Regular Expressions

Basic Text
Processing

Regular expressions are used everywhere

o Part of every text processing task

> Not a general NLP solution (for that we use large NLP
systems we will see in later lectures)

> But very useful as part of those systems (e.g., for pre-
processing or text formatting)

> Necessary for data analysis of text data
> A widely used tool in industry and academics

Regular expressions

A formal language for specifying text strings

How can we search for mentions of these cute animals in text?

> woodchuck
> woodchucks
> Woodchuck
> Woodchucks
> Groundhog
o groundhogs

Regular Expressions: Disjunctions

Letters inside square brackets []

[WW]oodchuck Woodchuck, woodchuck
[1234567890] Any one digit

Ranges using the dash [A-7]

A-7° An upper case letter Drenched Blossoms
a-2 A lower case letter my beans were impatient
0-9° A single digit Chapter 1: Down the Rabbit Hole

Regular Expressions: Negation in Disjunction

Carat as first character in [] negates the list

> Note: Carat means negation only when it's first in []
o Special characters (., *, +, ?) lose their special meaning inside []

"A-7Z] Notanuppercaseletter Oyfn pripetchik
7SS] Neither ‘S’ nor ‘s’ I have no exquisite reason”
T] Not a period Our resident Djinn

[e”] Either e or A Look up © now

Regular Expressions: Convenient aliases

0-9] Any digit Fahreneit 451
\D "0-9] Any non-digit Blue Moon
\w 'a-ZA-7Z0-9 1 Anyalphanumeric or _ Daiyu
\W T\ wW] Not alphanumeric or _ Look!
\'s - \r\t\n\f] Whitespace (space, tab) Look, up
\S ' "\s] Not whitespace Look up

Regular Expressions: More Disjunction

Groundhog is another name for woodchuck!

The pipe symbol | for disjunction

groundhog|woodchuck woodchuck
yours |mine yours
albl|c = [abc]

[gG]roundhog | [Ww]oodchuck Woodchuck

Wildcards, optionality, repetition: . 2 * +

beg.n Any char begin begun
beg3n beg n

woodchucks? Optionals woodchuck
woodchucks
to* O or more of t to too tooo

previous char , 1 %
to+ 1 or more of to too tooo Stephen C Kleene
previous char t0000 Kleene *, Kleene +

Regular Expressions: Anchors A S

“"[A-Z] Palo Alto
"["A-Za-z] 1 “Hello"”
\.S The end.

.S The end? The end!

A note about Python regular expressions

> Regex and Python both use backslash "\" for
special characters. You must type extra backslashes!
> "\\d+" to search for 1 or more digits

> "\n" in Python means the "newline" character, not a
"slash" followed by an "n". Need "\\n" for two characters.

> Instead: use Python's raw string notation for regex:
o r"[tT]he"
o r"\d+" matches one or more digits
o instead of "\ \d+"

The iterative process of writing regex's

Find me all instances of the word “the” in a text.

the
Misses capitalized examples

[tT]he
Incorrectly returns other or Theology

\W[tT]he\W

False positives and false negatives

The process we just went through was based on
fixing two kinds of errors:

1. Not matching things that we should have matched
(The)

False negatives

2. Matching strings that we should not have matched
(there, then, other)

False positives

Characterizing work on NLP

In NLP we are always dealing with these kinds of errors.

Reducing the error rate for an application often

involves two antagonistic efforts:
> |ncreasing coverage (or recall) (minimizing false negatives).
° |ncreasing accuracy (or precision) (minimizing false positives)

Regular expressions play a surprisingly large role

Widely used in both academics and industry

1. Part of most text processing tasks, even for big
neural language model pipelines

° including text formatting and pre-processing

2. Very useful for data analysis of any text data

Regular Expressions

Basic Text
Processing

More Regular Expressions:
Substitutions and ELIZA

Basic Text
Processing

Substitutions

Substitution in Python and UNIX commands:

s/regexpl/pattern/

e.g.:
s/colour/color/

Capture Groups

* Say we want to put angles around all numbers:
the 35 boxes = the <35> boxes

* Use parens () to "capture" a pattern into a
numbered register (1, 2, 3...)

* Use \1 to refer to the contents of the register

s/([0=-9]1+)/<\1>/

Capture groups: multiple registers

/the (.*)er they (.*), the \ler we \2/
Matches

the faster they ran, the faster we ran
But not

the faster they ran, the faster we ate

But suppose we don't want to capture?

Parentheses have a double function: grouping terms, and
capturing

Non-capturing groups: add a ?: after paren:
/(?:some|a few) (people|cats) like some \1/

matches
o some cats like some cats

but not
o some cats like some some

Lookahead assertions

(?= pattern) istrue if pattern matches, but is
zero-width; doesn't advance character pointer

(?! pattern) trueifa pattern does not match

How to match, at the beginning of a line, any single
word that doesn’t start with “Volcano”:

/" (?!'Volcano)[A-Za-z]+/

Simple Application: ELIZA

Early NLP system that imitated a Rogerian
psychotherapist
> Joseph Weizenbaum, 1966.

Uses pattern matching to match, e.g.,:
o T need X"

and translates them into, e.g.
o “What would 1t mean to you 1f you got X?

Simple Application: ELIZA
Men are all alike.
IN WHAT WAY

They're always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.
| AM SORRY TO HEAR YOU ARE DEPRESSED

How ELIZA works

s/.* I'M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
s/.* | AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/
s/.* all .*/IN WHAT WAY?/

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

More Regular Expressions:
Substitutions and ELIZA

Basic Text
Processing

Words and Corpora

Basic Text
Processing

How many words in a sentence?

"I do uh main- mainly business data processing"
> Fragments, filled pauses

"Seuss’s cat in the hat is different from other cats!”
> Lemma: same stem, part of speech, rough word sense

> cat and cats = same lemma
> Wordform: the full inflected surface form

o cat and cats = different wordforms

How many words in a sentence?

they lay back on the San Francisco grass and looked at the stars
and their

Type: an element of the vocabulary.
Token: an instance of that type in running text.

How many?
> 15 tokens (or 14)
> 13 types (or 12) (or 117)

How many words in a corpus?

N = number of tokens

V = vocabulary = set of types, | V] is size of vocabulary
Heaps Law = Herdan's Law = |V‘ — kNﬁ where often .67 < B <.75

l.e., vocabulary size grows with > square root of the number of word tokens

__ Tokens=N__|Types=|V|

Switchboard phone conversations 2.4 million 20 thousand
Shakespeare 884,000 31 thousand
COCA 440 million 2 million

Google N-grams 1 trillion 13+ million

Corpora

Words don't appear out of nowhere!
A text is produced by

* a specific writer(s),

* at a specific time,

* in a specific variety,

» of a specific language,

* for a specific function.

Corpora vary along dimension like

o Language: 7097 languages in the world

> Variety, like African American Language varieties.
o AAE Twitter posts might include forms like "iont" (I don't)
> Code switching, e.g., Spanish/English, Hindi/English:
S/E: Por primera vez veo a @username actually being hateful! It was beautiful:)
[For the first time | get to see @username actually being hateful! it was beautiful:) |

H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe
[“he was and will remain a friend ... don’t worry ... but have faith”]

o @enre: newswire, fiction, scientific articles, Wikipedia
> Author Demographics: writer's age, gender, ethnicity, SES

Corpus datasheets
Gebru et al (2020), Bender and Friedman (201 8)

Motivation:
* Why was the corpus collected?
* By whom?
* Who funded it?

Situation: In what situation was the text written?

Collection process: If it is a subsample how was it sampled? Was
there consent? Pre-processing?

+Annotation process, language variety, demographics, etc.

Words and Corpora

Basic Text
Processing

Word tokenization

Basic Text
Processing

Text Normalization

Every NLP task requires text normalization:
1. Tokenizing (segmenting) words
2. Normalizing word formats
3. Segmenting sentences

Space-based tokenization

A very simple way to tokenize

> For languages that use space characters between words
> Arabic, Cyrillic, Greek, Latin, etc., based writing systems

> Segment off a token between instances of spaces

Unix tools for space-based tokenization

> The "tr" command

> |nspired by Ken Church's UNIX for Poets

> @iven a text file, output the word tokens and their frequencies

Simple Tokenization in UNIX
(Inspired by Ken Church’s UNIX for Poets.)

Given a text file, output the word tokens and their frequencies

tr -sc 'A-Za-z' ’'\n’ < shakes.txt Change all non-alpha to newlines
sort Sort in alphabetical order
uniq —C Merge and count each type
1945 A
72 AARON
19 ABBESS
25 Aaron
5 ABBOT

5
6 Abate
------ 1 Abates
5 Abbess
6
3

Abbey
Abbot

The first step: tokenizing

tr -sc 'A-Za-z' ’'\n’ < shakes.txt | head

THE

SONNETS

by

William
Shakespeare
From
fairest
creatures

We

The second step: sorting

tr -sc 'A-Za-z' ’'\n’ < shakes.txt | sort | head

S R S S S S

More counting

Merging upper and lower case

tr ‘A-Z’ ‘a-z’' < shakes.txt | tr —sc ‘A-Za-z’ ‘\n’ | sort | uniq —c

Sorting the counts
tr ‘A-Z' ‘a-z' < shakes.txt | tr —sc ‘A-Za-z’ ‘\n’ | sort | uniqg —c | sort —n -r

23243 the

22225 1

18618 and

16339 to

15687 of

12780 a

12163 you What happened here?
10839 my

10005 1in

8954 d

Issues in Tokenization

Can't just blindly remove punctuation:

> m.p.h., Ph.D., AT&T, cap’n

o prices ($45.55)

> dates (01/02/06)

o URLs (http://www.stanford.edu)

> hashtags (#nlproc)

> email addresses (someone@cs.colorado.edu)

Clitic: a word that doesn't stand on its own
o "are" in we're, French "je" in j'ai, "le" in I'honneur

When should multiword expressions (MWE) be words?
> New York, rock 'n’ roll

Tokenization in NLTK

Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly

>>> text = ’'That U.S.A. poster-print costs $12.40...’

>>> pattern = r’’’ (?x) # set flag to allow verbose regexps
([A-Z]\.)+ # abbreviations, e.g. U.S.A.
\w+(-\w+) * # words with optional internal hyphens
\$?2\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%
\.\.\. # ellipsis
[1[.,;" 7200 :-_"] # these are separate tokens; includes], [

>>> nltk.regexp_tokenize(text, pattern)
[’That’, ’'U.S.A.’, ’poster-print’, ’costs’, $12.40°, ’...’]

Tokenization in languages without spaces

Many languages (like Chinese, Japanese, Thai) don't
use spaces to separate words!

How do we decide where the token boundaries
should be?

Word tokenization in Chinese

Chinese words are composed of characters called
"hanzi" (or sometimes just "zi"

Each one represents a meaning unit called a morpheme.
Each word has on average 2.4 of them.

But deciding what counts as a word is complex and not
agreed upon.

How to do word tokenization in Chinese?

PRARIH A S /RZE “Yao Ming reaches the finals”

How to do word tokenization in Chinese?

PRERIA A S ARZR “Yao Ming reaches the finals”

3 words? .
ﬁ%ﬁﬁ LA /IE‘I\/;%%
YaoMing reaches finals

How to do word tokenization in Chinese?

PRERIA A S ARZR “Yao Ming reaches the finals”

3 words? L
ﬁ%ﬁﬁ LA /IEI\/;%%\

YaoMing reaches finals

5 words? \ o
wE EIH LA /IE‘I\ /;%%\

Yao Ming reaches overall finals

How to do word tokenization in Chinese?

PEBRH A SR ZE “Yao Ming reaches the finals”

3 words? L
%Hﬁ LA /IE‘I\/;%%\

YaoMing reaches finals

5 words? \ o
ﬂ% EIH LA /IE‘I\ /;%%\

Yao Ming reaches overall finals

/ characters? (don't use words at all):
ny HH L A /IEI\ /N

Yao Ming enter enter overall decision ga

i

e

3

Word tokenization / segmentation

So in Chinese it's common to just treat each character
(zi) as a token.

* So the segmentation step is very simple

In other languages (like Thai and Japanese), more
complex word segmentation is required.

* The standard algorithms are neural sequence models
trained by supervised machine learning.

Word tokenization

Basic Text
Processing

Byte Pair Encoding

Basic Text
Processing

Another option for text tokenization

Instead of
* white-space segmentation
* single-character segmentation

Use the data to tell us how to tokenize.

Subword tokenization (because tokens can be parts
of words as well as whole words)

Subword tokenization

Three common algorithms:

> Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
> Unigram language modeling tokenization (Kudo, 2018)
> WordPiece (Schuster and Nakajima, 2012)

All have 2 parts:

> A token learner that takes a raw training corpus and induces
a vocabulary (a set of tokens).

> A token segmenter that takes a raw test sentence and
tokenizes it according to that vocabulary

Byte Pair Encoding (BPE) token learner

Let vocabulary be the set of all individual characters
={A,B,C,D,.., a,b,cd...}

Repeat:

> Choose the two symbols that are most frequently
adjacent in the training corpus (say 'A’, 'B')

> Add a new merged symbol 'AB' to the vocabulary
> Replace every adjacent 'A' 'B' in the corpus with 'AB'.

Until kK merges have been done.

BPE token learner algorithm

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V <—all unique characters in C # 1nitial set of tokens 1s characters
fori=1tok do # merge tokens til k£ times
11, tr <— Most frequent pair of adjacent tokens in C
Ivew < I + IR # make new token by concatenating
VeV + tvew # update the vocabulary
Replace each occurrence of 77, tg in C with tyzy # and update the corpus

return V

Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside space-
separated tokens.

So we commonly first add a special end-of-word
symbol ' ' before space in training corpus

Next, separate into letters.

BPE token learner
Original (very fascinating®) corpus:

low low low low low lowest lowest newer newer newer
newer newer newer wider wider wider new new

Add end-of-word tokens, resulting in this vocabulary:

vocabulary
., d, e, 1, 1, n, o, r, s, t, w

BPE token learner

corpus vocabulary

5 l ow _ _, d, e, 1, 1, n, o, r, s, t, w
2 l owest _

6 newer _

3 wilider _

2 new_

Merge e r to er

corpus vocabulary

5 l ow _ ., d, e, 1, 1, n, o, r, s, t, w, er
2 lowest_

6 newer _

3 wider _

2 new_

BPE

corpus vocabulary

5 l ow _ ., d, e, 1, 1, n, o, r, s, t, w, er
2 l owest _
6 newer _
3 wilder _
2 new_
Merge er _ to er_
corpus vocabulary
5 l ow _ _,d,e,1,1,n,0,r,s,t,w, er, er_
2 l owest _
6 newer_
3 wilder_
2 new__

BPE

corpus vocabulary

5 l ow _ _,d,e,i,1,n,0,,s, t,w, er, er_
2 lowest _
6 newer_
3 wider_
2 new_
Merge n e to ne
corpus vocabulary
5 l ow _ _,d,e, 1,1, n,0,,s, t,w, er, er_, ne
2 lowest _
6 ne w er__
3 wider_
2 ne w _

BPE

The next merges are:

Merge Current Vocabulary

(ne, w) _,d,e,1,1,n,0,,s, t,w, er, er_, ne, new

(1, o) _,d,e,1,1,n,0,,s, t,w, er, er_, ne, new, lo

(lo, w) _,d,e,1,1,n,0,,s, t,w, er, er_, ne, new, lo, low

(new, er_) _.,d,e,1,1,n,0,1,s,t,w, er, er_, ne, new, lo, low, newer__

(low, _) _,d,e,1,1,n,0,r,s, t,w, er, er_, ne, new, lo, low, newer__, low__

BPE token segmenter algorithm

On the test data, run each merge learned from the
training data:

o Greedily

> |n the order we learned them

o (test frequencies don't play a role)

So: merge every e r to er, then merge er _to er , etc.

Result:
o Testset"newer " would be tokenized as a full word
> Testset "lower_" would be two tokens: "low er_"

Properties of BPE tokens

Usually include frequent words
And frequent subwords
* Which are often morphemes like -est or —er

A morpheme is the smallest meaning-bearing unit of a
language

* unlikeliest has 3 morphemes un-, likely, and -est

Byte Pair Encoding

Basic Text
Processing

Word Normalization and
other issues

Basic Text
Processing

Word Normalization

Putting words/tokens in a standard format
o U.S.A. or USA
> uhhuh or uh-huh
> Fed or fed
° am, is, be, are

Case folding

Applications like IR: reduce all letters to lower case
> Since users tend to use lower case

> Possible exception: upper case in mid-sentence?

> e.g., General Motors
> Fed vs. fed
o SAIL vs. sail

For sentiment analysis, MT, Information extraction
o Case is helpful (US versus us is important)

Lemmatization

Represent all words as their lemma, their shared root
= dictionary headword form:
o am, are, is — be
o car, cars, car's, cars' — car
> Spanish quiero (‘l want’), quieres (‘you want’)
— querer ‘want’

> He is reading detective stories
— He be read detective story

Lemmatization is done by Morphological Parsing

Morphemes:
> The small meaningful units that make up words
> Stems: The core meaning-bearing units

o Affixes: Parts that adhere to stems, often with grammatical
functions

Morphological Parsers:
> Parse cats into two morphemes cat and s

o Parse Spanish amaren (‘if in the future they would love’) into
morpheme amar ‘to love’, and the morphological features
3PL and future subjunctive.

Stemming

Reduce terms to stems, chopping off affixes crudely

This was not the map we
found in Billy Bones’s
chest, but an accurate
copy, complete in all
things-names and heights
and soundings-with the
single exception of the
red crosses and the
written notes.

Thi wa not the map we
found in Billi Bone s chest
but an accur copi complet
in all thing name and
height and sound with the
singl except of the red
cross and the written note

Porter Stemmer

Based on a series of rewrite rules run in series
> A cascade, in which output of each pass fed to next pass

Some sample rules:

ATIONAL — ATE (e.g., relational — relate)

ING — € 1f stem contains vowel (e.g., motoring — motor)

SSES — SS (e.g., grasses — grass)

0]

Dealing with complex morphology is necessary
for many languages

e.g., the Turkish word:
Uygarlastiramadiklarimizdanmissinizcasina
‘(behaving) as if you are among those whom we could not civilize’
Uygar civilized’ + las "become’
+ tir ‘cause’ + ama not able’
+ dik "past’ + lar ‘plural’
+ imiz ‘p1pl’” + dan ‘abl’
+ mis ‘past’ + siniz ‘2pl’” + casina ‘as if’

Sentence Segmentation

|, ? mostly unambiguous but period “.” is very ambiguous
> Sentence boundary

o Abbreviations like Inc. or Dr.
> Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML to
classify a period as either (a) part of the word or (b) a
sentence-boundary.

> An abbreviation dictionary can help

Sentence segmentation can then often be done by rules
based on this tokenization.

Word Normalization and
other issues

Basic Text
Processing

