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Ranked retrieval

= Thus far, our queries have all been Boolean.
* Documents either match or don’t.

" Good for expert users with precise understanding of
their needs and the collection.

= Also good for applications: Applications can easily
consume 1000s of results.

= Not good for the majority of users.

" Most users incapable of writing Boolean queries (or they
are, but they think it’'s too much work).

" Most users don’t want to wade through 1000s of results.
= This is particularly true of web search.
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Problem with Boolean search:
feast or famine

= Boolean queries often result in either too few (=0) or
too many (1000s) results.
" Query 1: “standard user dlink 650” = 200,000 hits
" Query 2: “standard user dlink 650 no card found” = 0 hits

= |t takes a lot of skill to come up with a query that
produces a manageable number of hits.

= AND gives too few; OR gives too many
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Ranked retrieval models

= Rather than a set of documents satisfying a query
expression, in ranked retrieval models, the system

returns an ordering over the (top) documents in the
collection with respect to a query

" Free text queries: Rather than a query language of
operators and expressions, the user’s query is just
one or more words in a human language

" |n principle, there are two separate choices here, but
in practice, ranked retrieval models have normally
been associated with free text queries and vice versa
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Feast or famine: not a problem in
ranked retrieval

= When a system produces a ranked result set, large
result sets are not an issue

= |Indeed, the size of the result set is not an issue
= We just show the top k ( = 10) results
= We don’t overwhelm the user

= Premise: the ranking algorithm works
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Scoring as the basis of ranked retrieval

= We wish to return in order the documents most
likely to be useful to the searcher

= How can we rank-order the documents in the
collection with respect to a query?

= Assign a score —say in [0, 1] — to each document

= This score measures how well document and query
“match”.
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Query-document matching scores

= We need a way of assigning a score to a query/
document pair

" Let’s start with a one-term query

= |f the query term does not occur in the document:
score should be 0

= The more frequent the query term in the document,
the higher the score (should be)

= We will look at a number of alternatives for this
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Take 1: Jaccard coefficient

= A commonly used measure of overlap of two sets A
and B is the Jaccard coefficient

= jaccard(A,B)=|AnB|/|A U B]

" jaccard(AA)=1

" jaccard(A,B)=0ifAnB=0

= Aand Bdon’t have to be the same size.

= Always assigns a number between 0 and 1.
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Jaccard coefficient: Scoring example

= What is the query-document match score that the
Jaccard coefficient computes for each of the two
documents below?

= Query: ides of march
= Document 1: cgesar died in march

= Document 2: the long march
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Issues with Jaccard for scoring

" |t doesn’t consider term frequency (how many times
a term occurs in a document)

= Rare terms in a collection are more informative than
frequent terms

= Jaccard doesn’t consider this information

= We need a more sophisticated way of normalizing
for length
= Later in this lecture, we’lluse |A[1B| /\/| AUB|

...instead of |An B|/|A U B| (Jaccard) for length
normalization.
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Recall: Binary term-document

incidence matrix

Antony and Cleopatra  Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1

Brutus
Caesar
Calpurnia
Cleopatra

mercy

I I G . T G §
- - O O O O

1
1
0
0
1
1

O O O =) = -
O G = T — - G . |
O = O O = O

worser

Each document is represented by a binary vector € {0,1}lV
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Term-document count matrices

= Consider the number of occurrences of atermin a
document:

= Each document is a count vector in N!VI: a column below

Antony and Cleopatra  Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0
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Term-document count matrices

= Consider the number of occurrences of atermin a
document:

= Each document is alcount vector/in N!VI: a column below

Antony and Cleopatra | Julius Caesar | The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0




Introduction to Information Retrieval

Bag of words model

= Vector representation doesn’t consider the ordering
of words in a document

= John is quicker than Mary and Mary is quicker than
John have the same vectors

= This is called the bag of words model.

" |n asense, this is a step back: The positional index
was able to distinguish these two documents

= We will look at “recovering” positional information later
on

" For now: bag of words model
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Term frequency tf

= The term frequency tf, ; of term t in document d is
defined as the number of times that t occurs in d.

= We want to use tf when computing query-document
match scores. But how?

= Raw term frequency is not what we want:

= A document with 10 occurrences of the term is more
relevant than a document with 1 occurrence of the term.

= But not 10 times more relevant.

= Relevance does not increase proportionally with
term frequency.
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Log-frequency weighting

" The log frequency weight of term tindis
{1 + log,, tf, ,, iftf, , >0
Wia = ’ ’

O, otherwise

= Score for a document-query pair: sum over terms t in
both g and d:

= score = E@md(l +logtt, ;)

"= The scoreis 0 if none of the query terms is present in
the document.
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Log-frequency weighting

* The log frequency weight of term tin dis
1 +log,, tf, ,, it tf, , >0
W,a = .
{ O, otherwise
" 0-20,1-1,2->1.3,10-> 2,1000 - 4, etc.

= Score for a document-query pair: sum over terms t in
both g and d:

= score = E@md(l +logtt, ;)

* The score is 0 if none of the query terms is present in
the document.
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Document frequency

= Rare terms are more informative than frequent terms
= Recall stop words

= Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

= A document containing this term is very likely to be
relevant to the query arachnocentric

= - We want a high weight for rare terms like
arachnocentric.



Introduction to Information Retrieval Sec. 6.2.1

Document frequency, continued

" Frequent terms are less informative than rare terms

= Consider a query term that is frequent in the
collection (e.g., high, increase, line)

= A document containing such a term is more likely to
be relevant than a document that doesn’t

= Butit’s not a sure indicator of relevance.

= - For frequent terms, we want positive weights for
words like high, increase, and line

= But lower weights than for rare terms.
= We will use document frequency (df) to capture this.



Introduction to Information Retrieval Sec. 6.2.1

idf weight

= df, is the document frequency of t: the number of
documents that contain t

= df, is an inverse measure of the informativeness of t
= df, =N

* We define the idf (inverse document frequency) of t
by

1dt, =log,, (NV/dt))

= We use log (N/df,) instead of N/df, to “dampen” the effect
of idf.

Will turn out the base of the log is immaterial.
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idf example, suppose N =1 million

calpurnia 1
animal 100
sunday 1,000
fly 10,000
under 100,000
the 1,000,000

1dt, =log,, (NV/dt))

There is one idf value for each term tin a collection.
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Effect of idf on ranking

= Question: Does idf have an effect on ranking for one-
term queries, like

= iPhone

28
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Effect of idf on ranking

= Question: Does idf have an effect on ranking for one-
term queries, like

= iPhone

= idf has no effect on ranking one term queries

= jdf affects the ranking of documents for queries with at
least two terms

= For the query capricious person, idf weighting makes
occurrences of capricious count for much more in the final
document ranking than occurrences of person.

29
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Collection vs. Document frequency

* The collection frequency of t is the number of
occurrences of t in the collection, counting
multiple occurrences.

= Example:
" Word | Golleton roquency | Document roquency
insurance 10440 3997
try 10422 8760

= Which word is a better search term (and should
get a higher weight)?
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tf-idf weighting

" The tf-idf weight of a term is the product of its tf
weight and its idf weight.

w =(l+logtt, ;) xlog,(N/df,)

= Best known weighting scheme in information retrieval

= Note: the “-” in tf-idf is a hyphen, not a minus sign!
= Alternative names: tf.idf, tf x idf

= |ncreases with the number of occurrences within a
document

" |ncreases with the rarity of the term in the collection
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Final ranking of documents for a query

Score(q.d) = Y _ _ tfidf,,

teqgnd

34
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Binary & count - weight matrix

Antony and Cleopatra  Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € RV
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Documents as vectors

* Now we have a |V|-dimensional vector space
"= Terms are axes of the space
* Documents are points or vectors in this space

= Very high-dimensional: tens of millions of
dimensions when you apply this to a web search

engine
" These are very sparse vectors — most entries are zero
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Queries as vectors

= Keyidea 1: Do the same for queries: represent them
as vectors in the space

= Key idea 2: Rank documents according to their
proximity to the query in this space

" proximity = similarity of vectors
" proximity = inverse of distance

= Recall: We do this because we want to get away
from the you’'re-either-in-or-out Boolean model

" |nstead: rank more relevant documents higher than
less relevant documents
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Formalizing vector space proximity

= First cut: distance between two points
= ( =distance between the end points of the two vectors)

= Euclidean distance?
= Euclidean distance is a bad idea. ..

= ...because Euclidean distance is large for vectors of
different lengths.
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Why distance is a bad idea

The Euclidean GOSSIP d-
distance between
’ nwah

and d_Z)is large even
though the

distribution of terms
in the query c7>and the
distribution of

terms in the
document 32 are

. JEALOUS
very similar.
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Use angle instead of distance

* Thought experiment: take a document d and append
it to itself. Call this document d'.

= “Semantically” d and d’ have the same content

= The Euclidean distance between the two documents
can be quite large

= The angle between the two documents is O,
corresponding to maximal similarity.

= Key idea: Rank documents according to angle with
query.
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From angles to cosines

= The following two notions are equivalent.

= Rank documents in decreasing order of the angle between
qguery and document

= Rank documents in increasing order of

cosine(query,document)

= Cosine is a monotonically decreasing function for the
interval [0°, 180°]
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From angles to cosines

50 00 150 200 250 300 350

-1t

= But how —and why — should we be computing cosines?
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Length normalization

= A vector can be (length-) normalized by dividing each
of its components by its length — for this we use the

L, norm: _ >
[, = 2%
2 il

= Dividing a vector by its L, norm makes it a unit
(length) vector (on surface of unit hypersphere)

= Effect on the two documents d and d’ (d appended
to itself) from earlier slide: they have identical
vectors after length-normalization.
= Long and short documents now have comparable weights



Introduction to Information Retrieval Sec. 6.3

cosine(query,document)

Dot product Unit vectors
N v
~ e d.
cos(d,d) = = ‘ \q\ d v = T
2
‘q‘ 1 ‘d‘ \/Ez 1 q; \/Ez ld’

q; is the tf-idf weight of term i in the query
d. is the tf-idf weight of term j in the document

cos(d,d) is the cosine similarity of dand d ..
equivalently, the cosine of the angle between 7and a.
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Cosine for length-normalized vectors

= For length-normalized vectors, cosine similarity is
simply the dot product (or scalar product):

= 14

cos(G.d)=gG*d="Y qd,

for g, d length-normalized.

47
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Cosine similarity illustrated

POOR

> RICH
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Cosine similarity amongst 3 documents

How similar are
the novels

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

affection

jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.
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3 documents example contd.

Log frequency weighting After length normalization

affection 3.06 2.76 2.30 affection 0.789 0.832 0.524

jealous 2.00 1.85 2.04 jealous 0.515 0.555 0.465

gossip 1.30 0 1.78  gossip 0.335 0 0.405

wuthering 0 0 2.58  wuthering 0 0 0.588
cos(SaS,PaP) =

0.789 x 0.832 + 0.515 x 0.555 + 0.335x 0.0 + 0.0 x 0.0 = 0.94
cos(SaS,WH) = 0.79
cos(PaP,WH) = 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?
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tf-idf weighting has many variants

Term frequency

Document frequency

Normalization

n (natural) tfrd n (no) 1 n (none) ]
| (logarithm) 1 + log(tf: 4) t (idf) log % c (cosine) .
V wl2 +wi+..+ v,'.,i.
0.5xtf: g - N —df :
a (augmented) 0.5+ —~ | p(prob idf)  max{0, log t1 | u (pivoted 1/u
maxe(the.q) e unique)
1 iftt;g >0 : o
b (boolean) {0 othenwice b (byte size) 1/CharLength”,
a <1
1+log(tfe,q)
L (log ave) 1+log(avercqd(tfe.d))

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?
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tf-idf weighting has many variants

Term frequency Document frequency Normalization
n (natural) tfrd n (no) 1 n (none) ]
| (logarithm) 1 + log(tf: 4) t (idf) log % c (cosine) .
vV wl2 +wi+..+ v,'.,.%,,
0.5xtf 4 - N —df :
a (augmented) 0.5+ —~ | p(prob idf)  max{0, log t1 | u (pivoted 1/u
maxe(the,q) e unique)
1 iftfig >0 : o
b (boolean) {O othenwice b (byte size) 1/CharLength”,

a <1

1+10g(tft’d)

L (Iog ave) 1+log(avescq4(tfs 4))




Weighting may differ in queries vs

documents

= Many search engines allow for different weightings
for queries vs. documents

= SMART Notation: denotes the combination in use in
an engine, with the notation ddd.qqq, using the
acronyms from the previous table

= A very standard weighting scheme is: Inc.ltc

* Document: logarithmic tf (I as first character), no idf

and cosine normalization A
A bad idea?

= Query: logarithmic tf (I in leftmost column), idf (t in
second column), cosine normalization ...
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tf-idf example: Inc.ltc

Document: car insurance auto insurance
Query: best car insurance

tf-  tf-wt df idf wt n'liz tf-raw tf-wt wt n’ liz

raw e e
auto 0 0 5000 23 0 0 1 1 1 0.52 0
best 1 1 50000 13 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 2.0 0.52 1 1 1 052 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Exercise: what is N, the number of docs?

Doc length =v12 +02+12+1.3* ~1.92
Score = 0+0+0.27+0.53 =0.8
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Computing cosine scores

COSINESCORE(q)
1 float Scores|[N] =0

float Length|[N]

for each query term t

do calculate w; 4 and fetch postings list for ¢
for each pair(d.tf; ) in postings list
do Scores|d|+ = Wi g X Wt g

Read the array Length

for each d

do Scores|d| = Scores|d]/Length|d]

return Top K components of Scoresl|]

O © 00 NO OB W

—
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Summary — vector space ranking

= Represent the query as a weighted tf-idf vector
= Represent each document as a weighted tf-idf vector

= Compute the cosine similarity score for the query
vector and each document vector

= Rank documents with respect to the query by score
= Return the top K (e.g., K=10) to the user
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Calculating tf-idf cosine scores
In an IR system
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Integrating multiple features to

determine relevance

= Modern systems — especially on the Web — use a great
number of features:
= Arbitrary useful features — not a single unified model
= Log frequency of query word in anchor text?
= Query word in color on page?
= # of images on page?
= # of (out) links on page?
= PageRank of page?
= URL length?
= URL contains “~"?
= Page edit recency?
= Page length?

* The New York Times (2008-06-03) quoted Amit Singhal as
saying Google was using over 200 such features.



How to combine features to assign a

relevance score to a document?

= Given lots of relevant features...
" You can continue to hand-engineer retrieval scores

= Or, you can build a classifier to learn weights for the
features
= Requires: labeled training data

" This is the “learning to rank” approach, which has become
a hot area in recent years
* | only provide an elementary introduction here
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Simple example:
Using classification for ad hoc IR

= Collect a training corpus of (g, d, r) triples
= Relevance ris here binary (but may be multiclass, with 3—7 values)
= Document is represented by a feature vector
= x=(a, w) aiscosine similarity, w is minimum query window size
= w is the the shortest text span that includes all query words
= Query term proximity is a very important new weighting factor

= Train a machine learning model to predict the class r of a document-

query pair

example docID query cosine score w judgment
D, 37 linux operating system 0.032 3 relevant

P, 37 penguin logo 0.02 4 nonrelevant
D4 238 operating system 0.043 2 relevant

Dy 238 runtime environment 0.004 2 nonrelevant
D5 1741 kernel layer 0.022 3 relevant

Dg 2094 device driver 0.03 2 relevant

O 3191 device driver 0.027 5 nonrelevant
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Simple example:
Using classification for ad hoc IR

= A linear score function is then:
Score(d, q) = Score(a, w) =aa + bw + ¢
= And the linear classifier would be:

Decide relevant if Score(d, q) > 6

= .. justlike when we were doing text classification
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Simple example:
Using classification for ad hoc IR

a k\
0.05
6 \\\\\
g R R
3 R R N
S R R
.(.7) R
O \
O %
0.025 R N N
' R_— R
R N N
, g
N N N
function ranks along
0
2 3 4 5

Term proximity w
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Measures for a search engine

= How fast does it index
= Number of documents/hour
= (Average document size)
= How fast does it search
= Latency as a function of index size
= Expressiveness of query language

= Ability to express complex information needs
= Speed on complex queries

= Uncluttered Ul
= |s it free?

68
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Measures for a search engine

= All of the preceding criteria are measurable: we can
quantify speed/size
" we can make expressiveness precise
= The key measure: user happiness
= What is this?
= Speed of response/size of index are factors

= But blindingly fast, useless answers won’t make a user
happy

= Need a way of quantifying user happiness with the
results returned

= Relevance of results to user’s information need
69
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Evaluating an IR system

* An information need is translated into a query

= Relevance is assessed relative to the information
need not the query

= E.g., Information need: I’'m looking for information
on whether drinking red wine is more effective at
reducing your risk of heart attacks than white wine.

= Query: wine red white heart attack effective

= You evaluate whether the doc addresses the
information need, not whether it has these words

70
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Evaluating ranked results

= Evaluation of a result set:

= |f we have

= a benchmark document collection
= a benchmark set of queries
= assessor judgments of whether documents are relevant to queries

Then we can use Precision/Recall/F measure as before
= Evaluation of ranked results:

" The system can return any number of results

= By taking various numbers of the top returned documents
(levels of recall), the evaluator can produce a precision-
recall curve

71



Introduction to Information Retrieval

Recall/Precision
R P
= 1 R
= 2 N
= 3 N
= 4 R
= 5 R
= 6 N
= 7 R
= 8 N
= 9 N
= 10 N
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A precision-recall curve

1.0 -

0.8 -

0.6 -

0.4 -

Precision

0.2 -

0.0 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Recall
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Averaging over queries

= A precision-recall graph for one query isn’t a very
sensible thing to look at

" You need to average performance over a whole
bunch of queries.

= But there’s a technical issue:

= Precision-recall calculations place some points on the
graph

* How do you determine a value (interpolate) between the
points?
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Interpolated precision

" |dea: If locally precision increases with increasing
recall, then you should get to count that...

= So you use the max of precisions to right of value

A A

1 1
precision interpolated
precision
A X S X
N \/-*" ) L ¥
0 0

recall recall
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Evaluation

= Graphs are good, but people want summary measures!
= Precision at fixed retrieval level

= Precision-at-k: Precision of top k results

= Perhaps appropriate for most of web search: all people want are
good matches on the first one or two results pages

= But: averages badly and has an arbitrary parameter of k

= 11-point interpolated average precision

= The standard measure in the early TREC competitions: you take
the precision at 11 levels of recall varying from 0 to 1 by tenths
of the documents, using interpolation (the value for 0 is always
interpolated!), and average them

= Evaluates performance at all recall levels
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Typical (good) 11 point precisions

= SablR/Cornell 8A1 11pt precision from TREC 8 (1999)

1 -
0.8 -

0.6 -

Precision

0.2 -

0 0.2 04 0.6 0.8 1
Recall
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Two current evaluation measures...

= R-precision
* If have known (though perhaps incomplete) set of relevant

documents of size Rel, then calculate precision of top Rel
docs returned

" Perfect system could score 1.0.
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Two current evaluation measures...

= Mean average precision (MAP)

= AP: Average of the precision value obtained for the top k
documents, each time a relevant doc is retrieved

= Avoids interpolation, use of fixed recall levels
= Does weight most accuracy of top returned results

= MAP for set of queries is arithmetic average of APs
= Macro-averaging: each query counts equally
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