Text Classification and Naïve Bayes The Task of Text Classification ### Is this spam? Subject: Important notice! From: Stanford University <newsforum@stanford.edu> Date: October 28, 2011 12:34:16 PM PDT To: undisclosed-recipients:; #### **Greats News!** You can now access the latest news by using the link below to login to Stanford University News Forum. http://www.123contactform.com/contact-form-StanfordNew1-236335.html Click on the above link to login for more information about this new exciting forum. You can also copy the above link to your browser bar and login for more information about the new services. © Stanford University. All Rights Reserved. ### Who wrote which Federalist papers? - 1787-8: anonymous essays try to convince New York to ratify U.S Constitution: Jay, Madison, Hamilton. - Authorship of 12 of the letters in dispute - 1963: solved by Mosteller and Wallace using Bayesian methods James Madison **Alexander Hamilton** ### Positive or negative movie review? unbelievably disappointing Full of zany characters and richly applied satire, and some great plot twists this is the greatest screwball comedy ever filmed It was pathetic. The worst part about it was the boxing scenes. #### Dan Jurafsky ### What is the subject of this article? ### MEDLINE Article ### **MeSH Subject Category Hierarchy** - Antogonists and Inhibitors - Blood Supply - Chemistry - Drug Therapy - Embryology - Epidemiology • ### **Text Classification** - Assigning subject categories, topics, or genres - Spam detection - Authorship identification - Age/gender identification - Language Identification - Sentiment analysis • ### **Text Classification: definition** - Input: - a document d - a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$ • Output: a predicted class $c \in C$ # Classification Methods: Hand-coded rules - Rules based on combinations of words or other features - spam: black-list-address OR ("dollars" AND"have been selected") - Accuracy can be high - If rules carefully refined by expert - But building and maintaining these rules is expensive ## Classification Methods: Supervised Machine Learning ### Input: - a document d - a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$ - A training set of m hand-labeled documents $(d_1, c_1), \dots, (d_m, c_m)$ ### Output: • a learned classifier $\gamma:d \rightarrow c$ ## Classification Methods: Supervised Machine Learning - Any kind of classifier - Naïve Bayes - Logistic regression - Support-vector machines - k-Nearest Neighbors • # Text Classification and Naive Bayes ### The Naive Bayes Classifier ### Naive Bayes Intuition Simple ("naive") classification method based on Bayes rule Relies on very simple representation of document Bag of words ### The Bag of Words Representation I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet! ### The bag of words representation |--|--| | seen | 2 | |-----------|-------| | sweet | 1 | | whimsical | 1 | | recommend | 1 | | happy | 1 | | • • • | • • • | ### Bayes' Rule Applied to Documents and Classes For a document d and a class C $$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$ ### Naive Bayes Classifier (I) $$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c \mid d)$$ MAP is "maximum a posteriori" = most likely class $$= \underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)}$$ **Bayes Rule** $$= \underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)$$ Dropping the denominator ### Naive Bayes Classifier (II) "Likelihood" "Prior" $$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)$$ $$= \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$ Document d represented as features x1..xn ### Naïve Bayes Classifier (IV) $$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, ..., x_n \mid c) P(c)$$ $O(|X|^n \bullet |C|)$ parameters Could only be estimated if a very, very large number of training examples was available. How often does this class occur? We can just count the relative frequencies in a corpus ## Multinomial Naive Bayes Independence Assumptions $$P(x_1, x_2, ..., x_n | c)$$ **Bag of Words assumption**: Assume position doesn't matter **Conditional Independence**: Assume the feature probabilities $P(x_i|c_i)$ are independent given the class c. $$P(x_1,...,x_n | c) = P(x_1 | c) \cdot P(x_2 | c) \cdot P(x_3 | c) \cdot ... \cdot P(x_n | c)$$ ### Multinomial Naive Bayes Classifier $$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$ $$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c_j) \prod_{x \in X} P(x \mid c)$$ ## Applying Multinomial Naive Bayes Classifiers to Text Classification positions ← all word positions in test document $$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$ ### Problems with multiplying lots of probs There's a problem with this: $$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$ Multiplying lots of probabilities can result in floating-point underflow! .0006 * .0007 * .0009 * .01 * .5 * .000008.... Idea: Use logs, because log(ab) = log(a) + log(b) We'll sum logs of probabilities instead of multiplying probabilities! ### We actually do everything in log space Instead of this: $$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j) \prod_{i \in positions} P(x_i \mid c_j)$$ This: $$c_{\text{NB}} = \operatorname*{argmax}_{c_j \in C} \left[\log P(c_j) + \sum_{i \in \text{positions}} \log P(x_i | c_j) \right]$$ #### Notes: - 1) Taking log doesn't change the ranking of classes! The class with highest probability also has highest log probability! - 2) It's a linear model: Just a max of a sum of weights: a **linear** function of the inputs So naive bayes is a **linear classifier** # Text Classification and Naive Bayes ### The Naive Bayes Classifier # Text Classification and Naïve Bayes Naive Bayes: Learning #### Sec. 13.3 ### Learning the Multinomial Naive Bayes Model ### First attempt: maximum likelihood estimates simply use the frequencies in the data $$\widehat{P}(c_j) = \frac{N_{c_j}}{N_{total}}$$ $$\hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$ ### Parameter estimation $$\hat{P}(w_i \mid c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$ fraction of times word w_i appears among all words in documents of topic c_j Create mega-document for topic *j* by concatenating all docs in this topic Use frequency of w in mega-document ### Problem with Maximum Likelihood What if we have seen no training documents with the word *fantastic* and classified in the topic **positive** (*thumbs-up*)? $$\hat{P}(\text{"fantastic" | positive}) = \frac{count(\text{"fantastic", positive})}{\sum_{w \in V} count(w, \text{positive})} = 0$$ Zero probabilities cannot be conditioned away, no matter the other evidence! $$c_{MAP} = \operatorname{argmax}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$ ### Laplace (add-1) smoothing for Naïve Bayes $$\hat{P}(w_i \mid c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} (count(w, c)) + 1}$$ $$= \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c)\right) + |V|}$$ ### Multinomial Naïve Bayes: Learning From training corpus, extract Vocabulary ### Calculate $P(c_i)$ terms • For each c_j in C do $docs_i \leftarrow$ all docs with class $=c_i$ $$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$ - Calculate $P(w_k \mid c_i)$ terms - $Text_i \leftarrow single doc containing all <math>docs_i$ - For each word w_k in *Vocabulary* $n_k \leftarrow \#$ of occurrences of w_k in $Text_i$ $$P(w_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$ ### Unknown words ### What about unknown words - that appear in our test data - but not in our training data or vocabulary? ### We **ignore** them - Remove them from the test document! - Pretend they weren't there! - Don't include any probability for them at all! ### Why don't we build an unknown word model? It doesn't help: knowing which class has more unknown words is not generally helpful! ### Stop words ### Some systems ignore stop words - **Stop words:** very frequent words like *the* and *a*. - Sort the vocabulary by word frequency in training set - Call the top 10 or 50 words the stopword list. - Remove all stop words from both training and test sets - As if they were never there! ### But removing stop words doesn't usually help So in practice most NB algorithms use all words and don't use stopword lists # Text Classification and Naive Bayes Naive Bayes: Learning # Text Classification and Naive Bayes # Sentiment and Binary Naive Bayes ### Let's do a worked sentiment example! | | Cat | Documents | |----------|-----|---------------------------------------| | Training | - | just plain boring | | | _ | entirely predictable and lacks energy | | | _ | no surprises and very few laughs | | | + | very powerful | | | + | the most fun film of the summer | | Test | ? | predictable with no fun | ### A worked sentiment example with add-1 smoothing | | Cat | Documents | |----------|-----|---------------------------------------| | Training | - | just plain boring | | | - | entirely predictable and lacks energy | | | _ | no surprises and very few laughs | | | + | very powerful | | | + | the most fun film of the summer | | Test | ? | predictable with no fun | ### 3. Likelihoods from training: $$p(w_i|c) = \frac{count(w_i, c) + 1}{(\sum_{w \in V} count(w, c)) + |V|}$$ $$P(\text{"predictable"}|-) = \frac{1+1}{14+20} \qquad P(\text{"predictable"}|+) = \frac{0+1}{9+20}$$ $$P(\text{"no"}|-) = \frac{1+1}{14+20} \qquad P(\text{"no"}|+) = \frac{0+1}{9+20}$$ $$P(\text{"fun"}|-) = \frac{0+1}{14+20} \qquad P(\text{"fun"}|+) = \frac{1+1}{9+20}$$ ### 1. Prior from training: $$\hat{P}(c_j) = \frac{N_{c_j}}{N_{total}}$$ $P(-) = 3/5$ $P(+) = 2/5$ ### 2. Drop "with" ### 4. Scoring the test set: $$P(-)P(S|-) = \frac{3}{5} \times \frac{2 \times 2 \times 1}{34^3} = 6.1 \times 10^{-5}$$ $$P(+)P(S|+) = \frac{2}{5} \times \frac{1 \times 1 \times 2}{29^3} = 3.2 \times 10^{-5}$$ ## Optimizing for sentiment analysis For tasks like sentiment, word **occurrence** seems to be more important than word **frequency**. - The occurrence of the word fantastic tells us a lot - The fact that it occurs 5 times may not tell us much more. ## Binary multinominal naive bayes, or binary NB - Clip our word counts at 1 - Note: this is different than Bernoulli naive bayes; see the textbook at the end of the chapter. ## Binary Multinomial Naïve Bayes: Learning From training corpus, extract Vocabulary ### Calculate $P(c_i)$ terms • For each c_j in C do $docs_j \leftarrow$ all docs with class $=c_j$ $$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$ • Calculate $P(w_k \mid c_i)$ terms - Rentipe dirigile the direction on this indirection all docs; - For Each word, the washing n_k Refair only a single instance of n_k $$P(w_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$ ## Binary Multinomial Naive Bayes on a test document d First remove all duplicate words from *d*Then compute NB using the same equation: $$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(w_{i} \mid c_{j})$$ #### Four original documents: - it was pathetic the worst part was the boxing scenes - no plot twists or great scenes - + and satire and great plot twists - + great scenes great film #### Four original documents: - it was pathetic the worst part was the boxing scenes - no plot twists or great scenes - + and satire and great plot twists - + great scenes great film | | NB | | | |----------|--------|----------|--| | | Counts | | | | | + | _ | | | and | 2 | 0 | | | boxing | 0 | 1 | | | film | 1 | 0 | | | great | 3 | 1 | | | it | 0 | 1 | | | no | 0 | 1 | | | or | () | 1 | | | part | 0 | 1 | | | pathetic | 0 | 1 | | | plot | 1 | 1 | | | satire | 1 | 0 | | | scenes | 1 | $0 \\ 2$ | | | the | 0 | 2 | | | twists | 1 | 1 | | | was | 0 | 2 | | | worst | 0 | 1 | | #### Four original documents: - it was pathetic the worst part was the boxing scenes - no plot twists or great scenes - + and satire and great plot twists - + great scenes great film #### **After per-document binarization:** - it was pathetic the worst part boxing scenes - no plot twists or great scenes - + and satire great plot twists - + great scenes film | | NB | | | |----------|------------------|-------------|--| | | Counts | | | | | + | _ | | | and | 2 | 0 | | | boxing | 0
1 | 1 | | | film | 1 | 0 | | | great | 3
0
0
0 | 1 | | | it | 0 | 1 | | | no | 0 | 1 | | | or | 0 | 1 | | | part | 0 | 1 | | | pathetic | 0 | 1 | | | plot | 1 | 1 | | | satire | 1 | 0 | | | scenes | 1 | 0
2
2 | | | the | 0 | | | | twists | 1 | 1 | | | was | 0 | 2 | | | worst | 0 | 1 | | #### Four original documents: - it was pathetic the worst part was the boxing scenes - no plot twists or great scenes - + and satire and great plot twists - + great scenes great film #### After per-document binarization: - it was pathetic the worst part boxing scenes - no plot twists or great scenes - + and satire great plot twists - + great scenes film | | NB | | Binary | | |----------|--------|---|--------|---| | | Counts | | Counts | | | | + | _ | + | _ | | and | 2 | 0 | 1 | 0 | | boxing | 0 | 1 | 0 | 1 | | film | 1 | 0 | 1 | 0 | | great | 3 | 1 | 2 | 1 | | it | 0 | 1 | 0 | 1 | | no | 0 | 1 | 0 | 1 | | or | 0 | 1 | 0 | 1 | | part | 0 | 1 | 0 | 1 | | pathetic | 0 | 1 | 0 | 1 | | plot | 1 | 1 | 1 | 1 | | satire | 1 | 0 | 1 | 0 | | scenes | 1 | 2 | 1 | 2 | | the | 0 | 2 | 0 | 1 | | twists | 1 | 1 | 1 | 1 | | was | 0 | 2 | 0 | 1 | | worst | 0 | 1 | 0 | 1 | Counts can still be 2! Binarization is within-doc! # Text Classification and Naive Bayes ## Sentiment and Binary Naive Bayes # Text Classification and Naive Bayes ## More on Sentiment Classification ## Sentiment Classification: Dealing with Negation I really like this movie I really don't like this movie Negation changes the meaning of "like" to negative. Negation can also change negative to positive-ish - Don't dismiss this film - Doesn't let us get bored ## Sentiment Classification: Dealing with Negation Das, Sanjiv and Mike Chen. 2001. Yahoo! for Amazon: Extracting market sentiment from stock message boards. In Proceedings of the Asia Pacific Finance Association Annual Conference (APFA). Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment Classification using Machine Learning Techniques. EMNLP-2002, 79—86. Simple baseline method: Add NOT_ to every word between negation and following punctuation: didn't like this movie, but I didn't NOT like NOT this NOT movie but I ## Sentiment Classification: Lexicons Sometimes we don't have enough labeled training data In that case, we can make use of pre-built word lists Called **lexicons** There are various publically available lexicons ## MPQA Subjectivity Cues Lexicon Theresa Wilson, Janyce Wiebe, and Paul Hoffmann (2005). Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. Proc. of HLT-EMNLP-2005. Riloff and Wiebe (2003). Learning extraction patterns for subjective expressions. EMNLP-2003. Home page: https://mpqa.cs.pitt.edu/lexicons/subj_lexicon/ 6885 words from 8221 lemmas, annotated for intensity (strong/weak) - 2718 positive - 4912 negative - +: admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great - -: awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate ## The General Inquirer Philip J. Stone, Dexter C Dunphy, Marshall S. Smith, Daniel M. Ogilvie. 1966. The General Inquirer: A Computer Approach to Content Analysis. MIT Press - Home page: http://www.wjh.harvard.edu/~inquirer - List of Categories: http://www.wjh.harvard.edu/~inquirer/homecat.htm - Spreadsheet: http://www.wjh.harvard.edu/~inquirer/inquirerbasic.xls ### Categories: - Positiv (1915 words) and Negativ (2291 words) - Strong vs Weak, Active vs Passive, Overstated versus Understated - Pleasure, Pain, Virtue, Vice, Motivation, Cognitive Orientation, etc. #### Free for Research Use ## Using Lexicons in Sentiment Classification Add a feature that gets a count whenever a word from the lexicon occurs E.g., a feature called "this word occurs in the positive lexicon" or "this word occurs in the negative lexicon" Now all positive words (good, great, beautiful, wonderful) or negative words count for that feature. Using 1-2 features isn't as good as using all the words. But when training data is sparse or not representative of the test set, dense lexicon features can help ## Naive Bayes in Other tasks: Spam Filtering ### SpamAssassin Features: - Mentions millions of (dollar) ((dollar) NN,NNN,NNN.NN) - From: starts with many numbers - Subject is all capitals - HTML has a low ratio of text to image area - "One hundred percent guaranteed" - Claims you can be removed from the list ## Naive Bayes in Language ID Determining what language a piece of text is written in. Features based on character n-grams do very well Important to train on lots of varieties of each language (e.g., American English varieties like African-American English, or English varieties around the world like Indian English) ## Summary: Naive Bayes is Not So Naive Very Fast, low storage requirements Work well with very small amounts of training data Robust to Irrelevant Features Irrelevant Features cancel each other without affecting results Very good in domains with many equally important features Decision Trees suffer from fragmentation in such cases – especially if little data Optimal if the independence assumptions hold: If assumed independence is correct, then it is the Bayes Optimal Classifier for problem A good dependable baseline for text classification But we will see other classifiers that give better accuracy # Text Classification and Naive Bayes ## More on Sentiment Classification # Text Classification and Naïve Bayes Naïve Bayes: Relationship to Language Modeling ## Generative Model for Multinomial Naïve Bayes ## Naïve Bayes and Language Modeling - Naïve bayes classifiers can use any sort of feature - URL, email address, dictionaries, network features - But if, as in the previous slides - We use only word features - we use all of the words in the text (not a subset) - Then - Naïve bayes has an important similarity to language modeling. ## Each class = a unigram language model - Assigning each word: P(word | c) - Assigning each sentence: P(s|c)=Π P(word|c) ### Class pos | 0.1 | | ı | love | this | fun | film | |------|------|-----|------|------|------|------| | 0.1 | love | | | | | | | 0.01 | this | U.I | 0.1 | .05 | 0.01 | U.I | fun 0.05 $$P(s \mid pos) = 0.0000005$$ ## Naïve Bayes as a Language Model Which class assigns the higher probability to s? ### Model pos 0.1 0.1 love 0.01 this 0.05 fun 0.1 film ### Model neg).2 I 0.001 love 0.01 this 0.005 fun 0.1 film | <u> </u> | love | this
—— | fun
—— | film
—— | _ | |----------|-------|------------|-----------|------------|---| | 0.1 | 0.1 | 0.01 | 0.05 | 0.1 | | | 0.2 | 0.001 | 0.01 | 0.005 | 0.1 | | # Text Classification and Naïve Bayes Naïve Bayes: Relationship to Language Modeling # Text Classification and Naive Bayes ## Precision, Recall, and F1 ## Evaluating Classifiers: How well does our classifier work? ### Let's first address binary classifiers: • Is this email spam? ``` spam (+) or not spam (-) ``` • Is this post about Delicious Pie Company? ``` about Del. Pie Co (+) or not about Del. Pie Co(-) ``` #### We'll need to know - 1. What did our classifier say about each email or post? - 2. What should our classifier have said, i.e., the correct answer, usually as defined by humans ("gold label") ## First step in evaluation: The confusion matrix #### gold standard labels | | | gold positive | gold negative | |------------------|--------------------|----------------|----------------| | system
output | system
positive | true positive | false positive | | labels | system
negative | false negative | true negative | ## Accuracy on the confusion matrix gold standard labels gold positive gold negative system system positive output labelssystem positive system negative | true positive | false positive | |----------------|----------------| | false negative | true negative | $$accuracy = \frac{tp+tn}{tp+fp+tn+fn}$$ ## Why don't we use accuracy? Accuracy doesn't work well when we're dealing with uncommon or imbalanced classes Suppose we look at 1,000,000 social media posts to find Delicious Pie-lovers (or haters) - 100 of them talk about our pie - 999,900 are posts about something unrelated Imagine the following simple classifier Every post is "not about pie" ## Accuracy re: pie posts 100 posts are about pie; 999,900 aren't #### gold standard labels gold positive gold negative system system system positive output labelssystem positive system negative | true positive | false positive | |----------------|----------------| | false negative | true negative | $$accuracy = \frac{tp+tn}{tp+fp+tn+fn}$$ ## Why don't we use accuracy? Accuracy of our "nothing is pie" classifier 999,900 true negatives and 100 false negatives Accuracy is 999,900/1,000,000 = 99.99%! But useless at finding pie-lovers (or haters)!! Which was our goal! Accuracy doesn't work well for unbalanced classes Most tweets are not about pie! ## Instead of accuracy we use precision and recall gold standard labels **Precision**: % of selected items that are correct Recall: % of correct items that are selected ## Precision/Recall aren't fooled by the "just call everything negative" classifier! Stupid classifier: Just say no: every tweet is "not about pie" - 100 tweets talk about pie, 999,900 tweets don't - Accuracy = 999,900/1,000,000 = 99.99% But the Recall and Precision for this classifier are terrible: $$\mathbf{Recall} = \frac{\text{true positives}}{\text{true positives} + \text{false negatives}}$$ $$\frac{\text{true positives}}{\text{true positives} + \text{false positives}}$$ A combined measure: F1 F1 is a combination of precision and recall. $$F_1 = \frac{2PR}{P+R}$$ F1 is a special case of the general "F-measure" F-measure is the (weighted) harmonic mean of precision and recall HarmonicMean $$(a_1, a_2, a_3, a_4, ..., a_n) = \frac{1}{\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + ... + \frac{1}{a_n}}$$ $$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} \quad \text{or } \left(\text{with } \beta^2 = \frac{1 - \alpha}{\alpha} \right) \quad F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$ F1 is a special case of F-measure with $\beta=1$, $\alpha=\frac{1}{2}$ ## Suppose we have more than 2 classes? Lots of text classification tasks have more than two classes. Sentiment analysis (positive, negative, neutral), named entities (person, location, organization) We can define precision and recall for multiple classes like this 3-way email task: | | | g | gold labels | 7 | | |------------------|--------|-----------|-----------------------|-----------|--| | | | urgent | normal | spam | | | | urgent | 8 | 10 | 1 | $\mathbf{precision}_{\mathbf{u}} = \frac{8}{8+10+1}$ | | system
output | normal | 5 | 60 | 50 | $\mathbf{precision}_{n} = \frac{60}{5+60+50}$ | | | spam | 3 | 30 | 200 | precision s= $\frac{200}{3+30+200}$ | | | | recallu = | recall _n = | recalls = | | | | | 8 | 60 | 200 | | | | | 8+5+3 | 10+60+30 | 1+50+200 | | ## How to combine P/R values for different classes: Microaveraging vs Macroaveraging #### Class 1: Urgent #### true true urgent not system urgent system 340 not #### Class 2: Normal | | true | true | |------------------|--------|------| | | normal | not | | system
normal | 60 | 55 | | system
not | 40 | 212 | precision = $$\frac{60}{60+55}$$ = .52 #### Class 3: Spam | | true | true | |---------------|------|------| | | spam | not | | system spam | 200 | 33 | | system
not | 51 | 83 | precision = $$\frac{200}{200+33}$$ = .80 #### **Pooled** | | true | true | |---------------|------|------| | | yes | no | | system
yes | 268 | 99 | | system
no | 99 | 635 | precision = $$\frac{60}{60+55}$$ = .52 precision = $\frac{200}{200+33}$ = .86 microaverage precision = $\frac{268}{268+99}$ = .73 $$\frac{\text{macroaverage}}{\text{precision}} = \frac{.42 + .52 + .86}{3} = .60$$ # Text Classification and Naive Bayes ## Precision, Recall, and F1 # Text Classification and Naive Bayes ## **Avoiding Harms in Classification** ## Harms of classification Classifiers, like any NLP algorithm, can cause harms This is true for any classifier, whether Naive Bayes or other algorithms ## Representational Harms - Harms caused by a system that demeans a social group - Such as by perpetuating negative stereotypes about them. - Kiritchenko and Mohammad 2018 study - Examined 200 sentiment analysis systems on pairs of sentences - Identical except for names: - common African American (Shaniqua) or European American (Stephanie). - Like "I talked to Shaniqua yesterday" vs "I talked to Stephanie yesterday" - Result: systems assigned lower sentiment and more negative emotion to sentences with African American names - Downstream harm: - Perpetuates stereotypes about African Americans - African Americans treated differently by NLP tools like sentiment (widely used in marketing research, mental health studies, etc.) ## Harms of Censorship - Toxicity detection is the text classification task of detecting hate speech, abuse, harassment, or other kinds of toxic language. - Widely used in online content moderation - Toxicity classifiers incorrectly flag non-toxic sentences that simply mention minority identities (like the words "blind" or "gay") - women (Park et al., 2018), - disabled people (Hutchinson et al., 2020) - gay people (Dixon et al., 2018; Oliva et al., 2021) - Downstream harms: - Censorship of speech by disabled people and other groups - Speech by these groups becomes less visible online - Writers might be nudged by these algorithms to avoid these words making people less likely to write about themselves or these groups. ## Performance Disparities - 1. Text classifiers perform worse on many languages of the world due to lack of data or labels - 2. Text classifiers perform worse on varieties of even high-resource languages like English - Example task: language identification, a first step in NLP pipeline ("Is this post in English or not?") - English language detection performance worse for writers who are African American (Blodgett and O'Connor 2017) or from India (Jurgens et al., 2017) ## Harms in text classification #### Causes: - Issues in the data; NLP systems amplify biases in training data - Problems in the labels - Problems in the algorithms (like what the model is trained to optimize) - Prevalence: The same problems occur throughout NLP (including large language models) - Solutions: There are no general mitigations or solutions - But harm mitigation is an active area of research - And there are standard benchmarks and tools that we can use for measuring some of the harms # Text Classification and Naive Bayes ## **Avoiding Harms in Classification**