
Analysis of the CS249 Style through the Creation of
Photomosaics

Nicholas Dovidio
Spring 2009

Abstract
Mathematical artwork employs mathematics to create
pieces of artwork. In one such method, photomosaics,
images or other objects are used to approximate a target
image. In effect the target image is simulated by the tiling
images. To create such pieces of artwork a large system
of linear equations is solved. In this project we create
photomosaics by solving that system using Ilog's Cplex
software package. To implement this code efficiently and
accurately we used the style presented in CS249. This
involved many complexities such as writing a wrapper
around the Cplex interface so that it conformed to our
framework's specifications. Another major difficulty
encountered was working in the CS249 methodology in
Java. In this paper we first discuss and show our results
concerning photomosaics. Once the application domain
has been presented and understood, we then discuss how
the CS249 style enabled us to write better software.

Introduction
Professor Robert Bosch of Oberlin College has created a variety of photomosaics
using different mathematical formulas. These include the traditional
photomosaics, where smaller photos are combined to approximate a target
image. He has also written papers on first using a stippled image to approximate
a target image. Then the dots from the stippled image are connected by the
shortest possible path. He calls this traveling salesman artwork. Additionally he
used complete sets of dominoes to approximate a target image. These various
forms of artwork have a constant theme, solving a large linear system of
equations. As an undergraduate myself, Gavin Taylor (Now a PhD candidate
Duke University) and Assistant Professor Tim Chartier (Davidson College)
created a variety of different pieces of software to recreate and refine Professor
Bosch's work. In this project we revisit one of those pieces of software,
specifically the photomosaic creator, and restructure it in the style of CS249.
Additionally we will rewrite the software to use Ilog's Cplex instead of NEOS to
solve the linear system of equations.

By rewriting the code in the CS249 we have created a better piece of software.
By better we mean a more robust piece of software with fewer bugs. The
software is also more expandable, with this basis intact it would be much simpler
to incorporate code that solves the other two mentioned mosaic problems. In this
project we will discuss the use of the CS249 style and specifically analyze how it

performs in Java. For example, the limited power of Java generics and the lack of
operator overloading can make the Java implementation of the CS249 methods
more complicated and cluttered.

This paper is broken up into two main sections. The first is an explanation of the
mathematics behind photomosaics. Here we also present our created images and
some analysis of them. After that section is concluded the reader will have a firm
grasp of the problem's domain and the problem we are attempting to solve. The
remainder of the paper is a discussion of the CS249 style as implemented in this
project. The topics we will focus on will be on framework design, interface
design, exception handling, and value types amongst others. Throughout these
discussions we will specifically focus on the dissimilarities between Java and
C++

The Photomosaic Problem
The photomosaic problem stated abstractly is to take a set of images, known as
tiling images, and then put them on a canvas in such a way that they
approximate a target image. These images may be used more than once. To
create the target image the tiled images are laid out in a way to minimize their
distance from the target image. Below we show such an example.

Dr. Michael Mossinghoff approximated by the Davidson College Staff

To describe this problem more formally we must first describe linear
programming. By understanding the application domain of a linear programming
problem, we will better be able to explain our interface decisions in our
implementation later.

Linear Programming Overview
Linear programming is a form of optimization where all of the constraints are

linear (Chartier 63). More specifically, a function known as the objective function
is maximized or minimized according to some constraints. The objective function
and the constraints are made up of decision variables whose values are what
must be chosen.

The Photomosaic Problem
Now that the underlying ideas behind linear programming have been presented,
we will discuss the constraints of the linear system we are attempting to solve
(Bosch). Recall that our goal is to use our tiling images to best approximate a
target image, while satisfying the constraints.

The notation used here is as follows: We will have k tiling images and use each
image at most m times. We will define the set of tiling images to be F and let f
be a specific image from this set. We will break up our target image into fixed
sized blocks. For simplicity we will have the same number of blocks in each row
and column. This scheme mostly preserves the image's orientation since we only
use all horizontal or all vertical images in our tiling set. We define t i,j to be the
image intensity of the block at row i and column j in the target image. The range
for i and j will be 0≤ i≤floor  k∗m   and 0≤ j≤floor k∗m  . We define this
upper bound as R .

With this notation we can now formalize the problem. First our decision variables
will be of the form x f,i,j . This means that for each grid block we have a decision
variable for each image in our set. This decision variable will be binary and will
be true when we use image f to approximate block t i,j else it will be zero. We
then have some constraints on our decision variables. The first is that we cannot
use each image more than m times and we cannot use an image a negative

number of times. More specifically: 0≤∑
i=1

R

∑
j=1

R

xf,i,j≤m . We also have a grid

constraint, each block must have exactly one image inside of it. This corresponds

that for each block: ∑
f=1

k

x f,i,j=1 . Lastly we have our objective function. Recall the

goal of this function is to minimize the difference in detail between the
approximate image and the target image. Mathematically this is:

Minimize:∑
f=1

k

∑
i=1

R

∑
j=1

R

Cost  xf,i,j ,t i,j  . The cost function is an attribute that we

experiment with to allow users to produce different photomosaics. Typically it is
defined as the two norm (Bosch). Now that we have formally described the
problem, we present a few different results. We experiment with different cost
functions, images, and number of uses of images.

Experiments in Cost Function
The choice of a cost function can have dramatic effects on the resulting image. In
all of our experiments we used cost functions of the following form: First divide
each image f into four quadrants. Then average the pixel values of those

quadrants (Taylor). Similarly for each block t i,j divide the region into four
quadrants and average the pixel values. Then the cost of placing an image f at
t i,j is computed as follows: First compute the difference between the
corresponding quadrants. Then compute the corresponding norm of this value. In

the euclidean norm case this is: ∑q=1
4

 f q−t i,j,q  
2 where q is an image

coordinate. Note we include absolute values here because it will become
important when using other norms. Below we show examples of how using
different norms changes the resulting image:

Graduation Picture using the 1, 2, and 3 norms.

The above mosaics are made from made from a small tiling set where the various
images were used multiple times. The end result is a tiled image that used 400
pictures. Disappointingly these results are not a good representation of the
target image. This suggests that we either need a better objective function,
better set of tiling images or more images. In the next section we explore change
the number of times we use an image. Another possible objective function
considered was scaling the cost function so that predicting the interior points is
much more important than predicting the edges. When we discuss our code
implementation, we will see how this would be an easy change.

Using More Images
Another attribute to our mosaic is m , the maximum never of times we may use a

specific image. By increasing the number of uses we can increase the resolution
of our photomosaic. Below we experiment by changing the number of images
used in our approximation of the Stanford tree.

Above we employed a small image set to approximate the Stanford logo. We
chose to use the images a maximum of one time, two times, three times, and four
times respectively. Clearly as we increase the number of images used, our
corresponding accuracy also increases. We observe that even with a large
number of uses, the image resolution appears distorted. This behavior occurs
because the tiling images and the target image have a different aspect ratio.

Concluding Image Analysis
We have successfully created our photomosaics and have two attributes that we
can alter to produce a better image, namely the cost function and the number of
images used. By exploring these parameters and changing the tiling set we can
create a variety of photomosaics. Through the rest of the paper the design is
analyzed in the context of the CS249 style. We will see how our implementation
will allow for easy modifications and improvements.

CS249: SOS Methodology
The backbone of CS249 is based on SOS: source code representation, outside-in
development and short-cycle development (Cheriton 14). During this project we
successfully followed these tenets to guide our development. In the following
sections we will discuss how they improved the overall software product and
focus on how they help reduce the slice of the programming pyramid a
programmer needs understand to complete his work (Cheriton 9). These ideas
have influenced our design in many areas including naming, exceptions and

template use. We discuss and analyze the decisions arising from the CS249 style
and also focus on how Java alters those decisions.

Source Code Representation
In a software program the software is the truth, not some diagram and not some
associated documentation (Cheriton). The goal of the CS249 style is to make the
source code readable to reduce bugs and improve the ability to evolve the
software. To do this objects are based off of the application domain and the
objects are strongly typed. By basing our objects in this manner we reduce the
number of names and concepts that a programmer will need to know (Cheriton
563). Further, CS249 argues for an attribute only interface. In such an interface
attributes can be read and possibly written (Cheriton 59). This helps keep a
separation of state and processing. We implement these ideas throughout the
project but they are clearest in two cases. The first is our design of the Cplex
wrapper module and the second is the use of our value types.

The Linear Programming Solver
As mentioned previously, one of the goals of this project was to write a wrapper
around Ilog's Cplex solver. This software package is an excellent linear solver,
but many of the terms and mechanisms are not compatible with the CS249 style.
To create the appropriate interface we looked at a typical linear system of
equations such as the one below (Chartier):

20≤8B1V
17≥6B1V
Maximize B 

This system contains only a few key entity types. First there are decision
variables. These can then be combined into expressions. An expression can
either be combined with another expression to create a constraint or the
expression can be used as the objective function. Lastly, the combination of these
parts creates our resulting system of equations. We defined our classes and
interfaces to directly model the application domain (Cheriton 667). Specifically
our wrapper around Cplex has four classes: Variable, Expression, Constraint, and
Linear_Solver_Factory. Each of these corresponds to a specific part of a linear
system, note that Linear_Solver_Factory is a factory object that creates the linear
system components. In a future release this class would act as a directory,
allowing users to query about all variables, constraints, and expressions it has
created.

Before even reading the individual classes, a user will expect certain behavior
from them purely based on their name. This helps to limit the slice that a
programmer needs to learn before he can effectively use the module (Cheriton
9). By analyzing each individual class the programmer can further understand
the structure and realize it corresponds directly to the application domain. For
example, one method of the Linear_Solver_Factory is:

 public Variable variableNew(Variable_Type type,
 int min, int max, String name)

By looking at the method name and call signature we can understand that this
method creates a new decision variable, of a certain type, with a certain range

and name. In contrast the Cplex documentation has over 550 pages of
information. This cannot be quickly and easily understood and may deter
possible users from purchasing the software package. Admittedly our wrapper
removes some of Cplex's functionality, which may be the reason to purchase the
software, but we believe most users simply want to setup and solve large
systems of linear equations and not be concerned with the underlying methods.

Value Types in Java
In CS249 we discuss the use of value types which are abstract collections that
have a very specific set of operations (Cheriton 620). At the framework level we
have classes such as Ordinal, Nominal and Interval. Each of these have a
consistent set operations that is used throughout the framework to help limit the
slice of the software a developer needs to know. We then inherit and instantiate
classes from these base classes. For example, instead of individually modeling
each and every picture we may instead use a PictureCount value type which
inherits from Ordinal. We use such a value type because it makes the code more
readable and provides type isolation. For example based on the name alone the
programmer would expect PictureCount to always be positive and to be
comparable to other PictureCount values. By having our code correspond to
expected behavior we improve readability and help the programmer understand
the class's purpose and function faster. Also the programmer will already know
the framework meaning of Ordinal and understand what operations are allowed
on PictureCount. Lastly, this provides type isolation so we do not have someone
adding PictureCount values to AirplaneCount values. The previously mentioned
ideas worked extremely well in C++. But the limits on Java generics and lack of
operator overloading forced us to make some modifications to these ideas.

To illustrate the problems with Java value types we will investigate implementing
the Ordinal class. In the CS249 framework this class has the full set of relational
operators. The first problem with Java generics is that they cannot take in a
primitive class such as int or double. Instead Java requires the generic to be
based off of some class such as Integer (Cheriton 541). This seems to be
unnecessary and will result in performance deterioration because now we have
to ask the Ordinal's RepType for its value. This involves two function calls.
Another performance hit comes because we cannot inline function calls in Java,
while the C++ version of Ordinal can inline all function calls. In effect using
value types in Java is expensive, while it is nearly free in C++.

Since Java does not have operator overloading for the relational operators, it
uses the comparable interface instead. This means that our base type must also
implement the comparable interface. This does not initially seem like a problem
until one examines the comparable interface. To implement the comparable
interface one must override:

public int compareTo(Object o) throws ClassCastException
This could be a relic from when Java did not have generics and such interfaces
were implemented in terms of passing around Objects (Cheriton 613). In our
implementation we also define:

public int compareTo(Ordinal<RepType> o) throws ClassCastException

This more specific method will be called when our Ordinal class is being used.
But by having our Ordinal compareTo method have the Object version we begin
to loose the compile time type checking we desire. Instead we now have run time
checking with exceptions. Further Java does not keep track of the RepType at
run-time, allowing two different instances of Ordinal to be compared without any
errors!

To put this concretely the following is compilable Java code assuming the client
catches the ClassCastException:

PictureCount p = new PictureCount(5);
String testString = "B";
System.out.println(p.compareTo(testString));

This undermines one of the main points of using user defined value types,
compile time checking. We also mention that a similar problem was encountered
when implementing the Nominal class and overriding the equals method.

The value type methodology does not translate well into Java. As mentioned this
occurs for two main reasons, the first is performance. By forcing everything to go
through an extra level of indirection using these value types is much slower than
the equivalent C++ version. Also the compareTo interface is a poor substitute for
operator overloading and pushes off what should be compile time checks to run
time checks. Perhaps a better and future implementation would totally ignore the
standard Java equals and compareTo interfaces and create a new set of
interfaces. The disadvantage of this approach is that it would require
programmers learning a larger slice and not conform with expected Java
behavior. It should be noted that the Java approach is better than the traditional
C #define syntax. While we do not get compile time checking, we at least get
some run time checking, which can help make debugging a problem easier. In
contrast, C would give us no hint that we were doing something wrong.

Outside-In Development
Another key to the CS249 methodology is outside-in development. In this
approach use scenarios are first developed, where a use scenario is “an
application, pattern or setting for using the software that you propose to
develop” (Cheriton 23). In effect we analyze how the software will be used and
have that motivate our interface design. In our project we knew that our main
goal was to create and solve photomosaics. To accomplish this task, we
recognized that there were a few key separate modules. The first module was
analyzing the tiled and target images. The next was solving the system of linear
equations. The last was analyzing a solved linear system and creating the
resulting tiled image. Each of these is a separate problem that required a
separate interface. Since developing the linear solver was the most complicated
piece of software, we choose to focus on how outside-in development aided in
this area.

Outside-In Development and Solving Linear Equations
At the heart of the photomosaic problem is solving a large system of linear
equations. Hence our use scenarios were all systems of linear equations where

we knew the solution ahead of time. We observed that solving these small
systems would require similar operations to solving the photomosaic system.

We used the following scenario as the basis for our tests. Suppose that by law a
ship must have a life vest or lifeboat capacity for every person on board. The
ship's captain would like to maximize the number of lifeboats used because of
their comfort. But the lifeboats take up more room than life jackets and hence a
combination of lifeboats and life vest must be used. As a specific example we
have the following (Chartier):

People Constraint 20≤8B1V
Volume Constraint 17≥6B1V

Maximize B 
In this example there are 20 people on board. Each lifeboat can hold 8
individuals and each life vest can hold 1. The total volume allotted for the life
vests and lifeboats is 17. Each lifeboat takes up 6 units and each life vest takes
up 1 unit. By having a specific scenario in mind we can write up some code that
we expect to solve the problem. Below we show the final code that will solve this
problem:

Variable boats = factory.variableNew(Linear_Solver_Factory.Variable_Type.INT,
0, 100, "Boat var");
Variable vests = factory.variableNew(Linear_Solver_Factory.Variable_Type.INT,
0, 100, "Vests var");
Expression peopleOnBoard = factory.expressionNew("Capacity");
Expression volume = factory.expressionNew("Volume");
Expression objective = factory.expressionNew("Objective");
peopleOnBoard.termNew(8, boats);
peopleOnBoard.termNew(1, vests);
volume.termNew(6, boats);
volume.termNew(1, vests);
objective.termNew(1, boats);
factory.constraintNew(20, peopleOnBoard,
Linear_Solver_Factory.Constraint_Type.LE);
factory.constraintNew(17, volume, Linear_Solver_Factory.Constraint_Type.GE);
factory.objectiveFunctionIs(Linear_Solver_Factory.Solution_Type.MAXIMIZE,

objective);

This code is very readable and corresponds directly to the stated problem. The
original test code, not shown, looked nearly identical. By developing simple use
scenarios such as above, we could refine and debug the linear solver wrapper
before using it on the more complicated photomosaic problem.

Short Cycle Development
Another of the main tenets of CS249 is short cycle development, which views
software as an iterative process. Here each development cycle takes an existing
piece of software and refines it into a better and better product. During these
iterations features may be removed, redefined, and updated. This approach
ensures that software developers have frequent feedback, flexibility in choosing

a release date, and clear goals (Cheriton 35).

Standard Development Cycle
Before we discuss how the short cycle aided our development let us analyze a
typical long cycle. In such a development process the cycle would have been the
full ten weeks of the term. It may have been 3 weeks of planning, 4 weeks of
coding, and three weeks of refining. The problem with this methodology is that it
lacks flexibility. Flexibility is needed in a software projects because unexpected
problems always occur. For example, I spent over a week working on the
makefile. This normally easy task was very difficult because I had to link to the
Cplex library in a very specific manner. This occurred because Stanford only has
a limited number of license keys for Cplex.

Iterative Software Design
In our design we developed the the three different portions of the program
separately. These were the tiling and target image analysis, solving the linear
system, and producing the resulting image. In effect these were separate
modules that each could have been tackled by a different programmer. In this
subsection we will analyze how the linear solver portion evolved and changed
during each iteration.

The linear solver classes went through three major cycles. The first cycle
entailed getting the software functional and allowing it to pass the basic use
scenarios. During this cycle we attempted to stay strict to the attribute only
interface design and other design principles discussed in the course. The next
cycle focused on interface design and refactoring. We realized that some of our
interfaces were unnecessarily complex. Further we realized that certain types of
constraints such as range constraints on decision variables were difficult to
implement. We refined the Variable class to make such types of constraints on
variables easier. We also replaced “verby” type words such as “add” in
expression with “termNew” (Cheriton 90). We thought about using “sum” instead
of termNew but felt that in our context this was clearer.

The last iteration we made involved optimizing exceptions. Almost every Cplex
method throws some type of exception. Initially we passed these all through to
the client and required them to handle them. As an optimization we now handle
these exceptions inside of the linear solver classes. This decision was chosen to
help encapsulate the underlying linear solver functionality. Additionally, the
client user has no knowledge of what to do with a Cplex exception. Now the only
exceptions that a client user will have are related to parsing his input. Such
errors the user can understand and find informative. Once this refined exception
handling was in place, we implemented the logging mechanism as described in
class. This logging mechanism is based on different levels of severity and could
allow users to filter the log based on such attributes. In our simplistic
implementation when an exception occurs we have the log create a new log
entry. When such an entry is made, a message is printed to the standard error as
suggested in CS249A assignment 3. These error messages can be used by a
developer to help debug the software.

Product Release Point
In my original project proposal I discussed rewriting three different mosaic
problems in the CS249 style. In my schedule I first planned on writing and
solving the general photomosaic problem. Once this was completed and my
linear solver classes fully debugged I was then going to focus on the other two
problems. By keeping a short cycle I was able to observe that this schedule was
overly ambitious. For example, it took much longer to refine and complete the
linear solver interface than I originally intended. The short cycle meant that after
each refinement I could release and still have a finished product, just without all
of the features I originally wanted (Cheriton 35). This flexibility is crucial in
industry when you need to be able to adapt to your competitor's release dates.

Short Cycle Development Synopsis
The use of short cycle development assured that we had a final project by our
deadline. But it also allowed us to iteratively refine the program up until the
release date in a controlled fashion. While short cycle development focuses on
development of about a week in length, a standard development cycle may have
been the full ten weeks of the term. The long cycle loses the flexibility of the
short cycle and fails to respond when unexpected complexities come up.

Other Topics
In the next few subsections we briefly touch on topics and problems encountered
during the development process. We mention how SOS and the underlying
framework helped us through these problems. We choose to analyze operator
overloading, functors, the prior code, and client interface.

Preexisting Framework
One of the difficulties of this project was beginning without a solid framework.
This forced the framework to be developed and refined before even tackling the
photomosaic problem. Further this was a distraction throughout the project. A
programmer would like to ideally have the framework in place when he begins
the project. This would allow him to focus on the new features that he is
implementing (Cheriton 682).

Client Interface
In the client's initial implementation it simply took in information from the
command line. We did not feel this was adequate and added a simple GUI to read
in this information from the user. This implementation takes in the file names
and other such information to create our photomosaic. Currently the
photomosaic problem is fixed at start and calls the appropriate interface
methods to create the linear system. This is another example of iterative
software development. We improved on the command line version and now have
a graphical and more user friendly version.

Functors
In an effort to keep state and processing separate we make use of functors. In
our implementation we use functors to implement the visitor pattern, the functor

object will visit objects in a collection and perform the appropriate action
(Cheriton 151). In C++ implementing these is very easy and syntactically pretty,
we simply override the () operator and have it take in an object type. Since Java
does not allow for the overloading of (), we had to implement a method to take its
place. But the effect is the same.

The visitor pattern is most apparent when we are performing actions on all of the
tiled images. Such an action could be as simple as printing their brightness
information to a file. The approach presented in some textbooks is to have the
individual class define a print routine. This method is inferior because print can
have many meanings. For example does image.print() mean to print the image as
a graphical representation or a series of doubles representing pixel intensities?
We use both such meanings inside of this program. The functor gives us the
flexibility to perform the appropriate one. Additionally, the functor can store
state such as destination which is related to the printing and not to the image
object

File Wrappers and Java's Limitations
This project relied on constant access to the file system. A common bug found in
programming is forgetting to close a file when the last reference leaves. In C++
this problem can be avoided by having a wrapper around the file class and then
overriding the destructor to close the file when the wrapper is being destroyed.
Disappointingly there is no equivalent solution in Java. This is another example of
where the simplicity of Java can hurt the programmer.

Java and Memory Management
Java memory management is based around garbage collection. In this vain the
programmer is far removed from memory management and cannot keep track of
his own memory. As a further problem when Java runs out of memory it throws
an OutOfMemoryError. Errors in Java differ from exception. Once an error has
occurred, the program has already reached catastrophic failure and cannot
recover. When this error occurs “the garbage collector has already tried its best
to free memory by reclaiming space from any objects that are no longer strongly
referenced” (Shirazi). This is horrible because we cannot implement any type of
recovery mechanism such as running in a safe mode (Cheriton 711). We know
and understand our program and recognize that some references could be
removed. The memory management problem is further complicated because
there is no way of keeping track of how much memory we have used. This
prevents us from implementing an on low memory type notification.

Java's memory management system, or lack thereof, seriously degraded the
quality of the software we created. We wanted to use as many images as
possible, so that we could produce the best mosaic. The end effect is that we
would keep increasing the number of images used until we hit the
OutOfMemoryError, and then knew we had hit our maximum.

Analysis of the Prior Code
As mentioned previously while at Davidson College Gavin Taylor, Dr. Chartier,

and myself wrote three different mosaic pieces of software. The specific piece of
software that this project is based on was originally written by Taylor and
created photomosaics using the NEOS linear solver. The new piece of software in
the CS249 style is better than the prior piece in many ways. The first is that it
uses object oriented programming techniques to make the code more
understandable. For example we use functors to separate processing from state.
In contrast Taylor's version was procedural in design. Additionally we have
written a wrapper around all of Cplex which can be used to solve many different
linear systems and not just the photomosaic problem. Our design also shows
effective and specific uses of exceptions. In contrast the other version had
exceptions in many different places without any formal consistency. This lack of
standard resulted in confusing and convoluted code. In conclusion our version is
superior because of its extendibility and ease of use.

Synopsis and Concluding Remarks
In conclusion, by following the CS249 methodology we were able to produce a
complete and functional piece of software. We were also able to do this within
the assignment's time frame. By following the CS249 principles we were able to
develop efficiently. Lastly, we have offered some analysis of using the CS249
principles in Java. We have seen that while Java prevents us from using the full
CS249 framework, we can still implement many of the underlying ideas of
CS249.

Appendix
Running the Software
Running and executing the program involves a few steps all at the terminal on a
Stanford Unix computer such as the pods. When running the programs follow the
associated directions.

1. Type: setenv ILOG_LICENSE_FILE "/usr/sweet/etc/ilog/access.ilm"
2. Type make photo_setup. This will allow you to convert a directory to BW

images, analyze those images, and analyze a target image.
3. Type: make photo_solve. This will analyze the information created above

and create a solution to the linear system of equations.
4. Type: make photo_setup. Use this program again to analyze the linear

solver solution and create the tiled image.

The separation of the program into two distinct modules was performed for two
reasons. The first is that we cannot upload 100s of megabytes of pictures to our
AFS space. The second is that Stanford has a limited number of keys for Ilog's
Cplex and we do not want to hog them while doing some of our time consuming
operations.

Acknowledgment
The original photomosaic piece of software was written by Gavin Taylor. I have
since rewritten almost all of his entire code with the exception of the tiled image
data gathering methods. I would like to thank him for providing his software as a

base for my work on this project and the other two mosaic software pieces I have
written.

Works Referenced
Bosch, Robert. Opt Art. www.oberlin.edu/math/faculty/bosch/optart_survey.pdf.
Access Date: 3/8/2008.

Chartier, Tim. Mathematical Modeling 210 Lecture Notes Spring 2006.

Cheriton, David. Object-Oriented Programming from a Modeling and Simulation
Perspective. http://www.stanford.edu/class/cs249a/. Access Date: 3/8/2008.

Taylor, Gavin. Math221 Photomosaic Code. Davidson College.

ILOG CPLEX 9.0 User's Manual.
eaton.math.rpi.edu/cplex90html/pdf/usrcplex.pdf. Access Date: 3/8/2005.
Taylor, Gavin. Referenced his original code from Mathematical Modeling 210.
Spring 2005.

Flanagan, David. O'Reilly Book Excerpts: Java in a Nutshell, 5th Edition. Generic
Types, Part.
http://www.onjava.com/pub/a/onjava/excerpt/javaian5_chap04/index1.html.
Access Date: 3/8/2008.

Shirazi, Jack Catching OutOfMemoryErrors to Preserve Monitoring and Server
Processes. http://www.onjava.com/pub/a/onjava/2001/08/22/optimization.html .
Access Date: March 14, 2008

Sun Developer Network http://java.sun.com/ . Access Date: 3/8/2008.

http://java.sun.com/
http://java.sun.com/
http://www.onjava.com/pub/a/onjava/2001/08/22/optimization.html
http://www.onjava.com/pub/a/onjava/2001/08/22/optimization.html
http://www.onjava.com/pub/a/onjava/2001/08/22/optimization.html
http://www.stanford.edu/class/cs249a/

