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What is a social network?

A graph metaphor for studying the 
relationships/interactions among a group of people

People:  vertices/nodes
Relationship: edges
System: network, graph
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3 Sample Graphs
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Networks can be undirected or directed

Directed

Citations

Following on Twitter or IG

Undirected

Friendship on Facebook

Actor Collaborations
Twitter conversations
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Some useful properties of nodes

Centrality Measures
• Degree (Undirected, in-degree, out-degree)
• Betweenness Centrality
Clustering Coefficient



Measuring Centrality: Degree

Node degree ki: the number of edges touching node i
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Measuring Centrality: in-degree

Node in-degree kini: the number of edges into node i
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Betweenness Centrality
A node with high betweenness

◦ lots of shortest paths between nodes must pass through it
◦ is a bottleneck for  information flow in the network

Betweenness of node 7 should be high 
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Betweenness Centrality

The betweenness of a node A (or an edge A-B)=

number of shortest paths that go through A (or A-B)
___________________________________________________________________________

total number of shortest paths that exist between all pairs of 
nodes



Betweenness
number of shortest paths that go through A 

total number of shortest paths between all pairs of nodes
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Betweenness of B?

More formally:
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Where: sik = the # of shortest paths between i and k
sik(j) = the # of shortest paths between i and k that go through j 

bA =



Clustering coefficient

CA for a node A:  what % of my friends know each other?
• A has 3 friends (B,C,D), 3 possible links (B-C, B-D, C-D)

• Only C-D exists

• CA = 1/3

• How about CC?

• CC=1/1

• Ranges from 0 (no friends know each other) to 1 (all do)

B

A
C

D

B

A
C

D

B

A
C

D

B

A
C

D

B

A
C

D

C = nA * (nA -1)/2

# of edges between A's friends
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"6 Degrees of Separation"?

Sofia

Wei
Ava

Nia

Jamal

Fang

Luis

Herb

Thelma

Perry

Lil

Small world: people are connected by small # of links



The Kevin Bacon number

Create a network of movie actors 
Connect 2 actors if they're in the 
same movie 
Count the number of steps to 
Kevin Bacon
Almost all actors have Bacon 
numbers <= 4

Genevieve,
Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Kevin_Bacon_Comic-Con_2012.jpg
https://commons.wikimedia.org/wiki/File:Kevin_Bacon_Comic-Con_2012.jpg


Erdös numbers are small too

Ron Graham. 1979. On Properties of a Well-Known 
Graph. Annals N.Y. Acad. Sci. 328 (1979), 166-172.

Topsy Kretts
Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Erdos_head_budapest_fall_1992.jpg
https://commons.wikimedia.org/wiki/File:Erdos_head_budapest_fall_1992.jpg


• Travers and Milgram (1969): Asked 300 people in Omaha NE and Boston
• Get a letter to a stock-broker in Boston by passing it through friends 

• How many steps did it take?

The Milgram Small World Experiment

SLIDE 

How to find the typical shortest path between any two people?

Travers, J., & Milgram, S. (1969). An exploratory study 
of the small world problem. Sociometry, 32, 425-43.

�
�

Milgram, Stanley. "The small 
world problem." Psychology 
today 2, no. 1 (1967): 60-67.



The Milgram small world experiments

It took 4.4-5.7 
intermediaries on 
average
“Six degrees of 
separation”
Most letters 
passed through 2 
"hub" people
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Travers, J., & Milgram, S. (1969). An exploratory study 
of the small world problem. Sociometry, 32, 425-43.



Problems with Milgram experiment

Not enough data
• Only 300 observations to start
• Of those, only 64 letters made it through
Almost certainly an overestimate
• People may not find actual shortest path



Online small world: Facebook friends

99.6% of all pairs of users connected by paths of 5 degrees (6 hops)
92% are connected by only four degrees (5 hops).
Average: 3.74 intermediaries/degrees (4.74 hops)
Four degrees of separation Backstrom, Lars, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano 

Vigna. "Four degrees of separation." In Proceedings of the 4th Annual ACM 
Web Science Conference, pp. 33-42. 2012.

721 million users
69 billion friendship links

Paul Butler, Facebook

https://www.facebook.com/notes/10158791468612200/


Fun facts: Origins of the “Six degrees” hypothesis

Hungarian writer Karinthy’s 1929 play “Chains” 
(Láncszemek)

◦ https://djjr-courses.wdfiles.com/local--
files/soc180%3Akarinthy-chain-links/Karinthy-Chain-
Links_1929.pdf

https://djjr-courses.wdfiles.com/local--files/soc180%3Akarinthy-chain-links/Karinthy-Chain-Links_1929.pdf


Why is the world small? What are the implications?

Duncan Watts: Small world is interesting because:
1. The network is large - O(Billions)
2. The network is sparse - people are connected to a 

small fraction of the total network
3. The network is decentralized -- no single (or small #) 

of stars
4. The network is highly clustered -- most friendship 

circles are overlapping

Slide from James Moody



Watts and Strogatz (1998) Model

A small world graph: very clustered (high C) but 
small path-length (low L)
1) Clustering coefficient C

• How many of my friends know each other
• Averaged over all nodes:  the average local density

2) Characteristic path length L 
• The average length of the shortest paths connecting any two nodes.

(Note: this is not quite the same as the diameter of the graph, which is the maximum shortest path 
connecting any two nodes)

Watts, D., Strogatz, S. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).



Watts and Strogatz (1998) "Caveman Network"

• Everyone in a cave knows 
each other
• A few people make 

connections
• Are C and L high or low?
• C high, L high

Slide from Lada Adamic



Watts and Strogatz 1998 model
Start with a ring, where every node is connected to the next z nodes ( a 
regular lattice)

With probability p, rewire every edge (or, add a shortcut) to a random, 
uniformly chosen destination.

lattice random
p = 0 p = 10 < p < 1

small world

Slide from
Lada Adamic



Slide from
Lada Adamic

Why does this work?  Key is fraction of 
shortcuts in the network

In a highly clustered, ordered 
network, a single random 
connection will create a 
shortcut that lowers L
dramatically
Without big changes in C
Small world: very clustered 
(high C) but small path-length 
(low L)
Small world properties can be 
created by a small number of 
shortcuts



Clustering and Path length

Lattice Small world

Figures from
Lada Adamic

High C
High L

High C
Low L



Small World: Summary

Can a network with high clustering be a small world? 
◦ Yes! You don’t need more than a few random links

The Watts Strogatz Model: 
• Provides insight on the interplay between clustering 

and the small-world 
• Captures the structure of many realistic networks 
• Accounts for the high clustering of real networks

Slide from Jure Leskovec
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Weak links

In the 1960s, Mark Granovetter studied how people 
find jobs.
He found out that most job referrals were through 
personal contacts.
But more by acquaintances and not close friends.
Why didn’t jobs come from close friends?

Mark Granovetter. The strength of weak ties. American Journal of 
Sociology, 78:1360– 1380, 1973.



Triadic Closure
“If two people in a social network have a friend in 
common, then there is an increased likelihood that 
they will become friends themselves at some point 
in the future.” (Anatol Rapoport 1953)48 CHAPTER 3. STRONG AND WEAK TIES
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Figure 3.1: The formation of the edge between B and C illustrates the e�ects of triadic

closure, since they have a common neighbor A.

seeking, and o�ers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, o�ering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from

Figure from D. Easley and J.Kleinberg. 2010.
Networks, Crowds, and Markets. Cambridge



Reminder: clustering coefficient C
CA of a node A is the percentage of friends of A who 
are friends themselves
CA before new edge = 1/6
(of B-C, B-D, B-E, C-D, C-E, D-E)

CA after new edge? 
Triadic closure leads to higher clustering coefficients

48 CHAPTER 3. STRONG AND WEAK TIES
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seeking, and o�ers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, o�ering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from

= 2/6

Figure from D. Easley and J.Kleinberg. 2010.
Networks, Crowds, and Markets. Cambridge



Why Triadic Closure?
1.We meet our friends through other friends

◦ B and C have opportunity to meet through A
2.B and C’s mutual friendship with A gives them a 

reason to trust A
3.A has incentive to bring B and C together to avoid 

stress:
◦ if A is friends with two people who don’t like each other 

it causes stress



An aside about the importance of triangles

Famous, replicated Bearman and Moody result
Adolescents with low clustering coefficients in their 

friend network more likely to consider suicide.
Lack of triangles correlates with lack of social groups

Bearman, Peter S., and James Moody. "Suicide and friendships among American 
adolescents." American Journal of Public Health 94, no. 1 (2004): 89-95.



Bridges

50 CHAPTER 3. STRONG AND WEAK TIES

BA
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C

Figure 3.3: The A-B edge is a bridge, meaning that its removal would place A and B in

distinct connected components. Bridges provide nodes with access to parts of the network

that are unreachable by other means.

Reasons for Triadic Closure. Triadic closure is intuitively very natural, and essentially

everyone can find examples from their own experience. Moreover, experience suggests some

of the basic reasons why it operates. One reason why B and C are more likely to become

friends, when they have a common friend A, is simply based on the opportunity for B and C

to meet: if A spends time with both B and C, then there is an increased chance that they

will end up knowing each other and potentially becoming friends. A second, related reason

is that in the process of forming a friendship, the fact that each of B and C is friends with

A (provided they are mutually aware of this) gives them a basis for trusting each other that

an arbitrary pair of unconnected people might lack.

A third reason is based on the incentive A may have to bring B and C together: if A is

friends with B and C, then it becomes a source of latent stress in these relationships if B

and C are not friends with each other. This premise is based in theories dating back to early

work in social psychology [217]; it also has empirical reflections that show up in natural but

troubling ways in public-health data. For example, Bearman and Moody have found that

teenage girls who have a low clustering coe⌅cient in their network of friends are significantly

more likely to contemplate suicide than those whose clustering coe⌅cient is high [48].

3.2 The Strength of Weak Ties

So how does all this relate to Mark Granovetter’s interview subjects, telling him with such

regularity that their best job leads came from acquaintances rather than close friends? In

fact, triadic closure turns out to be one of the crucial ideas needed to unravel what’s going

on.

A bridge is an edge whose removal places A and B in 
different components 

If A is going to get new information (like a job) that she 
doesn’t already know about, it might come from B

Figure from D. Easley and J.Kleinberg. 2010.
Networks, Crowds, and Markets. Cambridge



Local Bridge

3.2. THE STRENGTH OF WEAK TIES 51
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Figure 3.4: The A-B edge is a local bridge of span 4, since the removal of this edge would

increase the distance between A and B to 4.

Bridges and Local Bridges. Let’s start by positing that information about good jobs is

something that is relatively scarce; hearing about a promising job opportunity from someone

suggests that they have access to a source of useful information that you don’t. Now consider

this observation in the context of the simple social network drawn in Figure 3.3. The person

labeled A has four friends in this picture, but one of her friendships is qualitatively di�erent

from the others: A’s links to C, D, and E connect her to a tightly-knit group of friends who

all know each other, while the link to B seems to reach into a di�erent part of the network.

We could speculate, then, that the structural peculiarity of the link to B will translate into

di�erences in the role it plays in A’s everyday life: while the tightly-knit group of nodes A, C,

D, and E will all tend to be exposed to similar opinions and similar sources of information,

A’s link to B o�ers her access to things she otherwise wouldn’t necessarily hear about.

To make precise the sense in which the A-B link is unusual, we introduce the following

definition. We say that an edge joining two nodes A and B in a graph is a bridge if deleting

the edge would cause A and B to lie in two di�erent components. In other words, this edge

is literally the only route between its endpoints, the nodes A and B.

Now, if our discussion in Chapter 2 about giant components and small-world properties

taught us anything, it’s that bridges are presumably extremely rare in real social networks.

You may have a friend from a very di�erent background, and it may seem that your friendship

is the only thing that bridges your world and his, but one expects in reality that there will

A local bridge is an edge X-Y where X,Y have no friends in common 
(a local bridge does not form the side of any triangle) 

If A is going to get new information (like a job) that she 
doesn’t already know about, it might come from B Figure from D. Easley and J.Kleinberg. 2010.

Networks, Crowds, and Markets. Cambridge



Strong and Weak Ties

Some ties are stronger
• closer friendships
• more time spent together
Simplifying assumption
• ties are either strong (s) or weak (w)



Strong ties and triadic closure

The new B-C edge more likely to form if A-B and A-C are 
strong ties
More extreme: if A has strong ties to B and to C, there 
must be an edge B-C48 CHAPTER 3. STRONG AND WEAK TIES
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Figure 3.1: The formation of the edge between B and C illustrates the e�ects of triadic

closure, since they have a common neighbor A.

seeking, and o�ers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, o�ering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from

s
s

Figure from D. Easley and J.Kleinberg. 2010.
Networks, Crowds, and Markets. Cambridge



Strong triadic closure

52 CHAPTER 3. STRONG AND WEAK TIES

BA

ED

C

F H

GJ KS

S
S

W

W S

W W
W W

WS

S

S S

W W

S

SS

S S

S

Figure 3.5: Each edge of the social network from Figure 3.4 is labeled here as either a strong
tie (S) or a weak tie (W ), to indicate the strength of the relationship. The labeling in the

figure satisfies the Strong Triadic Closure Property at each node: if the node has strong ties

to two neighbors, then these neighbors must have at least a weak tie between them.

be other, hard-to-discover, multi-step paths that also span these worlds. In other words, if

we were to look at Figure 3.3 as it is embedded in a larger, ambient social network, we would

likely see a picture that looks like Figure 3.4.

Here, the A-B edge isn’t the only path that connects its two endpoints; though they may

not realize it, A and B are also connected by a longer path through F , G, and H. This kind

of structure is arguably much more common than a bridge in real social networks, and we

use the following definition to capture it. We say that an edge joining two nodes A and B

in a graph is a local bridge if its endpoints A and B have no friends in common — in other

words, if deleting the edge would increase the distance between A and B to a value strictly

more than two. We say that the span of a local bridge is the distance its endpoints would

be from each other if the edge were deleted [190, 407]. Thus, in Figure 3.4, the A-B edge is

a local bridge with span four; we can also check that no other edge in this graph is a local

bridge, since for every other edge in the graph, the endpoints would still be at distance two if

the edge were deleted. Notice that the definition of a local bridge already makes an implicit

connection with triadic closure, in that the two notions form conceptual opposites: an edge

is a local bridge precisely when it does not form a side of any triangle in the graph.

Local bridges, especially those with reasonably large span, still play roughly the same

If a node 1 has two strong ties to nodes 2 and 3, there 
is an edge between 2 and 3

Figure from D. Easley and J.Kleinberg. 2010.
Networks, Crowds, and Markets. Cambridge



Closure and bridges
If a node A in a network satisfies the Strong Triadic 
Closure Property and is involved in at least two strong 
ties, then any local bridge it is involved in must be a 
weak tie. 

3.2. THE STRENGTH OF WEAK TIES 55

BA S

C

S

Strong Triadic Closure says 
the B-C edge must exist, but 
the definition of a local bridge 

says it cannot.

Figure 3.6: If a node satifies Strong Triadic Closure and is involved in at least two strong

ties, then any local bridge it is involved in must be a weak tie. The figure illustrates the

reason why: if the A-B edge is a strong tie, then there must also be an edge between B and

C, meaning that the A-B edge cannot be a local bridge.

We’re going to justify this claim as a mathematical statement – that is, it will follow

logically from the definitions we have so far, without our having to invoke any as-yet-

unformalized intuitions about what social networks ought to look like. In this way, it’s

a di�erent kind of claim from our argument in Chapter 2 that the global friendship network

likely contains a giant component. That was a thought experiment (albeit a very convinc-

ing one), requiring us to believe various empirical statements about the network of human

friendships — empirical statements that could later be confirmed or refuted by collecting

data on large social networks. Here, on the other hand, we’ve constructed a small num-

ber of specific mathematical definitions — particularly, local bridges and the Strong Triadic

Closure Property — and we can now justify the claim directly from these.

The argument is actually very short, and it proceeds by contradiction. Take some net-

work, and consider a node A that satisfies the Strong Triadic Closure Property and is involved

in at least two strong ties. Now suppose A is involved in a local bridge — say, to a node

B — that is a strong tie. We want to argue that this is impossible, and the crux of the

argument is depicted in Figure 3.6. First, since A is involved in at least two strong ties,

and the edge to B is only one of them, it must have a strong tie to some other node, which

we’ll call C. Now let’s ask: is there an edge connecting B and C? Since the edge from A to

B is a local bridge, A and B must have no friends in common, and so the B-C edge must

not exist. But this contradicts Strong Triadic Closure, which says that since the A-B and

Figure from D. Easley and J.Kleinberg. 2010.
Networks, Crowds, and Markets. Cambridge



Closure and bridges
So local bridges are likely to be weak ties
Explaining why jobs came from weak ties52 CHAPTER 3. STRONG AND WEAK TIES
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Figure 3.5: Each edge of the social network from Figure 3.4 is labeled here as either a strong
tie (S) or a weak tie (W ), to indicate the strength of the relationship. The labeling in the

figure satisfies the Strong Triadic Closure Property at each node: if the node has strong ties

to two neighbors, then these neighbors must have at least a weak tie between them.

be other, hard-to-discover, multi-step paths that also span these worlds. In other words, if

we were to look at Figure 3.3 as it is embedded in a larger, ambient social network, we would

likely see a picture that looks like Figure 3.4.

Here, the A-B edge isn’t the only path that connects its two endpoints; though they may

not realize it, A and B are also connected by a longer path through F , G, and H. This kind

of structure is arguably much more common than a bridge in real social networks, and we

use the following definition to capture it. We say that an edge joining two nodes A and B

in a graph is a local bridge if its endpoints A and B have no friends in common — in other

words, if deleting the edge would increase the distance between A and B to a value strictly

more than two. We say that the span of a local bridge is the distance its endpoints would

be from each other if the edge were deleted [190, 407]. Thus, in Figure 3.4, the A-B edge is

a local bridge with span four; we can also check that no other edge in this graph is a local

bridge, since for every other edge in the graph, the endpoints would still be at distance two if

the edge were deleted. Notice that the definition of a local bridge already makes an implicit

connection with triadic closure, in that the two notions form conceptual opposites: an edge

is a local bridge precisely when it does not form a side of any triangle in the graph.

Local bridges, especially those with reasonably large span, still play roughly the same

Figure from D. Easley and J.Kleinberg. 2010.
Networks, Crowds, and Markets. Cambridge



The Strength of Weak Ties
Weak ties can occur between cohesive groups: low transitivity

◦ old college friend
◦ former colleague from work

Weak ties have different information than close contacts
Granovetter found weak ties were short paths
• Compatible with Watts/Strogatz small world model

SLIDE ADAPTED FROM JAMES MOODY



Summary

Triangles (triadic closure) lead to higher clustering 
coefficients

◦ Your friends will tend to befriend each other

Local bridges will often be weak ties
Information comes over weak ties
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Degree of nodes 

Many nodes on the internet have low degree
◦ One or two connections

A few (hubs) have very high degree
P(k), # of nodes with degree k, follows a power law:

Where α for the internet is about 2.1
• So the fraction of web pages with k in-links is 

proportional to 1/k2
€ 

P(k)∝ k−α



Gaussian (normal) distribution of human heights

Heights of males in US

average value close to
most typical

distribution close to 
symmetric around
average value 

Figure from Newman, Mark. "Power laws, 
Pareto distributions and Zipf's law."
Contemporary physics 46, no. 5 (2005): 323-
351. Slide from Lada Adamic



Power-law distribution

Figure from Newman, Mark. "Power laws, 
Pareto distributions and Zipf's law."
Contemporary physics 46, no. 5 (2005): 323-
351. Slide from Lada Adamic

population of cities

Skew (asymmetry)
High ratio of max to min



Power-law distributions

Right skew
◦ normal distribution is centered on mean
◦ power-law or Zipf distribution is not

High ratio of max to min
◦ Populations of cities are power-law 

distributed
◦ Contrast: human heights are not (max and 

min not that different)

Slide from Lada Adamic



Power-law distribution

• straight line on a log-log plot

n log-log 
scale

Figure from Newman, Mark. "Power laws, 
Pareto distributions and Zipf's law."
Contemporary physics 46, no. 5 (2005): 323-
351. Slide from Lada Adamic



Power law distribution are straight lines on log-log plots

p(x): probability of observing an item with value x
Power law:

𝑝 𝑥 =
𝑐
𝑥! = 𝑐𝑥"!

Take the log of both sides

log(𝑝 𝑥 ) = log 𝑐 − 𝛼log(𝑥)
A line with –a as slope

power law exponent a

Slide from Lada Adamic



Power laws are everywhere!

Figures from Newman, Mark. "Power laws, 
Pareto distributions and Zipf's law."
Contemporary physics 46, no. 5 (2005): 323-351

Figure 4. Cumulative distributions or ‘rank/frequency plots’ of twelve quantities reputed to follow power laws. The
distributions were computed as described in Appendix A. Data in the shaded regions were excluded from the calculations of
the exponents in table 1. Source references for the data are given in the text. (a) Numbers of occurrences of words in the novel
Moby Dick by Hermann Melville. (b) Numbers of citations to scientific papers published in 1981, from time of publication
until June 1997. (c) Numbers of hits on web sites by 60000 users of the America Online Internet service for the day of 1
December 1997. (d) Numbers of copies of bestselling books sold in the US between 1895 and 1965. (e) Number of calls
received by AT&T telephone customers in the US for a single day. (f) Magnitude of earthquakes in California between
January 1910 and May 1992. Magnitude is proportional to the logarithm of the maximum amplitude of the earthquake, and
hence the distribution obeys a power law even though the horizontal axis is linear. (g) Diameter of craters on the moon.
Vertical axis is measured per square kilometre. (h) Peak gamma-ray intensity of solar flares in counts per second, measured
from Earth orbit between February 1980 and November 1989. (i) Intensity of wars from 1816 to 1980, measured as battle
deaths per 10000 of the population of the participating countries. (j) Aggregate net worth in dollars of the richest individuals
in the US in October 2003. (k) Frequency of occurrence of family names in the US in the year 1990. (l) Populations of US
cities in the year 2000.
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Power laws are "scale free"
A power law looks the same no mater 
what scale we look at it on (2 to 50 or 
200 to 5000)
Only true of a power-law distribution!
p(bx) = g(b) p(x)    
Shape of the distribution unchanged 
except for a multiplicative constant
p(bx) = (bx)-a = b-a x-a

log(x)

log(p(x))

x →b*x

Slide from Lada Adamic



Language: Zipf's law is a power-law

How frequent is the 3rd or 100th most common word?

Few very frequent words (“the”, “of”), lots of rare ones (“expressive”, “Jurafsky”)

Zipf's law (George K. Zipf): the frequency of the r'th most frequent word is 
inversely proportional to its rank: 

freq(r' th most frequent word) ∝ $
'!

with b close to unity. 

The most frequent word is twice as frequent as the 2nd, 3 times as frequent as 
the 3rd, etc.



Pareto’s law and power-laws

Pareto
◦ The Italian economist Vilfredo Pareto was interested in 

the distribution of income. 
◦ Pareto’s law is expressed in terms of the cumulative 

distribution (the probability that a person earns X or 
more).

P[X > x] ~ x-k 

Slide from Lada Adamic



Income
The fraction i of the income going to the richest 
P of the population:

i= (100/P)η-1

◦ if η = 0.5
top 1 percent gets 100-0.5 = .10

◦ In 2015, η = 0.6   top 1 percent gets 100-0.4 = .16
◦ (higher η = more inequality)
Thomas Piketty’s book, #1 on NY Times best 
seller list in 2014, studies how η relates to rise of 
wealth inequality

Charles Jones. "Pareto and Piketty: The Macroeconomics of Top Income and Wealth Inequality" Journal of Economic Perspectives, Winter 2015.

https://web.stanford.edu/~chadj/papers.html


Where do power laws come from?

Many different processes can lead to power laws
There is no one unique mechanism

Slide from Lada Adamic



Preferential attachment

Price (1965) model for citation networks
• new citations to a paper are proportional to the 

number it already has
• each new paper is generated with m citations
• new papers cite previous papers with probability 

proportional to their in-degree (citations)

Slide from Lada Adamic



Preferential attachment is a “Rich get Richer” Model

Explanation for various power law effects
1. Citations: randomly draw citations from the reference 

section of papers
2. Assume cities are formed at different times, and that, 

once formed, a city grows in proportion to its current size 
simply as a result of people having children

3. Words: people are more likely to use a word that is 
frequent (perhaps it comes to mind more easily or faster)



Power laws: Summary

Many processes are distributed as power laws
◦ Word frequencies, citations, web hits

Power law distributions have interesting properties
◦ scale free, skew, high max/min ratios

Various mechanisms explain their prevalence
◦ rich-get-richer, etc.

Explain lots of phenomena we have been dealing with
◦ the use of stop words lists (a small fraction of word types cover 

most tokens in running text)
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