Introduction to

Information Retrieval

Introducing ranked retrieval

Introduction to Information Retrieval Ch. 6

Ranked retrieval

= Thus far, our queries have all been Boolean.
* Documents either match or don’t.

" Good for expert users with precise understanding of
their needs and the collection.

= Also good for applications: Applications can easily
consume 1000s of results.

= Not good for the majority of users.

" Most users incapable of writing Boolean queries (or they
are, but they think it’'s too much work).

" Most users don’t want to wade through 1000s of results.
= This is particularly true of web search.

Introduction to Information Retrieval Ch. 6

Problem with Boolean search:
feast or famine

= Boolean queries often result in either too few (=0) or
too many (1000s) results.
" Query 1: “standard user dlink 650” = 200,000 hits
" Query 2: “standard user dlink 650 no card found” = 0 hits

= |t takes a lot of skill to come up with a query that
produces a manageable number of hits.

= AND gives too few; OR gives too many

Introduction to Information Retrieval

Ranked retrieval models

= Rather than a set of documents satisfying a query
expression, in ranked retrieval models, the system

returns an ordering over the (top) documents in the
collection with respect to a query

" Free text queries: Rather than a query language of
operators and expressions, the user’s query is just
one or more words in a human language

" |n principle, there are two separate choices here, but
in practice, ranked retrieval models have normally
been associated with free text queries and vice versa

4

Introduction to Information Retrieval Ch. 6

Feast or famine: not a problem in
ranked retrieval

= When a system produces a ranked result set, large
result sets are not an issue

= |Indeed, the size of the result set is not an issue
= We just show the top k (= 10) results
= We don’t overwhelm the user

= Premise: the ranking algorithm works

Introduction to Information Retrieval Ch. 6

Scoring as the basis of ranked retrieval

= We wish to return in order the documents most
likely to be useful to the searcher

= How can we rank-order the documents in the
collection with respect to a query?

= Assign a score —say in [0, 1] — to each document

= This score measures how well document and query
“match”.

Introduction to Information Retrieval Ch. 6

Query-document matching scores

= We need a way of assigning a score to a query/
document pair

" Let’s start with a one-term query

= |f the query term does not occur in the document:
score should be 0

= The more frequent the query term in the document,
the higher the score (should be)

= We will look at a number of alternatives for this

Introduction to

Information Retrieval

Introducing ranked retrieval

Introduction to

Information Retrieval

Scoring with the Jaccard coefficient

Introduction to Information Retrieval Ch. 6

Take 1: Jaccard coefficient

= A commonly used measure of overlap of two sets A
and B is the Jaccard coefficient

= jaccard(A,B)=|AnB|/|A U B]

" jaccard(AA)=1

" jaccard(A,B)=0ifAnB=0

= Aand Bdon’t have to be the same size.

= Always assigns a number between 0 and 1.

Introduction to Information Retrieval Ch. 6

Jaccard coefficient: Scoring example

= What is the query-document match score that the
Jaccard coefficient computes for each of the two
documents below?

= Query: ides of march
= Document 1: cgesar died in march

= Document 2: the long march

Introduction to Information Retrieval Ch. 6

Issues with Jaccard for scoring

" |t doesn’t consider term frequency (how many times
a term occurs in a document)

= Rare terms in a collection are more informative than
frequent terms

= Jaccard doesn’t consider this information

= We need a more sophisticated way of normalizing
for length
= Later in this lecture, we’lluse |A[1B| /\/| AUB|

...instead of |An B|/|A U B| (Jaccard) for length
normalization.

Introduction to

Information Retrieval

Scoring with the Jaccard coefficient

Introduction to

Information Retrieval

Term frequency weighting

Recall: Binary term-document

incidence matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1

Brutus
Caesar
Calpurnia
Cleopatra

mercy

I I G . T G §
- - O O O O

1
1
0
0
1
1

O O O =) = -
O G = T — - G . |
O = O O = O

worser

Each document is represented by a binary vector € {0,1}lV

Introduction to Information Retrieval Sec. 6.2

Term-document count matrices

= Consider the number of occurrences of atermin a
document:

= Each document is a count vector in N!VI: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

Introduction to Information Retrieval Sec. 6.2

Term-document count matrices

= Consider the number of occurrences of atermin a
document:

= Each document is alcount vector/in N!VI: a column below

Antony and Cleopatra | Julius Caesar | The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

Introduction to Information Retrieval

Bag of words model

= Vector representation doesn’t consider the ordering
of words in a document

= John is quicker than Mary and Mary is quicker than
John have the same vectors

= This is called the bag of words model.

" |n asense, this is a step back: The positional index
was able to distinguish these two documents

= We will look at “recovering” positional information later
on

" For now: bag of words model

Introduction to Information Retrieval

Term frequency tf

= The term frequency tf, ; of term t in document d is
defined as the number of times that t occurs in d.

= We want to use tf when computing query-document
match scores. But how?

= Raw term frequency is not what we want:

= A document with 10 occurrences of the term is more
relevant than a document with 1 occurrence of the term.

= But not 10 times more relevant.

= Relevance does not increase proportionally with
term frequency.

Introduction to Information Retrieval Sec. 6.2

Log-frequency weighting

" The log frequency weight of term tindis
{1 + log,, tf, ,, iftf, , >0
Wia = ’ ’

O, otherwise

= Score for a document-query pair: sum over terms t in
both g and d:

= score = E@md(l +logtt, ;)

"= The scoreis 0 if none of the query terms is present in
the document.

Introduction to Information Retrieval Sec. 6.2

Log-frequency weighting

* The log frequency weight of term tin dis
1 +log,, tf, ,, it tf, , >0
W,a = .
{ O, otherwise
" 0-20,1-1,2->1.3,10-> 2,1000 - 4, etc.

= Score for a document-query pair: sum over terms t in
both g and d:

= score = E@md(l +logtt, ;)

* The score is 0 if none of the query terms is present in
the document.

Introduction to

Information Retrieval

Term frequency weighting

Introduction to

Information Retrieval

(Inverse) Document frequency weighting

Introduction to Information Retrieval Sec. 6.2.1

Document frequency

= Rare terms are more informative than frequent terms
= Recall stop words

= Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

= A document containing this term is very likely to be
relevant to the query arachnocentric

= - We want a high weight for rare terms like
arachnocentric.

Introduction to Information Retrieval Sec. 6.2.1

Document frequency, continued

" Frequent terms are less informative than rare terms

= Consider a query term that is frequent in the
collection (e.g., high, increase, line)

= A document containing such a term is more likely to
be relevant than a document that doesn’t

= Butit’s not a sure indicator of relevance.

= - For frequent terms, we want positive weights for
words like high, increase, and line

= But lower weights than for rare terms.
= We will use document frequency (df) to capture this.

Introduction to Information Retrieval Sec. 6.2.1

idf weight

= df, is the document frequency of t: the number of
documents that contain t

= df, is an inverse measure of the informativeness of t
= df, =N

* We define the idf (inverse document frequency) of t
by

1dt, =log,, (NV/dt))

= We use log (N/df,) instead of N/df, to “dampen” the effect
of idf.

Will turn out the base of the log is immaterial.

Introduction to Information Retrieval Sec. 6.2.1

idf example, suppose N =1 million

calpurnia 1
animal 100
sunday 1,000
fly 10,000
under 100,000
the 1,000,000

1dt, =log,, (NV/dt))

There is one idf value for each term tin a collection.

Introduction to Information Retrieval

Effect of idf on ranking

= Question: Does idf have an effect on ranking for one-
term queries, like

= iPhone

28

Introduction to Information Retrieval

Effect of idf on ranking

= Question: Does idf have an effect on ranking for one-
term queries, like

= iPhone

= idf has no effect on ranking one term queries

= jdf affects the ranking of documents for queries with at
least two terms

= For the query capricious person, idf weighting makes
occurrences of capricious count for much more in the final
document ranking than occurrences of person.

29

Introduction to Information Retrieval Sec. 6.2.1

Collection vs. Document frequency

* The collection frequency of t is the number of
occurrences of t in the collection, counting
multiple occurrences.

= Example:
" Word | Golleton roquency | Document roquency
insurance 10440 3997
try 10422 8760

= Which word is a better search term (and should
get a higher weight)?

Introduction to

Information Retrieval

(Inverse) Document frequency weighting

Introduction to

Information Retrieval

tf-idf weighting

Introduction to Information Retrieval Sec. 6.2.2

tf-idf weighting

" The tf-idf weight of a term is the product of its tf
weight and its idf weight.

w =(l+logtt, ;) xlog,(N/df,)

= Best known weighting scheme in information retrieval

= Note: the “-” in tf-idf is a hyphen, not a minus sign!
= Alternative names: tf.idf, tf x idf

= |ncreases with the number of occurrences within a
document

" |ncreases with the rarity of the term in the collection

Introduction to Information Retrieval Sec. 6.2.2

Final ranking of documents for a query

Score(q.d) = Y _ _ tfidf,,

teqgnd

34

Introduction to Information Retrieval Sec. 6.3

Binary & count - weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € RV

Introduction to

Information Retrieval

tf-idf weighting

Introduction to

Information Retrieval

The Vector Space Model (VSM)

Introduction to Information Retrieval Sec. 6.3

Documents as vectors

* Now we have a |V|-dimensional vector space
"= Terms are axes of the space
* Documents are points or vectors in this space

= Very high-dimensional: tens of millions of
dimensions when you apply this to a web search

engine
" These are very sparse vectors — most entries are zero

Introduction to Information Retrieval Sec. 6.3

Queries as vectors

= Keyidea 1: Do the same for queries: represent them
as vectors in the space

= Key idea 2: Rank documents according to their
proximity to the query in this space

" proximity = similarity of vectors
" proximity = inverse of distance

= Recall: We do this because we want to get away
from the you’'re-either-in-or-out Boolean model

" |nstead: rank more relevant documents higher than
less relevant documents

Introduction to Information Retrieval Sec. 6.3

Formalizing vector space proximity

= First cut: distance between two points
= (=distance between the end points of the two vectors)

= Euclidean distance?
= Euclidean distance is a bad idea. ..

= ...because Euclidean distance is large for vectors of
different lengths.

Introduction to Information Retrieval Sec. 6.3

Why distance is a bad idea

The Euclidean GOSSIP d-
distance between
’ nwah

and d_Z)is large even
though the

distribution of terms
in the query c7>and the
distribution of

terms in the
document 32 are

. JEALOUS
very similar.

Introduction to Information Retrieval Sec. 6.3

Use angle instead of distance

* Thought experiment: take a document d and append
it to itself. Call this document d'.

= “Semantically” d and d’ have the same content

= The Euclidean distance between the two documents
can be quite large

= The angle between the two documents is O,
corresponding to maximal similarity.

= Key idea: Rank documents according to angle with
query.

Introduction to Information Retrieval Sec. 6.3

From angles to cosines

= The following two notions are equivalent.

= Rank documents in decreasing order of the angle between
qguery and document

= Rank documents in increasing order of

cosine(query,document)

= Cosine is a monotonically decreasing function for the
interval [0°, 180°]

Introduction to Information Retrieval Sec. 6.3

From angles to cosines

50 00 150 200 250 300 350

-1t

= But how —and why — should we be computing cosines?

Introduction to Information Retrieval Sec. 6.3

Length normalization

= A vector can be (length-) normalized by dividing each
of its components by its length — for this we use the

L, norm: _ >
[, = 2%
2 il

= Dividing a vector by its L, norm makes it a unit
(length) vector (on surface of unit hypersphere)

= Effect on the two documents d and d’ (d appended
to itself) from earlier slide: they have identical
vectors after length-normalization.
= Long and short documents now have comparable weights

Introduction to Information Retrieval Sec. 6.3

cosine(query,document)

Dot product Unit vectors
N v
~ e d.
cos(d,d) = = ‘ \q\ d v = T
2
‘q‘ 1 ‘d‘ \/Ez 1 q; \/Ez ld’

q; is the tf-idf weight of term i in the query
d. is the tf-idf weight of term j in the document

cos(d,d) is the cosine similarity of dand d ..
equivalently, the cosine of the angle between 7and a.

Introduction to Information Retrieval

Cosine for length-normalized vectors

= For length-normalized vectors, cosine similarity is
simply the dot product (or scalar product):

= 14

cos(G.d)=gG*d="Y qd,

for g, d length-normalized.

47

Introduction to Information Retrieval

Cosine similarity illustrated

POOR

> RICH

48

Introduction to Information Retrieval Sec. 6.3

Cosine similarity amongst 3 documents

How similar are
the novels

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice, and
WH: Wuthering
Heights?

affection

jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.

Introduction to Information Retrieval Sec. 6.3

3 documents example contd.

Log frequency weighting After length normalization

affection 3.06 2.76 2.30 affection 0.789 0.832 0.524

jealous 2.00 1.85 2.04 jealous 0.515 0.555 0.465

gossip 1.30 0 1.78 gossip 0.335 0 0.405

wuthering 0 0 2.58 wuthering 0 0 0.588
cos(SaS,PaP) =

0.789 x 0.832 + 0.515 x 0.555 + 0.335x 0.0 + 0.0 x 0.0 = 0.94
cos(SaS,WH) = 0.79
cos(PaP,WH) = 0.69

Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Introduction to

Information Retrieval

The Vector Space Model (VSM)

Introduction to

Information Retrieval

Calculating tf-idf cosine scores
In an IR system

Introduction to Information Retrieval Sec. 6.4

tf-idf weighting has many variants

Term frequency

Document frequency

Normalization

n (natural) tfrd n (no) 1 n (none)]
| (logarithm) 1 + log(tf: 4) t (idf) log % c (cosine) .
V wl2 +wi+..+ v,'.,i.
0.5xtf: g - N —df :
a (augmented) 0.5+ —~ | p(prob idf) max{0, log t1 | u (pivoted 1/u
maxe(the.q) e unique)
1 iftt;g >0 : o
b (boolean) {0 othenwice b (byte size) 1/CharLength”,
a <1
1+log(tfe,q)
L (log ave) 1+log(avercqd(tfe.d))

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Introduction to Information Retrieval Sec. 6.4

tf-idf weighting has many variants

Term frequency Document frequency Normalization
n (natural) tfrd n (no) 1 n (none)]
| (logarithm) 1 + log(tf: 4) t (idf) log % c (cosine) .
vV wl2 +wi+..+ v,'.,.%,,
0.5xtf 4 - N —df :
a (augmented) 0.5+ —~ | p(prob idf) max{0, log t1 | u (pivoted 1/u
maxe(the,q) e unique)
1 iftfig >0 : o
b (boolean) {O othenwice b (byte size) 1/CharLength”,

a <1

1+10g(tft’d)

L (Iog ave) 1+log(avescq4(tfs 4))

Weighting may differ in queries vs

documents

= Many search engines allow for different weightings
for queries vs. documents

= SMART Notation: denotes the combination in use in
an engine, with the notation ddd.qqq, using the
acronyms from the previous table

= A very standard weighting scheme is: Inc.ltc

* Document: logarithmic tf (I as first character), no idf

and cosine normalization A
A bad idea?

= Query: logarithmic tf (I in leftmost column), idf (t in
second column), cosine normalization ...

Introduction to Information Retrieval Sec. 6.4

tf-idf example: Inc.ltc

Document: car insurance auto insurance
Query: best car insurance

tf- tf-wt df idf wt n'liz tf-raw tf-wt wt n’ liz

raw e e
auto 0 0 5000 23 0 0 1 1 1 0.52 0
best 1 1 50000 13 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 2.0 0.52 1 1 1 052 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Exercise: what is N, the number of docs?

Doc length =v12 +02+12+1.3* ~1.92
Score = 0+0+0.27+0.53 =0.8

Introduction to Information Retrieval Sec. 6.3

Computing cosine scores

COSINESCORE(q)
1 float Scores|[N] =0

float Length|[N]

for each query term t

do calculate w; 4 and fetch postings list for ¢
for each pair(d.tf;) in postings list
do Scores|d|+ = Wi g X Wt g

Read the array Length

for each d

do Scores|d| = Scores|d]/Length|d]

return Top K components of Scoresl|]

O © 00 NO OB W

—

Introduction to Information Retrieval

Summary — vector space ranking

= Represent the query as a weighted tf-idf vector
= Represent each document as a weighted tf-idf vector

= Compute the cosine similarity score for the query
vector and each document vector

= Rank documents with respect to the query by score
= Return the top K (e.g., K=10) to the user

Introduction to

Information Retrieval

Calculating tf-idf cosine scores
In an IR system

Introduction to

Information Retrieval

Using many features to determine
relevance

Integrating multiple features to

determine relevance

= Modern systems — especially on the Web — use a great
number of features:
= Arbitrary useful features — not a single unified model
= Log frequency of query word in anchor text?
= Query word in color on page?
= # of images on page?
= # of (out) links on page?
= PageRank of page?
= URL length?
= URL contains “~"?
= Page edit recency?
= Page length?

* The New York Times (2008-06-03) quoted Amit Singhal as
saying Google was using over 200 such features.

How to combine features to assign a

relevance score to a document?

= Given lots of relevant features...
" You can continue to hand-engineer retrieval scores

= Or, you can build a classifier to learn weights for the
features
= Requires: labeled training data

" This is the “learning to rank” approach, which has become
a hot area in recent years
* | only provide an elementary introduction here

Introduction to Information Retrieval Sec.15.4.1

Simple example:
Using classification for ad hoc IR

= Collect a training corpus of (g, d, r) triples
= Relevance ris here binary (but may be multiclass, with 3—7 values)
= Document is represented by a feature vector
= x=(a, w) aiscosine similarity, w is minimum query window size
= w is the the shortest text span that includes all query words
= Query term proximity is a very important new weighting factor

= Train a machine learning model to predict the class r of a document-

query pair

example docID query cosine score w judgment
D, 37 linux operating system 0.032 3 relevant

P, 37 penguin logo 0.02 4 nonrelevant
D4 238 operating system 0.043 2 relevant

Dy 238 runtime environment 0.004 2 nonrelevant
D5 1741 kernel layer 0.022 3 relevant

Dg 2094 device driver 0.03 2 relevant

O 3191 device driver 0.027 5 nonrelevant

Introduction to Information Retrieval Sec.15.4.1

Simple example:
Using classification for ad hoc IR

= A linear score function is then:
Score(d, q) = Score(a, w) =aa + bw + ¢
= And the linear classifier would be:

Decide relevant if Score(d, q) > 6

= .. justlike when we were doing text classification

Introduction to Information Retrieval Sec.15.4.1

Simple example:
Using classification for ad hoc IR

a k\
0.05
6 \\\\\
g R R
3 R R N
S R R
.(.7) R
O \
O %
0.025 R N N
' R_— R
R N N
, g
N N N
function ranks along
0
2 3 4 5

Term proximity w

Introduction to

Information Retrieval

Using many features to determine
relevance

Introduction to

Information Retrieval

Evaluating search engines

Introduction to Information Retrieval Sec. 8.6

Measures for a search engine

= How fast does it index
= Number of documents/hour
= (Average document size)
= How fast does it search
= Latency as a function of index size
= Expressiveness of query language

= Ability to express complex information needs
= Speed on complex queries

= Uncluttered Ul
= |s it free?

68

Introduction to Information Retrieval Sec. 8.6

Measures for a search engine

= All of the preceding criteria are measurable: we can
quantify speed/size
" we can make expressiveness precise
= The key measure: user happiness
= What is this?
= Speed of response/size of index are factors

= But blindingly fast, useless answers won’t make a user
happy

= Need a way of quantifying user happiness with the
results returned

= Relevance of results to user’s information need
69

Introduction to Information Retrieval Sec. 8.1

Evaluating an IR system

* An information need is translated into a query

= Relevance is assessed relative to the information
need not the query

= E.g., Information need: I’'m looking for information
on whether drinking red wine is more effective at
reducing your risk of heart attacks than white wine.

= Query: wine red white heart attack effective

= You evaluate whether the doc addresses the
information need, not whether it has these words

70

Introduction to Information Retrieval Sec. 8.4

Evaluating ranked results

= Evaluation of a result set:

= |f we have

= a benchmark document collection
= a benchmark set of queries
= assessor judgments of whether documents are relevant to queries

Then we can use Precision/Recall/F measure as before
= Evaluation of ranked results:

" The system can return any number of results

= By taking various numbers of the top returned documents
(levels of recall), the evaluator can produce a precision-
recall curve

71

Introduction to Information Retrieval

Recall/Precision
R P
= 1 R
= 2 N
= 3 N
= 4 R
= 5 R
= 6 N
= 7 R
= 8 N
= 9 N
= 10 N

Introduction to Information Retrieval Sec. 8.4

A precision-recall curve

1.0 -

0.8 -

0.6 -

0.4 -

Precision

0.2 -

0.0 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Recall

73

Introduction to Information Retrieval Sec. 8.4

Averaging over queries

= A precision-recall graph for one query isn’t a very
sensible thing to look at

" You need to average performance over a whole
bunch of queries.

= But there’s a technical issue:

= Precision-recall calculations place some points on the
graph

* How do you determine a value (interpolate) between the
points?

74

Introduction to Information Retrieval Sec. 8.4

Interpolated precision

" |dea: If locally precision increases with increasing
recall, then you should get to count that...

= So you use the max of precisions to right of value

A A

1 1
precision interpolated
precision
A X S X
N \/-*") L ¥
0 0

recall recall

75

Introduction to Information Retrieval Sec. 8.4

Evaluation

= Graphs are good, but people want summary measures!
= Precision at fixed retrieval level

= Precision-at-k: Precision of top k results

= Perhaps appropriate for most of web search: all people want are
good matches on the first one or two results pages

= But: averages badly and has an arbitrary parameter of k

= 11-point interpolated average precision

= The standard measure in the early TREC competitions: you take
the precision at 11 levels of recall varying from 0 to 1 by tenths
of the documents, using interpolation (the value for 0 is always
interpolated!), and average them

= Evaluates performance at all recall levels

76

Introduction to Information Retrieval Sec. 8.4

Typical (good) 11 point precisions

= SablR/Cornell 8A1 11pt precision from TREC 8 (1999)

1 -
0.8 -

0.6 -

Precision

0.2 -

0 0.2 04 0.6 0.8 1
Recall

77

Introduction to Information Retrieval Sec. 8.4

Two current evaluation measures...

= R-precision
* If have known (though perhaps incomplete) set of relevant

documents of size Rel, then calculate precision of top Rel
docs returned

" Perfect system could score 1.0.

78

Introduction to Information Retrieval Sec. 8.4

Two current evaluation measures...

= Mean average precision (MAP)

= AP: Average of the precision value obtained for the top k
documents, each time a relevant doc is retrieved

= Avoids interpolation, use of fixed recall levels
= Does weight most accuracy of top returned results

= MAP for set of queries is arithmetic average of APs
= Macro-averaging: each query counts equally

79

Introduction to

Information Retrieval

Evaluating search engines

