
Basic Text 
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Regular Expressions



Regular expressions are used everywhere

◦ Part of every text processing task
◦ Not a general NLP solution (for that we use large NLP 

systems we will see in later lectures)
◦ But very useful as part of those systems (e.g., for pre-

processing or text formatting)
◦ Necessary for data analysis of text data
◦ A widely used tool in industry and academics
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Regular expressions
A formal language for specifying text strings
How can we search for mentions of these cute animals in text?

◦ woodchuck
◦ woodchucks
◦ Woodchuck
◦ Woodchucks
◦ Groundhog
◦ groundhogs



Regular Expressions: Disjunctions

Letters inside square brackets []

Ranges using the dash [A-Z]

Pattern Matches
[wW]oodchuck Woodchuck, woodchuck
[1234567890] Any one digit

Pattern Matches
[A-Z] An upper case letter Drenched Blossoms

[a-z] A lower case letter my beans were impatient

[0-9] A single digit Chapter 1: Down the Rabbit Hole



Regular Expressions: Negation in Disjunction

Carat as first character in [] negates the list
◦ Note: Carat means negation only when it's first in []
◦ Special characters (., *, +, ?) lose their special meaning inside []

Pattern Matches Examples
[^A-Z] Not an upper case letter Oyfn pripetchik

[^Ss] Neither ‘S’ nor ‘s’ I have no exquisite reason”

[^.] Not a period Our resident Djinn

[e^] Either e or ^ Look up ^ now



Regular Expressions: Convenient aliases

Pattern Expansion Matches Examples
\d [0-9] Any digit Fahreneit 451

\D [^0-9] Any non-digit Blue Moon

\w [a-ZA-Z0-9_] Any alphanumeric or _ Daiyu

\W [^\w] Not alphanumeric or _ Look!

\s [ \r\t\n\f] Whitespace (space, tab) Look␣up
\S [^\s] Not whitespace Look up



Regular Expressions: More Disjunction

Groundhog is another name for woodchuck!
The pipe symbol | for disjunction

Pattern Matches
groundhog|woodchuck woodchuck

yours|mine yours

a|b|c = [abc]
[gG]roundhog|[Ww]oodchuck Woodchuck



Wildcards, optionality, repetition: . ? * +

Stephen C Kleene

Pattern Matches Examples
beg.n Any char begin begun 

beg3n beg n

woodchucks? Optional s woodchuck 
woodchucks

to* 0 or more of 
previous char

t to too tooo

to+ 1 or more of 
previous char

to too tooo
toooo Kleene *,   Kleene +   



Regular Expressions: Anchors  ^   $

Pattern Matches
^[A-Z] Palo Alto

^[^A-Za-z] 1 “Hello”

\.$ The end.

.$ The end? The end!



A note about Python regular expressions

◦ Regex and Python both use backslash "\" for 
special characters. You must type extra backslashes!

◦ "\\d+" to search for 1 or more digits
◦ "\n" in Python means the "newline" character, not a 

"slash" followed by an "n". Need "\\n" for two characters.
◦ Instead: use Python's raw string notation for regex:

◦ r"[tT]he"
◦ r"\d+" matches one or more digits

◦ instead of "\\d+"
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The iterative process of writing regex's
Find me all instances of the word “the” in a text.

the
Misses capitalized examples

[tT]he
Incorrectly returns other or Theology

\W[tT]he\W



False positives and false negatives

The process we just went through was based on 
fixing two kinds of errors:

1. Not matching things that we should have matched 
(The)

False negatives

2. Matching strings that we should not have matched 
(there, then, other)

False positives



Characterizing work on NLP

In NLP we are always dealing with these kinds of errors.

Reducing the error rate for an application often 
involves two antagonistic efforts: 

◦ Increasing coverage (or recall) (minimizing false negatives).
◦ Increasing accuracy (or precision) (minimizing false positives)



Regular expressions play a surprisingly large role

Widely used in both academics and industry

1. Part of most text processing tasks, even for big 
neural language model pipelines

◦ including text formatting and pre-processing

2. Very useful for data analysis of any text data

14



Basic Text 
Processing

Regular Expressions



Basic Text 
Processing

More Regular Expressions: 
Substitutions and ELIZA



Substitutions

Substitution in Python and UNIX commands:

s/regexp1/pattern/ 
e.g.:
s/colour/color/ 



Capture Groups

• Say we want to put angles around all numbers:
the 35 boxes à the <35> boxes

• Use parens () to "capture" a pattern into a 
numbered register (1, 2, 3…)

• Use \1  to refer to the contents of the register
s/([0-9]+)/<\1>/ 



Capture groups: multiple registers

/the (.*)er they (.*), the \1er we \2/ 

Matches
the faster they ran, the faster we ran

But not
the faster they ran, the faster we ate 



But suppose we don't want to capture?

Parentheses have a double function: grouping terms, and 
capturing
Non-capturing groups: add a ?: after paren:
/(?:some|a few) (people|cats) like some \1/ 

matches 
◦ some cats like some cats 

but not 
◦ some cats like some some



Lookahead assertions

(?= pattern) is true if pattern matches, but is 
zero-width; doesn't advance character pointer
(?! pattern) true if a pattern does not match 

How to match, at the beginning of a line, any single 
word that doesn’t start with “Volcano”: 
/ˆ(?!Volcano)[A-Za-z]+/ 



Simple Application: ELIZA
Early NLP system that imitated a Rogerian 
psychotherapist 

◦ Joseph Weizenbaum, 1966. 

Uses pattern matching to match, e.g.,:
◦ “I need X” 
and translates them into, e.g.
◦ “What would it mean to you if you got X? 



Simple Application: ELIZA
Men are all alike.
IN WHAT WAY
They're always bugging us about something or other. 
CAN YOU THINK OF A SPECIFIC EXAMPLE 
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE 
He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED 



How ELIZA works

s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/ 
s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/
s/.* all .*/IN WHAT WAY?/ 
s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/ 



Basic Text 
Processing

More Regular Expressions: 
Substitutions and ELIZA



Basic Text 
Processing

Words and Corpora



How many words in a sentence?

"I do uh main- mainly business data processing"
◦ Fragments, filled pauses

"Seuss’s cat in the hat is different from other cats!" 
◦ Lemma: same stem, part of speech, rough word sense

◦ cat and cats = same lemma
◦ Wordform: the full inflected surface form

◦ cat and cats = different wordforms



How many words in a sentence?

they lay back on the San Francisco grass and looked at the stars 
and their

Type: an element of the vocabulary.
Token: an instance of that type in running text.
How many?
◦ 15 tokens (or 14)
◦ 13 types (or 12) (or 11?)



How many words in a corpus?
N = number of tokens
V = vocabulary = set of types, |V| is size of vocabulary
Heaps Law = Herdan's Law =                                 where often .67 < β < .75

i.e., vocabulary size grows with > square root of the number of word tokens

Tokens = N Types = |V|
Switchboard phone conversations 2.4 million 20 thousand
Shakespeare 884,000 31 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13+ million
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duce other complications with regard to defining words. Let’s look at one utterance
from Switchboard; an utterance is the spoken correlate of a sentence:utterance

I do uh main- mainly business data processing

This utterance has two kinds of disfluencies. The broken-off word main- isdisfluency

called a fragment. Words like uh and um are called fillers or filled pauses. Shouldfragment
filled pause we consider these to be words? Again, it depends on the application. If we are

building a speech transcription system, we might want to eventually strip out the
disfluencies.

But we also sometimes keep disfluencies around. Disfluencies like uh or um
are actually helpful in speech recognition in predicting the upcoming word, because
they may signal that the speaker is restarting the clause or idea, and so for speech
recognition they are treated as regular words. Because people use different disflu-
encies they can also be a cue to speaker identification. In fact Clark and Fox Tree
(2002) showed that uh and um have different meanings. What do you think they are?

Are capitalized tokens like They and uncapitalized tokens like they the same
word? These are lumped together in some tasks (speech recognition), while for part-
of-speech or named-entity tagging, capitalization is a useful feature and is retained.

How about inflected forms like cats versus cat? These two words have the same
lemma cat but are different wordforms. A lemma is a set of lexical forms havinglemma
the same stem, the same major part-of-speech, and the same word sense. The word-
form is the full inflected or derived form of the word. For morphologically complexwordform
languages like Arabic, we often need to deal with lemmatization. For many tasks in
English, however, wordforms are sufficient.

How many words are there in English? To answer this question we need to
distinguish two ways of talking about words. Types are the number of distinct wordsword type

in a corpus; if the set of words in the vocabulary is V , the number of types is the
vocabulary size |V |. Tokens are the total number N of running words. If we ignoreword token
punctuation, the following Brown sentence has 16 tokens and 14 types:

They picnicked by the pool, then lay back on the grass and looked at the stars.

When we speak about the number of words in the language, we are generally
referring to word types.

Corpus Tokens = N Types = |V |
Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13 million

Figure 2.11 Rough numbers of types and tokens for some English language corpora. The
largest, the Google N-grams corpus, contains 13 million types, but this count only includes
types appearing 40 or more times, so the true number would be much larger.

Fig. 2.11 shows the rough numbers of types and tokens computed from some
popular English corpora. The larger the corpora we look at, the more word types
we find, and in fact this relationship between the number of types |V | and number
of tokens N is called Herdan’s Law (Herdan, 1960) or Heaps’ Law (Heaps, 1978)Herdan’s Law

Heaps’ Law after its discoverers (in linguistics and information retrieval respectively). It is shown
in Eq. 2.1, where k and b are positive constants, and 0 < b < 1.

|V | = kNb (2.1)



Corpora

Words don't appear out of nowhere! 
A text is produced by 
• a specific writer(s), 
• at a specific time, 
• in a specific variety,
• of a specific language, 
• for a specific function.



Corpora vary along dimension like

◦ Language: 7097 languages in the world
◦ Variety, like African American Language varieties.

◦ AAE Twitter posts might include forms like "iont" (I don't)
◦ Code switching, e.g., Spanish/English, Hindi/English:

S/E: Por primera vez veo a @username actually being hateful! It was beautiful:) 
[For the first time I get to see @username actually being hateful! it was beautiful:) ] 

H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe
[“he was and will remain a friend ... don’t worry ... but have faith”] 

◦ Genre: newswire, fiction, scientific articles, Wikipedia
◦ Author Demographics: writer's age, gender, ethnicity, SES 



Corpus datasheets

Motivation: 
• Why was the corpus collected?
• By whom? 
• Who funded it? 

Situation: In what situation was the text written?
Collection process: If it is a subsample how was it sampled? Was 
there consent? Pre-processing?

+Annotation process, language variety, demographics, etc.

Gebru et al (2020), Bender and Friedman (2018)
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Text Normalization

Every NLP task requires text normalization: 
1. Tokenizing (segmenting) words
2. Normalizing word formats
3. Segmenting sentences



Space-based tokenization

A very simple way to tokenize
◦ For languages that use space characters between words

◦ Arabic, Cyrillic, Greek, Latin, etc., based writing systems
◦ Segment off a token between instances of spaces

Unix tools for space-based tokenization
◦ The "tr" command
◦ Inspired by Ken Church's UNIX for Poets
◦ Given a text file, output the word tokens and their frequencies



Simple Tokenization in UNIX
(Inspired by Ken Church’s UNIX for Poets.)
Given a text file, output the word tokens and their frequencies
tr -sc ’A-Za-z’ ’\n’ < shakes.txt

| sort 
| uniq –c 

1945 A

72 AARON

19 ABBESS

5 ABBOT

... ...

25 Aaron
6 Abate
1 Abates
5 Abbess
6 Abbey
3 Abbot

....   …

Change all non-alpha to newlines

Sort in alphabetical order

Merge and count each type



The first step: tokenizing

tr -sc ’A-Za-z’ ’\n’ < shakes.txt | head

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

...



The second step: sorting

tr -sc ’A-Za-z’ ’\n’ < shakes.txt | sort | head

A

A

A

A

A

A

A

A

A

...



More counting
Merging upper and lower case
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c 

Sorting the counts
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c | sort –n –r

23243 the
22225 i
18618 and
16339 to
15687 of
12780 a
12163 you
10839 my
10005 in
8954  d

What happened here?



Issues in Tokenization
Can't just blindly remove punctuation:
◦ m.p.h., Ph.D., AT&T, cap’n
◦ prices ($45.55)
◦ dates (01/02/06)
◦ URLs (http://www.stanford.edu)
◦ hashtags (#nlproc)
◦ email addresses (someone@cs.colorado.edu)

Clitic: a word that doesn't stand on its own
◦ "are" in we're, French "je" in j'ai, "le" in l'honneur

When should multiword expressions (MWE) be words?
◦ New York, rock ’n’ roll 



Tokenization in NLTK
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Input: "The San Francisco-based restaurant," they said,

"doesn’t charge $10".

Output: " The San Francisco-based restaurant , " they said ,
" does n’t charge $ 10 " .

In practice, since tokenization needs to be run before any other language pro-
cessing, it needs to be very fast. The standard method for tokenization is therefore
to use deterministic algorithms based on regular expressions compiled into very ef-
ficient finite state automata. For example, Fig. 2.12 shows an example of a basic
regular expression that can be used to tokenize with the nltk.regexp tokenize
function of the Python-based Natural Language Toolkit (NLTK) (Bird et al. 2009;
http://www.nltk.org).

>>> text = ’That U.S.A. poster-print costs $12.40...’

>>> pattern = r’’’(?x) # set flag to allow verbose regexps

... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.

... | \w+(-\w+)* # words with optional internal hyphens

... | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%

... | \.\.\. # ellipsis

... | [][.,;"’?():-_‘] # these are separate tokens; includes ], [

... ’’’

>>> nltk.regexp_tokenize(text, pattern)

[’That’, ’U.S.A.’, ’poster-print’, ’costs’, ’$12.40’, ’...’]

Figure 2.12 A Python trace of regular expression tokenization in the NLTK Python-based
natural language processing toolkit (Bird et al., 2009), commented for readability; the (?x)
verbose flag tells Python to strip comments and whitespace. Figure from Chapter 3 of Bird
et al. (2009).

Carefully designed deterministic algorithms can deal with the ambiguities that
arise, such as the fact that the apostrophe needs to be tokenized differently when used
as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she
said, or in clitics like they’re.

Word tokenization is more complex in languages like written Chinese, Japanese,
and Thai, which do not use spaces to mark potential word-boundaries. In Chinese,
for example, words are composed of characters (called hanzi in Chinese). Eachhanzi
character generally represents a single unit of meaning (called a morpheme) and is
pronounceable as a single syllable. Words are about 2.4 characters long on average.
But deciding what counts as a word in Chinese is complex. For example, consider
the following sentence:
(2.4) ⁄�€e;≥[

“Yao Ming reaches the finals”
As Chen et al. (2017) point out, this could be treated as 3 words (‘Chinese Treebank’
segmentation):
(2.5) ⁄�

YaoMing
€e
reaches

;≥[
finals

or as 5 words (‘Peking University’ segmentation):
(2.6) ⁄

Yao
�
Ming

€e
reaches

;
overall

≥[
finals

Finally, it is possible in Chinese simply to ignore words altogether and use characters
as the basic elements, treating the sentence as a series of 7 characters:

Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly



Tokenization in languages without spaces 

Many languages (like Chinese, Japanese, Thai) don't 
use spaces to separate words!

How do we decide where the token boundaries 
should be?



Word tokenization in Chinese

Chinese words are composed of characters called 
"hanzi" (or sometimes just "zi")
Each one represents a meaning unit called a morpheme.
Each word has on average 2.4 of them.
But deciding what counts as a word is complex and not 
agreed upon.



How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches  finals 

5 words?
姚 明 进入 总 决赛
Yao    Ming    reaches    overall    finals 

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game



How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches  finals 

5 words?
姚 明 进入 总 决赛
Yao    Ming    reaches    overall    finals 

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game



How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches  finals 

5 words?
姚 明 进入 总 决赛
Yao    Ming    reaches    overall    finals 

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game



How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches  finals 

5 words?
姚 明 进入 总 决赛
Yao    Ming    reaches    overall    finals 

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game



Word tokenization / segmentation

So in Chinese it's common to just treat each character 
(zi) as a token.
• So the segmentation step is very simple

In other languages (like Thai and Japanese), more 
complex word segmentation is required.
• The standard algorithms are neural sequence models 

trained by supervised machine learning.
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Another option for text tokenization

Instead of 
• white-space segmentation
• single-character segmentation 

Use the data to tell us how to tokenize.

Subword tokenization (because tokens can be parts 
of words as well as whole words)



Subword tokenization

Three common algorithms:
◦ Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
◦ Unigram language modeling tokenization (Kudo, 2018)
◦ WordPiece (Schuster and Nakajima, 2012)
All have 2 parts:
◦ A token learner that takes a raw training corpus and induces 

a vocabulary (a set of tokens). 
◦ A token segmenter that takes a raw test sentence and 

tokenizes it according to that vocabulary



Byte Pair Encoding (BPE) token learner

Let vocabulary be the set of all individual characters 
= {A, B, C, D,…, a, b, c, d….}

Repeat:
◦ Choose the two symbols that are most frequently 

adjacent in the training corpus (say 'A', 'B') 
◦ Add a new merged symbol 'AB' to the vocabulary
◦ Replace every adjacent 'A' 'B' in the corpus with 'AB'. 

Until k merges have been done.
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function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens til k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up
into individual characters or bytes, and learning a vocabulary by iteratively merging tokens.
Figure adapted from Bostrom and Durrett (2020).

from the training data, greedily, in the order we learned them. (Thus the frequencies
in the test data don’t play a role, just the frequencies in the training data). So first
we segment each test sentence word into characters. Then we apply the first rule:
replace every instance of e r in the test corpus with r, and then the second rule:
replace every instance of er in the test corpus with er , and so on. By the end,
if the test corpus contained the word n e w e r , it would be tokenized as a full
word. But a new (unknown) word like l o w e r would be merged into the two
tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a very
large input corpus. The result is that most words will be represented as full symbols,
and only the very rare words (and unknown words) will have to be represented by
their parts.

2.4.4 Word Normalization, Lemmatization and Stemming
Word normalization is the task of putting words/tokens in a standard format, choos-normalization
ing a single normal form for words with multiple forms like USA and US or uh-huh
and uhhuh. This standardization may be valuable, despite the spelling information
that is lost in the normalization process. For information retrieval or information
extraction about the US, we might want to see information from documents whether
they mention the US or the USA.

Case folding is another kind of normalization. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

For many natural language processing situations we also want two morpholog-
ically different forms of a word to behave similarly. For example in web search,
someone may type the string woodchucks but a useful system might want to also
return pages that mention woodchuck with no s. This is especially common in mor-
phologically complex languages like Russian, where for example the word Moscow
has different endings in the phrases Moscow, of Moscow, to Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma



Byte Pair Encoding (BPE) Addendum

Most subword algorithms are run inside space-
separated tokens. 
So we commonly first add a special end-of-word 
symbol '__' before space in training corpus
Next, separate into letters.
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The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low, ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Original (very fascinating🙄) corpus:

low low low low low lowest lowest newer newer newer        
newer newer newer wider wider wider new new

Add end-of-word tokens, resulting in this vocabulary:

representation
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that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low, ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.
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The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:
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2 n e w
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Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :
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1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.



BPE

Merge er  _ to er_

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low, ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
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is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:
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that there should be a token for word-final er, represented as er :
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If we continue, the next merges are:
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(low, ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.
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1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.
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with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:
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The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:
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5 l o w , d, e, i, l, n, o, r, s, t, w, er
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Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
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If we continue, the next merges are:
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(new, er ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low, ) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low
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1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.



BPE token segmenter algorithm
On the test data, run each merge learned from the 
training data:

◦ Greedily
◦ In the order we learned them
◦ (test frequencies don't play a role)

So: merge every e r to er, then merge er _ to er_, etc.
Result: 
◦ Test set "n e w e r _" would be tokenized as a full word 
◦ Test set "l o w e r _" would be two tokens: "low er_"



Properties of BPE tokens

Usually include frequent words
And frequent subwords
• Which are often morphemes like -est or –er

A morpheme is the smallest meaning-bearing unit of a 
language
• unlikeliest has 3 morphemes un-, likely, and -est



Basic Text 
Processing

Byte Pair Encoding



Basic Text 
Processing

Word Normalization and 
other issues



Word Normalization

Putting words/tokens in a standard format
◦ U.S.A. or USA
◦ uhhuh or uh-huh
◦ Fed or fed
◦ am, is, be, are 



Case folding

Applications like IR: reduce all letters to lower case
◦ Since users tend to use lower case
◦ Possible exception: upper case in mid-sentence?

◦ e.g., General Motors
◦ Fed vs. fed
◦ SAIL vs. sail

For sentiment analysis, MT, Information extraction
◦ Case is helpful (US versus us is important)



Lemmatization

Represent all words as their lemma, their shared root 
= dictionary headword form:

◦ am, are, is ® be
◦ car, cars, car's, cars' ® car
◦ Spanish quiero (‘I want’), quieres (‘you want’) 
® querer ‘want'

◦ He is reading detective stories 
® He be read detective story 



Lemmatization is done by Morphological Parsing

Morphemes:
◦ The small meaningful units that make up words
◦ Stems: The core meaning-bearing units
◦ Affixes: Parts that adhere to stems, often with grammatical 

functions

Morphological Parsers:
◦ Parse cats into two morphemes cat and s
◦ Parse Spanish amaren (‘if in the future they would love’) into 

morpheme amar ‘to love’, and the morphological features 
3PL and future subjunctive. 



Stemming
Reduce terms to stems, chopping off affixes crudely

This was not the map we 
found in Billy Bones’s 
chest, but an accurate 
copy, complete in all 
things-names and heights 
and soundings-with the 
single exception of the 
red crosses and the 
written notes. 

Thi wa not the map we 
found in Billi Bone s chest 
but an accur copi complet 
in all thing name and 
height and sound with the 
singl except of the red 
cross and the written note 
. 



Porter Stemmer

Based on a series of rewrite rules run in series
◦ A cascade, in which output of each pass fed to next pass

Some sample rules:
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be; the words dinner and dinners both have the lemma dinner. Lemmatizing each of
these forms to the same lemma will let us find all mentions of words in Russian like
Moscow. The lemmatized form of a sentence like He is reading detective stories
would thus be He be read detective story.

How is lemmatization done? The most sophisticated methods for lemmatization
involve complete morphological parsing of the word. Morphology is the study of
the way words are built up from smaller meaning-bearing units called morphemes.morpheme

Two broad classes of morphemes can be distinguished: stems—the central mor-stem
pheme of the word, supplying the main meaning— and affixes—adding “additional”affix
meanings of various kinds. So, for example, the word fox consists of one morpheme
(the morpheme fox) and the word cats consists of two: the morpheme cat and the
morpheme -s. A morphological parser takes a word like cats and parses it into the
two morphemes cat and s, or parses a Spanish word like amaren (‘if in the future
they would love’) into the morpheme amar ‘to love’, and the morphological features
3PL and future subjunctive.

The Porter Stemmer

Lemmatization algorithms can be complex. For this reason we sometimes make use
of a simpler but cruder method, which mainly consists of chopping off word-final
affixes. This naive version of morphological analysis is called stemming. One ofstemming

the most widely used stemming algorithms is the Porter (1980). The Porter stemmerPorter stemmer
applied to the following paragraph:

This was not the map we found in Billy Bones’s chest, but
an accurate copy, complete in all things-names and heights
and soundings-with the single exception of the red crosses
and the written notes.

produces the following stemmed output:
Thi wa not the map we found in Billi Bone s chest but an
accur copi complet in all thing name and height and sound
with the singl except of the red cross and the written note

The algorithm is based on series of rewrite rules run in series, as a cascade, incascade
which the output of each pass is fed as input to the next pass; here is a sampling of
the rules:

ATIONAL ! ATE (e.g., relational ! relate)
ING ! ✏ if stem contains vowel (e.g., motoring ! motor)

SSES ! SS (e.g., grasses ! grass)

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.)
can be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Simple stemmers can be useful in cases where we need to collapse across differ-
ent variants of the same lemma. Nonetheless, they do tend to commit errors of both
over- and under-generalizing, as shown in the table below (Krovetz, 1993):

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
numerical numerous noise noisy
policy police sparse sparsity



Dealing with complex morphology is necessary 
for many languages

◦ e.g., the Turkish word:
◦ Uygarlastiramadiklarimizdanmissinizcasina
◦ `(behaving) as if you are among those whom we could not civilize’
◦ Uygar `civilized’ + las `become’ 

+ tir `cause’ + ama `not able’ 
+ dik `past’ + lar ‘plural’
+ imiz ‘p1pl’ + dan ‘abl’ 
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’ 



Sentence Segmentation
!, ? mostly unambiguous but period “.” is very ambiguous

◦ Sentence boundary
◦ Abbreviations like Inc. or Dr.
◦ Numbers like .02% or 4.3

Common algorithm: Tokenize first: use rules or ML to 
classify a period as either (a) part of the word or (b) a 
sentence-boundary. 

◦ An abbreviation dictionary can help

Sentence segmentation can then often be done by rules 
based on this tokenization.



Basic Text 
Processing

Word Normalization and 
other issues


