

Computational Drug Discovery

Two Revolutions

A Corpse in the Alps

Why interesting?

His Possessions

Search for Drugs Not New

- Traditional Chinese medicine and Ayurveda both several thousand years old
 - Many compounds now being studied
- Aspirin's chemical forefather known to Hippocrates

Even inoculation at least 2000 years old

And, of course, many useless drugs too

More Concerted Efforts

- In 1796, Jenner finds first vaccine: cowpox prevents smallpox
- 1 century later, Pasteur makes vaccines against anthrax and rabies
- Sulfonamides developed for antibacterial purposes in 1930s
- Penicillin: the "miracle drug"
- 2nd half of 20th century: use of modern chemical techniques to create explosion of medicines

Towards Health

Not Enough

- AIDS and many cancers without cures despite billions of dollars spent
- Chronic ailments like blood pressure, arthritis, diabetes, etc. still need better therapies
- New problems like Mad Cow, SARS, and Avian flu emerging
- And old problems like infectious disease coming back, with antibiotic resistance growing
- At the same time, new lead molecules appearing less and less...

Computation's Progress

Fingers (prehistoric)

Abacus (thousands of years)

Mechanical calculator (1623)

Even in beginning of 20th century, "computer" more a job title than a machine

Explosion of Progress

Moore's Law

Moore's Law

Convergence

- Two great technological revolutions in last century
- In recent years, starting to come together
 - We will ignore computational tools that are only in support roles, like visualization
- Some computational methods for discovery now well established (like QSAR), others (more revolutionary) not yet integral part of mainstream discovery process

How Drugs Work (Briefly)

Small Molecule Drugs

- Bind to a target
 - Can either be to a protein in one of our own cells, or can be to a foreign invader
- Cause some effect
 - Antagonists decrease activity
 - Agonists increase it

Examples

Nelfinavir

- Protease inhibitor used in treatment of HIV
- Binds to HIV-1 and HIV-2 proteases, inhibiting them from cleaving viral protein

Erythromycin

- Antibiotic
- Binds to bacterial ribosomes, stopping translation

Statins

- Class used to lower cholesterol
- Inhibit HMG-CoA reductase, key enzyme in endogenous cholesterol production

The Goal

- First step is to find molecules that bind to target—it's hard
- That's not enough. Other requirements: should properly act as agonist and antagonist, should be something that can be synthesized, should be biomedically applicable (ADMET criteria)
- Each of those jobs is a challenge in and of itself

Why Compute

Status Quo Not OK

- Where's the cure for Alzheimer's? For the cold?
- Presently available small molecules target only
 ~500 of estimated 1 million human proteins
- Rate of new drugs going down: less approvals, more late stage failures
- Development of a new small molecule takes about 10 years and \$1,000,000,000
- Unclear where next blockbuster drugs will come from

But Why Compute?

- To make possible the otherwise impossible
 - Can we design a molecule de novo and do initial toxicity tests without experiment?
 - Can we find new leads with just some time on a computer cluster instead of millions of dollars and years?
- Where does its potential come from?
 - Continue historical trend towards rationality, away from trial-and-error

Airplane Design

What's So Hard?

- Models
 - Molecular scale can't use simple macroscopic models
 - Need accuracy
 - But quantum mechanics too slow
- Processing power was lacking

Always Need Experiment

- Computation will not completely supplant experiment
 - Need data to test computational models
 - Humans are complex—can't simulate full effect of drug!
- Computation will reduce the amount of experiment by focusing it on the likeliest leads
 - Reduce time
 - Reduce cost
 - Increase results

Computational Methods in Context

1. Observation, Real World Discovery

 Classic example: penicillin discovered from mold experiments R N s

 Go out, dig in the mud, collect samples, see if something works

- FK506 an example
- But we're not lucky enough

Mt. Tsukuba, where the mud that yielded FK506 was collected

2. Screening

Get a big haystack, find a needle in it

High Throughput Screening

- Implemented in 1990s, still going
- Libraries 1 million compounds in size
- Didn't live up to hype
 - Single screen program cost ~\$75,000
 - Estimated that only 4 small molecules with roots in combinatorial chemistry made it to clinical development by 2001
- Problem: Haystack's big, but doesn't have a needle

More Problems

- Can make library even bigger if you spend more, but can't get comprehensive coverage
 - Estimated that 10⁵⁰ to 10¹³⁰ molecules with weight
 <1000 Da estimated
- Similarity paradox
 - Slight change can mean difference between active and inactive

Computation to the Rescue?

- Library design
- Virtual screening
 - Look through library in a computer, much faster/cheaper than experiment
 - Can be used to narrow down candidates for experimental screen
 - Range of methods
 - Drug likeness tests
 - Similarity searches
 - QSAR
 - Docking
 - Free energy computation
 - Can even look beyond binding, to ADMET and drug interactions

3. Design

 Today, "rational" or "structure-based design by a structural biologist or medicinal chemist

We'll talk about de novo design

Class Details

Aims

- Solid base of knowledge, whether you go to a big pharmaceutical company, a biotech company, a software startup, or pursue research
- Familiarity with powerful new methods coming online
- Comfort with the literature and discussion that generates new ideas

C.S. Issues, but Applied

- Searching/sampling high dimensional space
- Machine learning
- Large scale databases
- Geometric algorithms
- Simulation
- Parallelization
- Hardware (clusters, GPUs, specialized boards)

Requirements

- High ratio of material/utility to amount of work
 - Much depends on your effort and interest
 - What work there is will impact whole class
- Every week: read, attend, bring 2 or 3 questions/comments
- Couple weeks: present papers and lead discussion of them
- Final week: brief case study of actual application of computation to drug discovery, or original proposal of a method or application
- Grade breakdown roughly follows time: 30% participation, 60% presentations, 10% case study

Schedule

- Introduction, History, Why Compute
- Search, Pharmacophores, and QSAR
- Docking
- Molecular Mechanics and MM-PBSA
- Free Energy Calculation
- Designing Libraries
- Designing Small Molecules
- In Silico ADME (absorption-distribution-metabolism-

excretion)

- Computational Infrastructures
- Case Studies

Web and Email

- cs379a.stanford.edu
 - Notes, links to reading, and presentations will be posted
- guha@stanford.edu, Clark S296

Next Week

Next Week Continued

Pharmacophores

- Specific arrangement of particular features that are thought to give a molecule its activity
- If you can identify a good pharmacophore, then you can search for other molecules that have it

QSAR

- Quantitative structure activity relationship
- Basically a form of supervised learning

Next Week Readings

- RAPID: Randomized Pharmacophore Identification for Drug Design (Finn, Latombe, Motwani, Yao, et. al.),
- Identification of... Growth Hormone Secretagogue Agonists by Virtual Screening and Structure-Activity Relationship Analysis (J. Med. Chem.),
- QSAR analysis of anticonvulsant agents using k nearest neighbor and simulated annealing PLS methods (J. Med. Chem.)

Links up on web, don't get stuck on chemical details, set up proxy if you need off campus access