
Introduction to N-grams

Language
Modeling

Dan Jurafsky

Probabilistic Language Models

• Today’s goal: assign a probability to a sentence
• Machine Translation:
• P(high winds tonite) > P(large winds tonite)

• Spell Correction
• The office is about fifteen minuets from my house

• P(about fifteen minutes from) > P(about fifteen minuets from)

• Speech Recognition
• P(I saw a van) >> P(eyes awe of an)

• + Summarization, question-answering, etc., etc.!!

Why?

Dan Jurafsky

Probabilistic Language Modeling

• Goal: compute the probability of a sentence or
sequence of words:

P(W) = P(w1,w2,w3,w4,w5…wn)

• Related task: probability of an upcoming word:
P(w5|w1,w2,w3,w4)

• A model that computes either of these:
P(W) or P(wn|w1,w2…wn-1) is called a language model.

• Better: the grammar But language model or LM is standard

Dan Jurafsky

How to compute P(W)

• How to compute this joint probability:

• P(its, water, is, so, transparent, that)

• Intuition: let’s rely on the Chain Rule of Probability

Dan Jurafsky

Reminder: The Chain Rule

• Recall the definition of conditional probabilities

p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

• More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• The Chain Rule in General
P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

Dan Jurafsky The Chain Rule applied to compute
joint probability of words in sentence

P(“its water is so transparent”) =
P(its) × P(water|its) × P(is|its water)
× P(so|its water is) × P(transparent|its water is

so)

€

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

Dan Jurafsky

How to estimate these probabilities

• Could we just count and divide?

• No! Too many possible sentences!
• We’ll never see enough data for estimating these

€

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

Dan Jurafsky

Markov Assumption

• Simplifying assumption:

• Or maybe

€

P(the | its water is so transparent that) ≈ P(the | that)

€

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei Markov

Dan Jurafsky

Markov Assumption

• In other words, we approximate each
component in the product

€

P(w1w2…wn) ≈ P(wi |wi−k…wi−1)
i
∏

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)

Dan Jurafsky

Simplest case: Unigram model

fifth, an, of, futures, the, an, incorporated, a,
a, the, inflation, most, dollars, quarter, in, is,
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model

€

P(w1w2…wn) ≈ P(wi)
i
∏

Dan Jurafsky

Condition on the previous word:

Bigram model

texaco, rose, one, in, this, issue, is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)

Dan Jurafsky

N-gram models

• We can extend to trigrams, 4-grams, 5-grams
• In general this is an insufficient model of language

• because language has long-distance dependencies:

“The computer which I had just put into the machine room on
the fifth floor crashed.”

• But we can often get away with N-gram models

Introduction to N-grams

Language
Modeling

Estimating N-gram
Probabilities

Language
Modeling

Dan Jurafsky

Estimating bigram probabilities

• The Maximum Likelihood Estimate

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

Dan Jurafsky

An example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

Dan Jurafsky

More examples:
Berkeley Restaurant Project sentences

• can you tell me about any good cantonese restaurants close by
• mid priced thai food is what i’m looking for
• tell me about chez panisse
• can you give me a listing of the kinds of food that are available
• i’m looking for a good place to eat breakfast
• when is caffe venezia open during the day

Dan Jurafsky

Raw bigram counts

• Out of 9222 sentences

Dan Jurafsky

Raw bigram probabilities

• Normalize by unigrams:

• Result:

Dan Jurafsky

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =
P(I|<s>)
× P(want|I)
× P(english|want)
× P(food|english)
× P(</s>|food)

= .000031

Dan Jurafsky

What kinds of knowledge?

• P(english|want) = .0011
• P(chinese|want) = .0065
• P(to|want) = .66
• P(eat | to) = .28
• P(food | to) = 0
• P(want | spend) = 0
• P (i | <s>) = .25

Dan Jurafsky

Practical Issues

• We do everything in log space
• Avoid underflow
• (also adding is faster than multiplying)

log(p1 × p2 × p3 × p4) = log p1 + log p2 + log p3 + log p4

Dan Jurafsky

Language Modeling Toolkits

• SRILM
• http://www.speech.sri.com/projects/srilm/

• KenLM
• https://kheafield.com/code/kenlm/

http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

Dan Jurafsky

Google N-Gram Release, August 2006

…

Dan Jurafsky

Google N-Gram Release
• serve as the incoming 92
• serve as the incubator 99
• serve as the independent 794
• serve as the index 223
• serve as the indication 72
• serve as the indicator 120
• serve as the indicators 45
• serve as the indispensable 111
• serve as the indispensible 40
• serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Dan Jurafsky

Google Book N-grams

• http://ngrams.googlelabs.com/

http://ngrams.googlelabs.com/

Estimating N-gram
Probabilities

Language
Modeling

Language
Modeling

Evaluation and Perplexity

How to evaluate N-gram models

"Extrinsic (in-vivo) Evaluation"
To compare models A and B
1. Put each model in a real task
• Machine Translation, speech recognition, etc.

2. Run the task, get a score for A and for B
• How many words translated correctly
• How many words transcribed correctly

3. Compare accuracy for A and B

Intrinsic (in-vitro) evaluation

Extrinsic evaluation not always possible
• Expensive, time-consuming
• Doesn't always generalize to other applications
Intrinsic evaluation: perplexity
• Directly measures language model performance at

predicting words.
• Doesn't necessarily correspond with real application

performance
• But gives us a single general metric for language models
• Useful for large language models (LLMs) as well as n-grams

Training sets and test sets

We train parameters of our model on a training set.
We test the model’s performance on data we
haven’t seen.

◦ A test set is an unseen dataset; different from training set.
◦ Intuition: we want to measure generalization to unseen data

◦ An evaluation metric (like perplexity) tells us how well
our model does on the test set.

Choosing training and test sets

• If we're building an LM for a specific task
• The test set should reflect the task language we

want to use the model for

• If we're building a general-purpose model
• We'll need lots of different kinds of training

data
• We don't want the training set or the test set to

be just from one domain or author or language.

Training on the test set

We can’t allow test sentences into the training set
• Or else the LM will assign that sentence an artificially

high probability when we see it in the test set
• And hence assign the whole test set a falsely high

probability.
• Making the LM look better than it really is

This is called “Training on the test set”
Bad science!

33

Dev sets

• If we test on the test set many times we might
implicitly tune to its characteristics
•Noticing which changes make the model better.

• So we run on the test set only once, or a few times
•That means we need a third dataset:
• A development test set or, devset.
•We test our LM on the devset until the very end
• And then test our LM on the test set once

Intuition of perplexity as evaluation metric:
How good is our language model?

Intuition: A good LM prefers "real" sentences
• Assign higher probability to “real” or “frequently

observed” sentences
• Assigns lower probability to “word salad” or

“rarely observed” sentences?

Intuition of perplexity 2:
Predicting upcoming words

The Shannon Game: How well can we
predict the next word?
• Once upon a ____
• That is a picture of a ____
• For breakfast I ate my usual ____

Unigrams are terrible at this game (Why?)

time 0.9

dream 0.03

midnight 0.02

…

and 1e-100

Picture credit: Historiska bildsamlingen
https://creativecommons.org/licenses/by/2.0/

Claude Shannon

A good LM is one that assigns a higher probability
to the next word that actually occurs

Intuition of perplexity 3: The best language model
is one that best predicts the entire unseen test set

• We said: a good LM is one that assigns a higher
probability to the next word that actually occurs.

• Let's generalize to all the words!
• The best LM assigns high probability to the entire test

set.

• When comparing two LMs, A and B
• We compute PA(test set) and PB(test set)
• The better LM will give a higher probability to (=be less

surprised by) the test set than the other LM.

• Probability depends on size of test set
• Probability gets smaller the longer the text
• Better: a metric that is per-word, normalized by length

• Perplexity is the inverse probability of the test set,
normalized by the number of words

Intuition of perplexity 4: Use perplexity instead of
raw probability

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Perplexity is the inverse probability of the test set,
normalized by the number of words

(The inverse comes from the original definition of perplexity
from cross-entropy rate in information theory)
Probability range is [0,1], perplexity range is [1,∞]
Minimizing perplexity is the same as maximizing probability

Intuition of perplexity 5: the inverse

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Intuition of perplexity 6: N-grams

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Bigrams:

Chain rule:

Intuition of perplexity 7:
Weighted average branching factor

Perplexity is also the weighted average branching factor of a language.

Branching factor: number of possible next words that can follow any word

Example: Deterministic language L = {red,blue, green}

Branching factor = 3 (any word can be followed by red, blue, green)

Now assume LM A where each word follows any other word with equal probability ⅓

Given a test set T = "red red red red blue"
PerplexityA(T) = PA(red red red red blue)-1/5 =

But now suppose red was very likely in training set, such that for LM B:
◦ P(red) = .8 p(green) = .1 p(blue) = .1

We would expect the probability to be higher, and hence the perplexity to be smaller:
PerplexityB(T) = PB(red red red red blue)-1/5

((⅓)5)-1/5 = (⅓)-1 =3

= (.8 * .8 * .8 * .8 * .1) -1/5 =.04096 -1/5 = .527-1 = 1.89

Holding test set constant:
Lower perplexity = better language model

Training 38 million words, test 1.5 million words, WSJ

N-gram
Order

Unigram Bigram Trigram

Perplexity 962 170 109

Language
Modeling

Evaluation and Perplexity

Language
Modeling

Sampling and Generalization

The Shannon (1948) Visualization Method
Sample words from an LM

Unigram:
REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO
OF TO EXPERT GRAY COME TO FURNISHES THE LINE
MESSAGE HAD BE THESE.

Bigram:
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER
THAT THE CHARACTER OF THIS POINT IS THEREFORE
ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO
EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

Claude Shannon

How Shannon sampled those words in 1948

"Open a book at random and select a letter at random on the page.
This letter is recorded. The book is then opened to another page
and one reads until this letter is encountered. The succeeding
letter is then recorded. Turning to another page this second letter
is searched for and the succeeding letter recorded, etc."

Sampling a word from a distribution

0 1

0.06

the

.06

0.03

of
0.02

a
0.02

to in

.09 .11 .13 .15
…

however
(p=.0003)

polyphonic
p=.0000018

…0.02

.66 .99
…

Visualizing Bigrams the Shannon Way

Choose a random bigram (<s>, w)

according to its probability p(w|<s>)

Now choose a random bigram (w, x)
according to its probability p(x|w)

And so on until we choose </s>

Then string the words together

<s> I
 I want
 want to
 to eat
 eat Chinese
 Chinese food
 food </s>
I want to eat Chinese food

Note: there are other sampling methods

Used for neural language models
Many of them avoid generating words from the very
unlikely tail of the distribution
We'll discuss when we get to neural LM decoding:

◦ Temperature sampling
◦ Top-k sampling
◦ Top-p sampling

Approximating Shakespeare

12 CHAPTER 3 • N-GRAM LANGUAGE MODELS

given training corpus. Another implication is that n-grams do a better and better job
of modeling the training corpus as we increase the value of N.

We can use the sampling method from the prior section to visualize both of
these facts! To give an intuition for the increasing power of higher-order n-grams,
Fig. 3.4 shows random sentences generated from unigram, bigram, trigram, and 4-
gram models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 3.4 Eight sentences randomly generated from four n-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This is
because, not to put the knock on Shakespeare, his oeuvre is not very large as corpora
go (N = 884,647,V = 29,066), and our n-gram probability matrices are ridiculously
sparse. There are V 2 = 844,000,000 possible bigrams alone, and the number of pos-
sible 4-grams is V 4 = 7⇥1017. Thus, once the generator has chosen the first 3-gram
(It cannot be), there are only seven possible next words for the 4th element (but, I,
that, thus, this, and the period).

To get an idea of the dependence of a grammar on its training set, let’s look at an
n-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our n-grams for the two genres. Fig. 3.5
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 3.4. While they both
model “English-like sentences”, there is clearly no overlap in generated sentences,
and little overlap even in small phrases. Statistical models are likely to be pretty use-
less as predictors if the training sets and the test sets are as different as Shakespeare
and WSJ.

How should we deal with this problem when we build n-gram models? One step
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,

Shakespeare as corpus

N=884,647 tokens, V=29,066
Shakespeare produced 300,000 bigram types out of
V2= 844 million possible bigrams.

◦ So 99.96% of the possible bigrams were never seen (have
zero entries in the table)

◦ That sparsity is even worse for 4-grams, explaining why
our sampling generated actual Shakespeare.

The Wall Street Journal is not Shakespeare
3.5 • GENERALIZATION AND ZEROS 13

1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 3.5 Three sentences randomly generated from three n-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

It is equally important to get training data in the appropriate dialect or variety,
especially when processing social media posts or spoken transcripts. For exam-
ple some tweets will use features of African American English (AAE)— the name
for the many variations of language used in African American communities (King,
2020). Such features include words like finna—an auxiliary verb that marks imme-
diate future tense —that don’t occur in other varieties, or spellings like den for then,
in tweets like this one (Blodgett and O’Connor, 2017):

(3.19) Bored af den my phone finna die!!!

while tweets from varieties like Nigerian English have markedly different vocabu-
lary and n-gram patterns from American English (Jurgens et al., 2017):

(3.20) @username R u a wizard or wat gan sef: in d mornin - u tweet, afternoon - u
tweet, nyt gan u dey tweet. beta get ur IT placement wiv twitter

Matching genres and dialects is still not sufficient. Our models may still be
subject to the problem of sparsity. For any n-gram that occurred a sufficient number
of times, we might have a good estimate of its probability. But because any corpus is
limited, some perfectly acceptable English word sequences are bound to be missing
from it. That is, we’ll have many cases of putative “zero probability n-grams” that
should really have some non-zero probability. Consider the words that follow the
bigram denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:
denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros—things that don’t ever occur in the training set but do occur inzeros

the test set—are a problem for two reasons. First, their presence means we are
underestimating the probability of all sorts of words that might occur, which will
hurt the performance of any application we want to run on this data.

Second, if the probability of any word in the test set is 0, the entire probability
of the test set is 0. By definition, perplexity is based on the inverse probability of the

Can you guess the author? These 3-gram sentences
are sampled from an LM trained on who?
1) They also point to ninety nine point
six billion dollars from two hundred four
oh six three percent of the rates of
interest stores as Mexico and gram Brazil
on market conditions
2) This shall forbid it should be branded,
if renown made it empty.
3) “You are uniformly charming!” cried he,
with a smile of associating and now and
then I bowed and they perceived a chaise
and four to wish for.

53

Choosing training data

If task-specific, use a training corpus that has a similar
genre to your task.
• If legal or medical, need lots of special-purpose documents

Make sure to cover different kinds of dialects and
speaker/authors.
• Example: African-American Vernacular English (AAVE)
• One of many varieties that can be used by African Americans and others
• Can include the auxiliary verb finna that marks immediate future tense:
• "My phone finna die"

The perils of overfitting

N-grams only work well for word prediction if the
test corpus looks like the training corpus
• But even when we try to pick a good training

corpus, the test set will surprise us!
• We need to train robust models that generalize!

One kind of generalization: Zeros
• Things that don’t ever occur in the training set
• But occur in the test set

Zeros
Training set:

… ate lunch
… ate dinner
… ate a
… ate the

P(“breakfast” | ate) = 0

• Test set
… ate lunch
… ate breakfast

Zero probability bigrams

Bigrams with zero probability
◦ Will hurt our performance for texts where those words

appear!
◦ And mean that we will assign 0 probability to the test set!

And hence we cannot compute perplexity (can’t
divide by 0)!

Language
Modeling

Sampling and Generalization

Smoothing: Add-one
(Laplace) smoothing

Language
Modeling

Dan Jurafsky

The intuition of smoothing (from Dan Klein)

• When we have sparse statistics:

• Steal probability mass to generalize better

P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request
 7 total

P(w | denied the)
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other
 7 total

al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

at
ta
ck

re
q
u
es
t

m
an

ou
tc
om
e

…

al
le
g
at
io
n
s

at
ta
ck

m
an

ou
tc
om
e

…al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

re
q
u
es
t

Dan Jurafsky

Add-one estimation

• Also called Laplace smoothing
• Pretend we saw each word one more time than we did
• Just add one to all the counts!

• MLE estimate:

• Add-1 estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V

Dan Jurafsky

Maximum Likelihood Estimates
• The maximum likelihood estimate

• of some parameter of a model M from a training set T
• maximizes the likelihood of the training set T given the model M

• Suppose the word “bagel” occurs 400 times in a corpus of a million words
• What is the probability that a random word from some other text will be

“bagel”?
• MLE estimate is 400/1,000,000 = .0004
• This may be a bad estimate for some other corpus

• But it is the estimate that makes it most likely that “bagel” will occur 400 times in
a million word corpus.

Dan Jurafsky

Berkeley Restaurant Corpus: Laplace
smoothed bigram counts

Dan Jurafsky

Laplace-smoothed bigrams

Dan Jurafsky

Reconstituted counts

Dan Jurafsky

Compare with raw bigram counts

Dan Jurafsky

Add-1 estimation is a blunt instrument

• So add-1 isn’t used for N-grams:
• We’ll see better methods

• But add-1 is used to smooth other NLP models
• For text classification
• In domains where the number of zeros isn’t so huge.

Smoothing: Add-one
(Laplace) smoothing

Language
Modeling

Interpolation, Backoff,
and Web-Scale LMs

Language
Modeling

Dan Jurafsky

Backoff and Interpolation
• Sometimes it helps to use less context

• Condition on less context for contexts you haven’t learned much about

• Backoff:
• use trigram if you have good evidence,
• otherwise bigram, otherwise unigram

• Interpolation:
• mix unigram, bigram, trigram

• Interpolation works better

Dan Jurafsky

Linear Interpolation

• Simple interpolation

• Lambdas conditional on context:

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

4.4 • SMOOTHING 15

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation

The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in

Dan Jurafsky

How to set the lambdas?
• Use a held-out corpus

• Choose λs to maximize the probability of held-out data:
• Fix the N-gram probabilities (on the training data)
• Then search for λs that give largest probability to held-out set:

Training Data Held-Out
Data

Test
Data

logP(w1...wn |M (λ1...λk)) = logPM (λ1...λk) (wi |wi−1)
i
∑

Dan Jurafsky

Unknown words: Open versus closed
vocabulary tasks

• If we know all the words in advanced
• Vocabulary V is fixed
• Closed vocabulary task

• Often we don’t know this
• Out Of Vocabulary = OOV words
• Open vocabulary task

• Instead: create an unknown word token <UNK>
• Training of <UNK> probabilities

• Create a fixed lexicon L of size V
• At text normalization phase, any training word not in L changed to <UNK>
• Now we train its probabilities like a normal word

• At decoding time
• If text input: Use UNK probabilities for any word not in training

Dan Jurafsky

Huge web-scale n-grams
• How to deal with, e.g., Google N-gram corpus
• Pruning

• Only store N-grams with count > threshold.
• Remove singletons of higher-order n-grams

• Entropy-based pruning
• Efficiency

• Efficient data structures like tries
• Bloom filters: approximate language models
• Store words as indexes, not strings
• Use Huffman coding to fit large numbers of words into two bytes

• Quantize probabilities (4-8 bits instead of 8-byte float)

Dan Jurafsky

Smoothing for Web-scale N-grams

• “Stupid backoff” (Brants et al. 2007)
• No discounting, just use relative frequencies

75

S(wi |wi−k+1
i−1) =

count(wi−k+1
i)

count(wi−k+1
i−1)

 if count(wi−k+1
i)> 0

0.4S(wi |wi−k+2
i−1) otherwise

"

#
$$

%
$
$

S(wi) =
count(wi)

N

Dan Jurafsky

N-gram Smoothing Summary

• Add-1 smoothing:
• OK for text categorization, not for language modeling

• The most commonly used method:
• Extended Interpolated Kneser-Ney

• For very large N-grams like the Web:
• Stupid backoff

76

Dan Jurafsky

Advanced Language Modeling
• Discriminative models:

• choose n-gram weights to improve a task, not to fit the
training set

• Parsing-based models
• Caching Models

• Recently used words are more likely to appear

• These perform very poorly for speech recognition (why?)

PCACHE (w | history) = λP(wi |wi−2wi−1)+ (1−λ)
c(w ∈ history)
| history |

Interpolation, Backoff,
and Web-Scale LMs

Language
Modeling

