll talk about later, along with other methods also appropriate for that (like Monte Carlo)
- Observing a process
 - Opening and closing of active sites
 - Flexibility of RNA
 - Ligand entrance or exit into heme protein
 - Protein folding
 - Protein aggregation
 - Much more

Molecular Dynamics

Integrate Newton's laws of motion over a short time interval, update atom positions, repeat over and over

Forcefields


- Need a model to use for computing forces
- Numerous all atom "forcefields" have been developed, with charge, radius, etc. parameters for each atom type
- Example potential:

$$\begin{split} & \sum_{\text{bonds}} K_b (b - b_0)^2 + \sum_{\text{angles}} K_\theta (\theta - \theta_0)^2 \\ & + \sum_{\text{dihedrals}} K_\chi (1 + \cos(n\chi - \delta)) \\ & + \sum_{\text{nonbonded-pairs}, i, j} \left[\frac{q_i q_j}{4\pi e_0 r_{ij}} - \varepsilon_{ij} \left\{ \left(\frac{R_{\min ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{\min ij}}{r_{ij}} \right)^6 \right\} \right] \end{split}$$

Obstacle

Time. Each time step has to be small (order of fs). This is so small that many molecular processes are very slow in comparison.

Using protein folding for context:

If you could simulate 1 ns a day, a 1 ms simulation would take 3000 years.

How to Go Longer

- More computational power (processors, grids)
- Faster models and approximations (implicit water, cutoffs for nonbonded interactions, etc.)
- Intelligent combination of a number of shorter trajectories
 - With Markov models, for example

Is it Right?

- Have to compare to experiment wherever possible. Is the model working?
- But not as many comparisons possible as we'd like
 - Experiment hasn't seen as short times as we can simulate, and we haven't been able to simulate to the length experiment can see
 - Changing, with better simulation techniques and newer experimental methods

Papers

- Dissociation of an antiviral compound from the internal pocket of human rhinovirus 14 capsid. (PNAS, 2005)
- LINCS: A linear constraint solver for molecular simulations (Hess, et. al., J.C.C., 1997)
- HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: Possible contributions to drug resistance and a potential new target site for drugs (Perryman, et. al., Prot. Sci.)