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Dialogue Systems and Chatbots

Personal Assistants on phones or other devices
SIRI, Alexa, Cortana, Google Assistant

Playing music, setting timers, reading recipes
Booking reservations
Answering questions
Creative writing
Editing or rewriting text 
Writing code



Two kinds of dialogue system architectures

1. Frame-based Task-oriented Dialogue Systems
• Can talk to users to accomplish simple fixed tasks
• simple personal assistants (Siri, Alexa)
• booking flights or finding restaurants

2. LLM Chatbots
• Can talk to users to do many tasks with text or code
• Answering questions
• Writing, summarizing , or editing text or code
• Are quickly acquiring abilities to act as agents



Task-based dialogue agents

"Task-based" or "goal-based" dialogue agents
• Systems that have the goal of helping a user solve a task
• Setting a timer
• Making a travel reservation
• Playing a song
• Buying a product

Architecture: 
• Frames with slots and values
• A knowledge structure representing user intentions



The Frame

A set of slots, to be filled with information of a given type
Each associated with a question to the user

Slot Type Question
ORIGIN city "What city are you leaving from?
DEST city "Where are you going?
DEP DATE date "What day would you like to leave?
DEP TIME time "What time would you like to leave?
AIRLINE line "What is your preferred airline?



Dialogue agents based on large language models

Like ChatGPT: based on large language models like 
GPT pretrained to predict words.
These language models are fine-tuned to carry on 
conversation and follow instructions
They can also retrieve text as part of answering 
questions or chatting

retrieval-augmented generation (RAG)



Implications for Human Users

Men are all alike.
IN WHAT WAY
They're always bugging us about something or other. 
CAN YOU THINK OF A SPECIFIC EXAMPLE 
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE 
He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED 

Weizenbaum, Joseph. 1966, "ELIZA - A Computer Program For the Study of 
Natural Language Communication Between Man And Machine", 
Communications of the ACM 9 (1): 36-45

ELIZA: Weizenbaum (1966)



ELIZA reflects the user's statements back at them

Based on simple rules:
(.*) YOU (.*) ME ➔ WHAT MAKES YOU THINK I \2 YOU

Transforms:
 User: “You hate me” into the response
 System: "WHAT MAKES YOU THINK I HATE YOU "



Chatbots can have significant influences on 
people’s cognitive and emotional state.

• In Weizenbaum's study, people became 
emotionally involved with the program, asking 
him to leave the room when they were typing.

• Reeves and Nass (1996) The Media Equation
• People tend to assign human characteristics to 

computers 
• People interpret an utterance in the way they would 

if it had spoken by a human



Chatbots have privacy implications 
• Weizenbaum suggested storing the ELIZA conversations for 

later analysis
• People immediately pointed out the privacy implications

• Modern chatbots in the home are likely to overhear private 
information

• If a chatbot is human-like, users are more likely to disclose 
private information, and yet less likely to worry about the 
harm of this disclosure.



We'll see more on all these topics

• Some properties of human conversation
• The frame-based architecture for dialogue systems
• LLM-based chatbots
• Evaluation
• Ethical and design issues
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A telephone 
conversation 
between a 
human travel 
agent (A) and 
a human 
client (C)
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contrast, chatbots are systems designed for extended conversations, set up to mimic
the unstructured conversations or ‘chats’ characteristic of human-human interaction,
mainly for entertainment, but also for practical purposes like making task-oriented
agents more natural.1 In Section 24.2 we’ll discuss the three major chatbot architec-
tures: rule-based systems, information retrieval systems, and encoder-decoder gen-
erators. In Section 24.3 we turn to task-oriented agents, introducing the frame-based
architecture (the GUS architecture) that underlies most task-based systems.

24.1 Properties of Human Conversation

Conversation between humans is an intricate and complex joint activity. Before we
attempt to design a conversational agent to converse with humans, it is crucial to
understand something about how humans converse with each other. Consider some
of the phenomena that occur in the conversation between a human travel agent and
a human client excerpted in Fig. 24.1.

C1: . . . I need to travel in May.
A2: And, what day in May did you want to travel?
C3: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A4: And you’re flying into what city?
C5: Seattle.
A6: And what time would you like to leave Pittsburgh?
C7: Uh hmm I don’t think there’s many options for non-stop.
A8: Right. There’s three non-stops today.
C9: What are they?
A10: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time.

The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the
last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C11: OK I’ll take the 5ish flight on the night before on the 11th.
A12: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air

flight 115.
C13: OK.
A14: And you said returning on May 15th?
C15: Uh, yeah, at the end of the day.
A16: OK. There’s #two non-stops . . . #
C17: #Act. . . actually #, what day of the week is the 15th?
A18: It’s a Friday.
C19: Uh hmm. I would consider staying there an extra day til Sunday.
A20: OK. . . OK. On Sunday I have . . .

Figure 24.1 Part of a phone conversation between a human travel agent (A) and human
client (C). The passages framed by # in A16 and C17 indicate overlaps in speech.

Turns

A dialogue is a sequence of turns (C1, A2, C3, and so on), each a single contributionturn
from one speaker to the dialogue (as if in a game: I take a turn, then you take a turn,

1 By contrast, in popular usage, the word chatbot is often generalized to refer to both task-oriented and
chit-chat systems; we’ll be using dialogue systems for the former.



Properties of Human Conversation

Turns
• We call each contribution a "turn"
• As if conversation was the kind of game where everyone 

takes turns.
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1 By contrast, in popular usage, the word chatbot is often generalized to refer to both task-oriented and
chit-chat systems; we’ll be using dialogue systems for the former.



Properties of Human Conversation

Turn-taking issues
◦ When to take the floor?
◦ When to yield the floor?

Interruptions
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Implications for Conversational Agents

Barge-in
◦ Allowing the user to interrupt

End-pointing
◦ The task for a speech system of deciding whether the user 

has stopped talking.
◦ Very hard, since people often pause in the middle of turns

19



Language as Action

Each turn in a dialogue is a kind of action
Wittgenstein (1953) and Austin (1962)



Speech Acts (aka Dialogue Acts)

Constatives: committing the speaker to something’s being the case 
(answering, claiming, confirming, denying, disagreeing, stating) 

Directives: attempts by the speaker to get the addressee to do 
something (advising, asking, forbidding, inviting, ordering, requesting) 

Commissives: committing the speaker to some future course of action 
(promising, planning, vowing, betting, opposing) 

Acknowledgments: express the speaker’s attitude regarding the hearer 
with respect to some social action (apologizing, greeting, thanking, 
accepting an acknowledgment) 

Bach and Harnish (1979)



Speech acts

"Turn up the music!" 
DIRECTIVE

"What day in May do you want to travel?"
 DIRECTIVE

"I need to travel in May"
CONSTATIVE

Thanks
ACKNOWLEDGEMENT



Grounding

• Participants in conversation or any joint activity need to 
establish common ground.

• Principle of closure.  Agents performing an action require 
evidence, sufficient for current purposes, that they have 
succeeded in performing it  (Clark 1996, after Norman 1988)

• Speech is an action too!  So speakers need to ground each 
other’s utterances. 
• Grounding: acknowledging that the hearer has understood



Grounding

• Grounding is relevant for human-machine interaction
• Why do elevator buttons light up?



Grounding: Establishing Common Ground

A: And you said returning on May 15th?
C: Uh, yeah, at the end of the day.
A: OK

C: OK I’ll take the 5ish flight on the night before on the 
11th.
A: On the 11th? OK. 

C: ...I need to travel in May.
A: And, what day in May did you want to travel?



Grounding is important for computers too!

System: Did you want to review some more of your profile?
User: No.
System: What’s next?

System: Did you want to review some more of your profile?
User: No.
System: Okay, what’s next?

Cohen et al (2004)



Conversations have structure

Local structure between adjacent speech acts, from the field 
of conversational analysis (Sacks et al. 1974)

Called adjacency pairs:
 QUESTION… ANSWER

PROPOSAL… ACCEPTANCE/REJECTION

COMPLIMENTS ("Nice jacket!")… DOWNPLAYER ("Oh, this old 
thing?")



Another kind of structure: Subdialogues

Agent:  OK.  There's #two non-stops#
Client:                     #Act- actually#, what day of the week is the 15th?
Agent: It’s a Friday.
Client: Uh hmm. I would consider staying there an extra day til Sunday. 

Agent: OK...OK. On Sunday I have ... 

28
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Clarification Subdialogues

User: What do you have going to UNKNOWN WORD on the 5th?
System:  Let’s see, going where on the 5th?
User: Going to Hong Kong. 

System: OK, here are some flights... 

29



Presequences

User: Can you make train reservations?

System: Yes I can.

User: Great, I’d like to reserve a seat on the 4pm train 
to New York. 



Conversational Initiative
Some conversations are controlled by one person
• A reporter interviewing a chef asks questions, and the chef responds.
• This reporter has the conversational initiative (Walker and Whittaker 1990)

Most human conversations have mixed initiative: 
• I lead, then you lead, then I lead.

• Mixed initiative is very hard for NLP systems, which often default to 
simpler styles that can be frustrating for humans:
• User initiative (user asks or commands, system responds)
• System initiative (system asks user questions to fill out a form, user 

can't change the direction)



Even harder problems:  Inference

Agent: And, what day in May did you want to travel?
Client: OK, uh, I need to be there for a meeting that’s 
from the 12th to the 15th. 
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ELIZA: Weizenbaum (1966)
Men are all alike.
IN WHAT WAY
They're always bugging us about something or other. 
CAN YOU THINK OF A SPECIFIC EXAMPLE 
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE 
He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED 
...

You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU
My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

Weizenbaum, Joseph. 1966, "ELIZA - A Computer Program For 
the Study of Natural Language Communication Between Man And 
Machine", Communications of the ACM 9 (1): 36-45



ELIZA's trick: be a Rogerian psychologist

Draw the patient out by reflecting patient’s 
statements back at them
Rare type of conversation in which one can “assume 
the pose of knowing almost nothing of the real world”



Rogerian psychologist

Patient: "I went for a long boat ride”
Psychologist: "Tell me about boats”

You don’t assume she didn’t know what a boat is
You assume she had some conversational goal
Chatbots trying to pass the Turing test usually choose some 
such domain



Eliza pattern/transform rules

(0 YOU 0 ME)          [pattern]
à 
(WHAT MAKES YOU THINK I 3 YOU) [transform]

0  means Kleene *
The 3 is the constituent # in pattern

You hate me
WHAT MAKES YOU THINK I HATE YOU



Eliza Rules
A formal notation in which to represent the decomposition 
template is: 

(0 YOU 0 ME) 

and the reassembly rule 

(WHAT MAKES YOU T H I N K  I 3 YOU). 

The "0" in the decomposition rule stands for "an in- 
definite number of words" (analogous to the indefinite 
dollar sign of COMIT) [6] while the "3" in the reassembly 
rule indicates that  the third component of the subject 
decomposition is to be inserted in its place. The decom- 
position rule 

(0 YOU 1 ME) 

would have worked just as well in this specific example. A 
nonzero integer "n"  appearing in a decomposition rule 
indicates that the component in question should consist 
of exactly "n"  words. However, of the two rules shown, 
only the first would have matched the sentence, " I t  seems 
you hate and love me," the second failing because there is 
more than one word between "you"  and "me". 

~1 RI,1 R1,2"'" Rl,ml D2 R2J RZ,Z" " "Rz,m2 De Ra,t FIn'2~ ' "  " R%nan 

Fro. 1. :Keyword and rule list structure 

in  ELIZA the question of which decomposition rules to 
apply to an input text is of course a crucial one. The input 
sentence might have been, for example, " I t  seems that  
you hate," in which ease the decomposition rule (0 YOU 
0 ME) would have failed in that  the word " M E "  would 
not have been found at all, let alone in its assigned place. 
Some other decomposition rule would then have to be 
tried and, failing that,  still another until a match could 
be made or a total failure reported. ELIZA must therefm~ 
have a mechanism to sharply delimit the set of decom- 
position rules which are potentially applicable to a cur- 
rently active input sentence. This is the keyword mecha- 
nism. 

An input sentence is scanned from left to right. Each 
word is looked up in a dictionary of keywords. If a word 
is identified as a keyword, then (apart from the issue of 
precedence of keywords) only decomposition rules con- 
taining that  keyword need to be tried. The trial sequence 
can even be partially ordered. For example, the decom- 
position rule (0 YOU 0) associated with the keyword 
"YOU" (and decomposing an input sentence into (1) all 
words in front of "YOU", (2) the word "YOU", and (3) 
all words following "YOU") should be the last, one tried 
since it is bound to succeed. 

Two problems now arise. One stems from the fact tha t  

almost none of the words in any given sentence are repre. 
sented in the keyword dictionary. The other is that of 
"associating" both decomposit;ion and reassembly rules 
with keyword~-;. The iirst is serious in that  the determina- 
tion that  a word is not in a dictionary may well require 
more computation (i.e., time) than the location of a word 
which is represented. The attack on both problems begins 
by placing both a keyword trod its associated rules on a 
list. The basic format of a typical key list is the following: 

(K ((D0 (R~. t) (R~, 2) " '" (Rt . . . .  )) 
((D2) (R2. ~) (R2.2) " "  (R2.,,,~)) 

: 

((D,~) (R,,, ~) (taw, ~) . . .  (R,~, . ~ ) ) )  

where K is the keyword, D, the it, h decomposition rule 
associated with K and R¢, ~ the j t h  reassembly rule ass0. 
ciated with the i th decomposition rule. 

A common pictorial representation of such a structure 
is the tree diagram shown in Figure 1. The top level of 
this structure contains the keyword followed by the names 
of lists; each one of which is again a list structure beginning 
with a decomposition rule and followed by reassembly 
rules. Since list structures of this type have no predeter- 
mined dimensionality limitations, any number of decom- 
position rules may be associated with a given keyword and 
any number of reassembly rules witch any specific decom- 
position rule. SLiP i8 rich in functions that  sequence over 
structures of this type efficiently. Hence programmin 
problems are minimized. 

An ELIZA script consists mainly of a set of list struc- 
tures of the type shown. The actual keyword dictionary is 
constructed when such a script is first read into the 
hitherto empty program. The basic structural component 
of the keyword dictionary is a vector KEY of (currently) 
128 contiguous computer words. As a particular key list 
structure is read the keyword K at its top is randomized 
(hashed) by a procedure that  produces (currently) a 7 
bit integer "i" .  The word "always", for example, yields 
the integer 14. KEY(i), i.e., the i th word of the vector 
KEY, is then examined to determine whether it contains 
a list. name. If it does not, then an empty list is created, 
its name placed in KEY(i), and the key list structure in 
question placed on that list. If KEY(i) already contains a 
list name, then the name of the key list structure is placed 
on the bottom of the list named in KEY(i). The largest 
dictionary so far attempted contains about 50 keywords. 
No list named in any of the words of the KEY vector 
contains more than two key list structures. 

Every word encountered in the scan of an input text, 
i.e., during the actual operations of ELIZA, is randomized 
by the same hashing algorithm as was originally applied to 
the incoming keywords, hence yields an integer which 
points to the only possible list structure which could 
potentially contain that  word as a keyword. Even then, 
only the tops of any key list structures that  may be found 
there need be interrogated to determine whether or not a 
keyword has been found. By virtue of the various list 
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keyword pattern list of transforms

Keyword:  YOU
Pattern: (0 YOU 0 ME)     
Transforms: (WHAT MAKES YOU THINK I 3 YOU)
  (WHY DO YOU THINK I 3 YOU)

Rules are organized by keywords
Each keyword has a pattern and a list of possible transform



Keywords are ranked from specific to general

User: I know everybody laughed at me

“I” is very general:
I: (I *) -> (YOU SAY YOU 2)
ELIZA: YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

“Everybody” is more specific and interesting
Everybody: (Everybody *) -> (WHO IN PARTICULAR ARE YOU THINKING OF)

ELIZA: WHO IN PARTICULAR ARE YOU THINKING OF?

 Implementation: keywords stored with their rank 
Everybody 5 (list of transformation rules)
I   0 (list of transformation rules)
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Men are all alike.
IN WHAT WAY
They’re always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I’m depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED
....
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?
My father
YOUR FATHER
You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU
My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR
BOYFRIEND MADE YOU COME HERE

Figure 24.4 Sample ELIZA dialogue from Weizenbaum (1966).

function ELIZA GENERATOR(user sentence) returns response

Find the word w in sentence that has the highest keyword rank
if w exists

Choose the highest ranked rule r for w that matches sentence
response Apply the transform in r to sentence
if w = ‘my’

future Apply a transformation from the ‘memory’ rule list to sentence
Push future onto memory stack

else (no keyword applies)
either

response Apply the transform for the NONE keyword to sentence
or

response Pop the top response from the memory stack
return(response)

Figure 24.5 A simplified sketch of the ELIZA algorithm. The power of the algorithm
comes from the particular transforms associated with each keyword.

to some quite specific event or person”. Therefore, ELIZA prefers to respond with
the pattern associated with the more specific keyword everybody (implementing by
just assigning “everybody” rank 5 and “I” rank 0 in the lexicon), whose rule thus



NONE

PLEASE GO ON
THAT’S VERY INTERESTING
I SEE



Memory
(MEMORY MY
 (0 MY 0 = LETS DISCUSS FURTHER WHY YOUR 3)
 (0 MY 0 = EARLIER YOU SAID YOUR 3)
 (0 MY 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT 
YOUR 3))

Whenever “MY” is highest keyword
◦ Randomly select a transform on the MEMORY list 
◦ Apply to sentence
◦ Store on a (first-in-first-out) queue

Later, if no keyword matches a sentence
◦ Return the top of the MEMORY queue instead



Ethical implications: Anthropomorphism and Privacy

People  became deeply emotionally involved with the program
One of Weizenbaum's staff asked him to leave the room when 
she talked with ELIZA
When he suggested that he might want to store all the ELIZA 
conversations for later analysis, people immediately pointed out 
the privacy implications
◦ Suggesting that they were having quite private conversations 

with ELIZA
◦ Despite knowing that it was just software. 



Ethical implications

It worried Weizenbaum that people confided in ELIZA
• Were people misled about how much computers understood?
Turkle studied users of ELIZA and other systems
• Turkle has shown human face-to-face interaction is vital
• But people also develop specific relationships with artifacts
• Some users told her ELIZA was more like a kind of diary, a way 

to privately explore their thoughts.
Importance of value-sensitive design

Joseph Weizenbaum.  1976.  Computer Power and Human Reason: From Judgment to Calculation.  WH Freeman.
Sherry Turkle. 2011. Taking Things at Interface Value, chapter in Life on the Screen. Simon and Schuster.
Sherry Turkle. 2007. Authenticity in the age of digital companions. Interaction Studies, 8(3), pp.501-517



PARRY: A computational model of schizophrenia

Another chatbot with a clinical psychology focus
• Colby, K. M., Weber, S., and Hilf, F. D. (1971). Artificial paranoia. 

Artificial Intelligence 2(1), 1–25. 
Used to study schizophrenia
Same pattern-response structure as Eliza
But a much richer:
◦ control structure 
◦ language understanding capabilities
◦ model of mental state.
◦ variables modeling levels of Anger, Fear, Mistrust

46



Affect variables

Fear  (0-20)                    Anger (0-20)                  Mistrust  (0-15)

Start with all variables low
After each user turn
◦ Each user statement can change Fear and Anger

◦ E.g., Insults increases Anger, Flattery decreases Anger
◦ Mentions of his delusions increase Fear

◦ Else if nothing malevolent in input
◦ Anger, Fear, Mistrust all drop



Parry's responses depend on mental state

Modify
Affect variables

excessive 
fear

Escape

excessive 
anger

Hostility

Input 
mentions 
delusion 

topic

question

Fear answer

User Input

condition

response
…



PARRY passes the Turing test in 1972

The first system to pass a version of the Turing test 
Psychiatrists couldn’t distinguish interviews with PARRY 
from (text transcripts of) interviews with people 
diagnosed with paranoid schizophrenia
• Colby, K. M., Hilf, F. D., Weber, S., and Kraemer, H. C. (1972). 

Turing-like indistinguishability tests for the validation of a 
computer simulation of paranoid processes. Artificial 
Intelligence 3, 199–221. 
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Rule-based Chatbots: ELIZA 
and PARRY
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The Frame-based ("GUS") 
Dialogue Architecture



Frame-based dialogue agents

Sometimes called "task-based dialogue agents"
• Systems that have the goal of helping a user solve a task like 

making a travel reservation or buying a product
Architecture: 
• First proposed in the GUS system of 1977
• A knowledge structure representing user intentions
• One or more frames (each consisting of slots with values)



The Frame

A set of slots, to be filled with information of a given type
Each associated with a question to the user
Sometimes called a domain ontology

Slot  Type Question
ORIGIN city  "What city are you leaving from?
DEST   city  "Where are you going?
DEP DATE date "What day would you like to leave?
DEP TIME time "What time would you like to leave?
AIRLINE line  "What is your preferred airline?



Two basic architectures

The GUS architecture
• Sometimes just called "frame-based" architecture
• Over 40 years old, but still used in most industrial task-based 

dialogue agents
• Bobrow, Daniel G., Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry Thompson, and Terry 

Winograd. 1977. "GUS, a frame-driven dialog system." Artificial Intelligence 8, 2:155-173.

The dialogue-state architecture
• Extension of GUS
• More common in research systems
• Some aspects making their way into industrial systems
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values. Together this set of frames is sometimes called a domain ontology.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
want to go ?

Client: I want to go to San Diego on May 28
GUS: What time do you want to leave?
Client: I must be in San Diego before 10 am
GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client: What is the next flight ?
GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
Client: I’ll take the first one
GUS: In what name should I make a reservation, please?
Client: Dan Bobrow
GUS: I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28

from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.
GUS: What date do you want to return on ?
Client: On Friday in the evening.
GUS: Would you like the flight that leaves at 7.45 pm ?
Client: That’s fine.
GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you
for calling. Goodbye

Figure 24.9 The travel domain: A transcript of an actual dialogue with the GUS system of
Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.

The set of slots in a task-based dialogue frame specifies what the system needs
to know, and the filler of each slot is constrained to values of a particular semantic
type. In the travel domain, for example, a slot might be of type city (hence take on
values like San Francisco, or Hong Kong) or of type date, airline, or time.

Slot Type Question Template
ORIGIN CITY city “From what city are you leaving?”
DESTINATION CITY city “Where are you going?”
DEPARTURE TIME time “When would you like to leave?”
DEPARTURE DATE date “What day would you like to leave?”
ARRIVAL TIME time “When do you want to arrive?”
ARRIVAL DATE date “What day would you like to arrive?”
Figure 24.10 A frame in a frame-based dialogue system, showing the type of each slot and
a question used to fill the slot.

Types in GUS, as in modern frame-based dialogue agents, have hierarchical
structure; for example the date type in GUS is itself a frame with slots with types
like integer or members of sets of weekday names:

DATE
MONTH:NAME YEAR:INTEGER DAY:(BOUNDED-INTEGER 1 31)
WEEKDAY:(MEMBER (Sunday Monday Tuesday Wednesday

Thursday Friday Saturday))

24.3.1 Control structure for frame-based dialogue
The control architecture for frame-based dialogue systems, used in various forms
in modern systems like Apple’s Siri, Amazon’s Alexa, and the Google Assistant, is
designed around the frame. The system’s goal is to fill the slots in the frame with the



Control structure for GUS frame architecture

System asks questions of user, filling any slots that user 
specifies
User might fill many slots at a time:
• I want a flight from San Francisco to Denver one way leaving after 

five p.m. on Tuesday. 
When frame is filled, do database query



GUS slots have condition-action rules attached

Some rules attached to the DESTINATION slot for the 
plane booking frame
1.  Once the user has specified the destination
• Enter that city as the default StayLocation for the hotel 

booking frame. 

2.  Once the user has specified DESTINATION DAY for a 
short trip 
• Automatically copy as ARRIVAL DAY. 



GUS systems have multiple frames

Frames like:
• Car or hotel reservations
• General route information
• Which airlines fly from Boston to San Francisco?, 

• Information about airfare practices 
• Do I have to stay a specific number of days to get a decent airfare?). 

Frame detection:
• System must detect which slot of which frame user is filling
• And switch dialogue control to that frame. 



GUS: Natural Language Understanding for filling 
dialog slots

1. Domain classification
Asking weather? Booking a flight? Programming alarm 
clock?

2. Intent Determination
Find a Movie, Show Flight, Remove Calendar Appt

3. Slot Filling
Extract the actual slots and fillers



Natural Language Understanding for filling slots

Show me morning flights from 
Boston to SF on Tuesday.
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29.2.2 Natural language understanding for filling slots

The goal of the natural language understanding component is to extract three things
from the user’s utterance. The first task is domain classification: is this user fordomain

classification

example talking about airlines, programming an alarm clocks, or dealing with their
calendar? Of course this 1-of-n classification tasks is unnecessary for single-domain
systems that are focused on, say, only calendar management, but multi-domain di-
alog systems are the modern standard. The second is user intent determination:intent

determination

what general task or goal is the user trying to accomplish? For example the task
could be to Find a Movie, or Show a Flight, or Remove a Calendar Appointment.
Finally, we need to do slot filling: extract the particular slots and fillers that the userslot filling

intends the system to understand from their utterance with respect to their intent.
From a user utterance like this one:

Show me morning flights from Boston to San Francisco on Tuesday

a system might want to build a representation like:

DOMAIN: AIR-TRAVEL
INTENT: SHOW-FLIGHTS
ORIGIN-CITY: Boston
ORIGIN-DATE: Tuesday
ORIGIN-TIME: morning
DEST-CITY: San Francisco

while an utterance like

Wake me tomorrow at 6

should give an intent like this:

DOMAIN: ALARM-CLOCK
INTENT: SET-ALARM
TIME: 2017-07-01 0600-0800

The task of slot-filling, and the simpler tasks of domain and intent classification,
are special cases of the task of semantic parsing discussed in Chapter ??. Dialogue
agents can thus extract slots, domains, and intents from user utterances by applying
any of the semantic parsing approaches discussed in that chapter.

The method used in the original GUS system, and still quite common in indus-
trial applications, is to use hand-written rules, often as part of the condition-action
rules attached to slots or concepts.

For example we might just define a regular expression consisting of a set strings
that map to the SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

We can build more complex automata that instantiate sets of rules like those
discussed in Chapter 20, for example extracting a slot filler by turning a string
like Monday at 2pm into an object of type date with parameters (DAY, MONTH,
YEAR, HOURS, MINUTES).

Rule-based systems can be even implemented with full grammars. Research sys-
tems like the Phoenix system (Ward and Issar, 1994) consists of large hand-designed
semantic grammars with thousands of rules. A semantic grammar is a context-freesemantic

grammar

grammar in which the left-hand side of each rule corresponds to the semantic entities
being expressed (i.e., the slot names) as in the following fragment:



Natural Language Understanding for filling slots

Wake me tomorrow at six.
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being expressed (i.e., the slot names) as in the following fragment:



How to fill slots?
(1) Rule-based Slot-filling

Write regular expressions or grammar rules

Wake me (up) | set (the|an) alarm | get 
me up

Do text normalization



Generating responses: template-based generation

A template is a pre-built response string

Templates can be fixed:
"Hello, how can I help you?"

Or have variables:
"What time do you want to leave CITY-ORIG?"
"Will you return to CITY-ORIG from CITY-DEST?"



Summary: simple frame-based architecture

Like many rule-based approaches
• Positives:
• High precision
• Can provide coverage if the domain is narrow

• Negatives:
• Can be expensive and slow to create rules
• Can suffer from recall problems
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Chatbots and 
Dialogue 
Systems

The Dialogue-State 
Architecture



Dialogue-State or Belief-State Architecture

A more sophisticated version of the frame-based 
architecture
•  Has dialogue acts, more ML, better generation
The basis for modern research systems
Slowly making its way into industrial systems
• Some aspects (ML for slot-understanding) already 

widely used industrially



DIALOG STATE TRACKING OVERVIEW

LEAVING FROM DOWNTOWN

LEAVING AT ONE P M

ARRIVING AT ONE P M

0.6

0.2

0.1

{ from: downtown }

{ depart-time: 1300 }

{ arrive-time: 1300 }

0.5

0.3

0.1

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.10

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.15

from:        downtown
to:          airport
depart-time: --
confirmed:   no
score:       0.65

Automatic Speech 
Recognition (ASR)

Spoken Language 
Understanding (SLU)

Dialog State 
Tracker (DST)

Dialog Policy

act:  confirm
from: downtown

FROM DOWNTOWN, 
IS THAT RIGHT?

Natural Language 
Generation (NLG)Text to Speech (TTS)

Figure 1: Principal components of a spoken dialog system.

The topic of this paper is the dialog state tracker (DST). The DST takes as input all of the dialog
history so far, and outputs its estimate of the current dialog state – for example, in a restaurant
information system, the dialog state might indicate the user’s preferred price range and cuisine,
what information they are seeking such as the phone number of a restaurant, and which concepts
have been stated vs. confirmed. Dialog state tracking is difficult because ASR and SLU errors are
common, and can cause the system to misunderstand the user. At the same time, state tracking is
crucial because the dialog policy relies on the estimated dialog state to choose actions – for example,
which restaurants to suggest.

In the literature, numerous methods for dialog state tracking have been proposed. These are
covered in detail in Section 3; illustrative examples include hand-crafted rules (Larsson and Traum,
2000; Bohus and Rudnicky, 2003), heuristic scores (Higashinaka et al., 2003), Bayesian networks
(Paek and Horvitz, 2000; Williams and Young, 2007), and discriminative models (Bohus and Rud-
nicky, 2006). Techniques have been fielded which scale to realistically sized dialog problems and
operate in real time (Young et al., 2010; Thomson and Young, 2010; Williams, 2010; Mehta et al.,
2010). In end-to-end dialog systems, dialog state tracking has been shown to improve overall system
performance (Young et al., 2010; Thomson and Young, 2010).

Despite this progress, direct comparisons between methods have not been possible because past
studies use different domains and different system components for ASR, SLU, dialog policy, etc.
Moreover, there has not been a standard task or methodology for evaluating dialog state tracking.
Together these issues have limited progress in this research area.

The Dialog State Tracking Challenge (DSTC) series has provided a first common testbed and
evaluation suite for dialog state tracking. Three instances of the DSTC have been run over a three

5

The Dialogue-State Architecture
Williams, Jason D., Antoine Raux, and Matthew Henderson. "The dialog state 
tracking challenge series: A review." Dialogue & Discourse 7, no. 3 (2016): 4-33.



Components in a dialogue-state architecture

NLU: extracts slot fillers from the user’s utterance using machine 
learning
Dialogue state tracker: maintains the current state of the dialogue 
(user’s most recent dialogue act, set of slot-filler constraints from user
Dialogue policy: decides what the system should do or say next
• GUS policy: ask questions until the frame was full then report back
• More sophisticated: know when to answer questions, when to ask 

a clarification question, etc.
NLG: produce more natural, less templated utterances



Dialogue Acts

Combine the ideas of speech acts and grounding into a single 
representation
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Tag Sys User Description
HELLO(a = x,b = y, ...) X X Open a dialogue and give info a = x,b = y, ...
INFORM(a = x,b = y, ...) X X Give info a = x,b = y, ...
REQUEST(a,b = x, ...) X X Request value for a given b = x, ...
REQALTS(a = x, ...) c X Request alternative with a = x, ...
CONFIRM(a = x,b = y, ...) X X Explicitly confirm a = x,b = y, ...
CONFREQ(a = x, ...,d) X c Implicitly confirm a = x, ... and request value of d
SELECT(a = x,a = y) X c Implicitly confirm a = x, ... and request value of d
AFFIRM(a = x,b = y, ...) X X Affirm and give further info a = x,b = y, ...
NEGATE(a = x) c X Negate and give corrected value a = x
DENY(a = x) c X Deny that a = x
BYE() X X Close a dialogue

Figure 24.13 Dialogue acts used by the HIS restaurant recommendation system of Young
et al. (2010). The Sys and User columns indicate which acts are valid as system outputs and
user inputs, respectively.

Utterance Dialogue act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)
S: You are looking for a restaurant. What

type of food do you like?
confreq(type = restaurant, food)

U: I’d like an Italian somewhere near the
museum.

inform(food = Italian, near=museum)

S: Roma is a nice Italian restaurant near
the museum.

inform(name = "Roma", type = restaurant,
food = Italian, near = museum)

U: Is it reasonably priced? confirm(pricerange = moderate)
S: Yes, Roma is in the moderate price

range.
affirm(name = "Roma", pricerange =
moderate)

U: What is the phone number? request(phone)
S: The number of Roma is 385456. inform(name = "Roma", phone = "385456")
U: Ok, thank you goodbye. bye()

Figure 24.14 A sample dialogue from the HIS System of Young et al. (2010) using the dialogue acts in
Fig. 24.13.

24.4.2 Slot Filling
The task of slot-filling, and the simpler tasks of domain and intent classification, are
special cases of the task of supervised semantic parsing discussed in Chapter 16, in
which we have a training set that associates each sentence with the correct set of
slots, domain, and intent.

A simple method is to train a a sequence model to map from input words repre-
sentation to slot fillers, domain and intent. For example given the sentence:
I want to fly to San Francisco on Monday afternoon please

we compute a sentence representation, for example by passing the sentence through
a contextual embedding network like BERT. The resulting sentence representation
can be passed through a feedforward layer and then a simple 1-of-N classifier to
determine that the domain is AIRLINE and and the intent is SHOWFLIGHT.

Our training data is sentences paired with sequences of BIO labels:
O O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O
I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 8 that in BIO tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.

Young et al., 2010:



Dialogue Acts
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24.4.2 Slot Filling
The task of slot-filling, and the simpler tasks of domain and intent classification, are
special cases of the task of supervised semantic parsing discussed in Chapter 16, in
which we have a training set that associates each sentence with the correct set of
slots, domain, and intent.

A simple method is to train a a sequence model to map from input words repre-
sentation to slot fillers, domain and intent. For example given the sentence:
I want to fly to San Francisco on Monday afternoon please

we compute a sentence representation, for example by passing the sentence through
a contextual embedding network like BERT. The resulting sentence representation
can be passed through a feedforward layer and then a simple 1-of-N classifier to
determine that the domain is AIRLINE and and the intent is SHOWFLIGHT.

Our training data is sentences paired with sequences of BIO labels:
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I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 8 that in BIO tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.

Young et al., 2010:



Slot filling: Machine learning

Machine learning classifiers to map words to semantic frame-fillers
Given a set of labeled sentences

Input: "I want to fly to San Francisco on Monday please"
Output: Destination: SF
  Depart-time: Monday

Build a classifier to map from one to the other
Requirements: Lots of labeled data



Slot filling as sequence labeling: BIO tagging

The BIO tagging paradigm
Idea: Train a classifier to label each input word with a 
tag that tells us what slot (if any) it fills

We create a B and I tag for each slot-type
And convert the training data to this format
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I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 8 that in BIO tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.



Slot filling using contextual embeddings
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Fig. 24.15 shows the architecture. The input is a series of words w1...wn, which
is passed through a contextual embedding model to get contextual word representa-
tions. This is followed by a feedforward layer and a softmax at each token position
over possible BIO tags, with the output a series of BIO tags s1...sn. We can also
combine the domain-classification and intent-extraction tasks with slot-filling sim-
ply by adding a domain concatenated with an intent as the desired output for the
final EOS token.

San Francisco on Monday

Encodings

Classifier
+softmax

B-DES I-DES O B-DTIME

…

d+i

<EOS>

Encoder (BERT)

Figure 24.15 A simple architecture for slot filling, mapping the words in the input through
contextual embeddings like BERT to an output classifier layer (which can be linear or some-
thing more complex), followed by softmax to generate a series of BIO tags (and including a
final state consisting of a domain concatenated with an intent).

Once the sequence labeler has tagged the user utterance, a filler string can be
extracted for each slot from the tags (e.g., “San Francisco”), and these word strings
can then be normalized to the correct form in the ontology (perhaps the airport code
‘SFO’). This normalization can take place by using homonym dictionaries (specify-
ing, for example, that SF, SFO, and San Francisco are the same place).

In industrial contexts, machine learning-based systems for slot-filling are of-
ten bootstrapped from GUS-style rule-based systems in a semi-supervised learning
manner. A rule-based system is first built for the domain, and a test set is carefully
labeled. As new user utterances come in, they are paired with the labeling provided
by the rule-based system to create training tuples. A classifier can then be trained
on these tuples, using the test set to test the performance of the classifier against
the rule-based system. Some heuristics can be used to eliminate errorful training
tuples, with the goal of increasing precision. As sufficient training samples become
available the resulting classifier can often outperform the original rule-based system
(Suendermann et al., 2009), although rule-based systems may still remain higher-
precision for dealing with complex cases like negation.

24.4.3 Dialogue State Tracking

The job of the dialogue-state tracker is to determine both the current state of the
frame (the fillers of each slot), as well as the user’s most recent dialogue act. The
dialogue-state thus includes more than just the slot-fillers expressed in the current
sentence; it includes the entire state of the frame at this point, summarizing all of
the user’s constraints. The following example from Mrkšić et al. (2017) shows the
required output of the dialogue state tracker after each turn:

Can do domain and intent too: e.g.,  generate the label  
"AIRLINE_TRAVEL + SEARCH_FLIGHT"



Once we have the BIO tag of the sentence

• We can extract the filler string for each slot
• And then normalize it to the correct form in the ontology
• Like "SFO" for San Francisco
• Using homonym dictionaries (SF=SFO=San Francisco)
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INFORM(a = x,b = y, ...) X X Give info a = x,b = y, ...
REQUEST(a,b = x, ...) X X Request value for a given b = x, ...
REQALTS(a = x, ...) c X Request alternative with a = x, ...
CONFIRM(a = x,b = y, ...) X X Explicitly confirm a = x,b = y, ...
CONFREQ(a = x, ...,d) X c Implicitly confirm a = x, ... and request value of d
SELECT(a = x,a = y) X c Implicitly confirm a = x, ... and request value of d
AFFIRM(a = x,b = y, ...) X X Affirm and give further info a = x,b = y, ...
NEGATE(a = x) c X Negate and give corrected value a = x
DENY(a = x) c X Deny that a = x
BYE() X X Close a dialogue

Figure 24.13 Dialogue acts used by the HIS restaurant recommendation system of Young
et al. (2010). The Sys and User columns indicate which acts are valid as system outputs and
user inputs, respectively.

Utterance Dialogue act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)
S: You are looking for a restaurant. What

type of food do you like?
confreq(type = restaurant, food)

U: I’d like an Italian somewhere near the
museum.

inform(food = Italian, near=museum)

S: Roma is a nice Italian restaurant near
the museum.

inform(name = "Roma", type = restaurant,
food = Italian, near = museum)

U: Is it reasonably priced? confirm(pricerange = moderate)
S: Yes, Roma is in the moderate price

range.
affirm(name = "Roma", pricerange =
moderate)

U: What is the phone number? request(phone)
S: The number of Roma is 385456. inform(name = "Roma", phone = "385456")
U: Ok, thank you goodbye. bye()

Figure 24.14 A sample dialogue from the HIS System of Young et al. (2010) using the dialogue acts in
Fig. 24.13.

24.4.2 Slot Filling
The task of slot-filling, and the simpler tasks of domain and intent classification, are
special cases of the task of supervised semantic parsing discussed in Chapter 16, in
which we have a training set that associates each sentence with the correct set of
slots, domain, and intent.

A simple method is to train a a sequence model to map from input words repre-
sentation to slot fillers, domain and intent. For example given the sentence:
I want to fly to San Francisco on Monday afternoon please

we compute a sentence representation, for example by passing the sentence through
a contextual embedding network like BERT. The resulting sentence representation
can be passed through a feedforward layer and then a simple 1-of-N classifier to
determine that the domain is AIRLINE and and the intent is SHOWFLIGHT.

Our training data is sentences paired with sequences of BIO labels:
O O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O
I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 8 that in BIO tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.



The task of dialogue state tracking
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User: I’m looking for a cheaper restaurant
inform(price=cheap)

System: Sure. What kind - and where?
User: Thai food, somewhere downtown

inform(price=cheap, food=Thai, area=centre)
System: The House serves cheap Thai food
User: Where is it?

inform(price=cheap, food=Thai, area=centre); request(address)
System: The House is at 106 Regent Street

Since dialogue acts place some constraints on the slots and values, the tasks of
dialogue-act detection and slot-filling are often performed jointly. Consider the task
of determining that

I’d like Cantonese food near the Mission District

has the structure

inform(food=cantonese,area=mission).

Dialogue act interpretation—in this example choosing inform from the set of
dialogue acts for this task—is done by supervised classification trained on hand-
labeled dialog acts, predicting the dialogue act tag based on embeddings represent-
ing the current input sentence and the prior dialogue acts.

The simplest dialogue state tracker might just take the output of a slot-filling
sequence-model (Section 24.4.2) after each sentence. Alternatively, a more complex
model can make use of the reading-comprehension architectures from Chapter 23.
For example the model of Gao et al. (2019) trains a classifier for each slot to decide
whether its value is being changed in the current sentence or should be carried over
from the previous sentences. If the slot value is being changed, a span-prediction
model is used to predict the start and end of the span with the slot filler.

A special case: detecting correction acts

Some dialogue acts are important because of their implications for dialogue control.
If a dialogue system misrecognizes or misunderstands an utterance, the user will
generally correct the error by repeating or reformulating the utterance. Detecting
these user correction acts is therefore quite important. Ironically, it turns out thatuser correction

acts
corrections are actually harder to recognize than normal sentences! In fact, correc-
tions in one early dialogue system (the TOOT system) had double the ASR word
error rate of non-corrections (Swerts et al., 2000)! One reason for this is that speak-
ers sometimes use a specific prosodic style for corrections called hyperarticulation,hyperarticula-

tion
in which the utterance contains exaggerated energy, duration, or F0 contours, such
as I said BAL-TI-MORE, not Boston (Wade et al. 1992, Levow 1998, Hirschberg
et al. 2001). Even when they are not hyperarticulating, users who are frustrated
seem to speak in a way that is harder for speech recognizers (Goldberg et al., 2003).

What are the characteristics of these corrections? User corrections tend to be
either exact repetitions or repetitions with one or more words omitted, although they
may also be paraphrases of the original utterance. (Swerts et al., 2000). Detect-
ing these reformulations or correction acts can be part of the general dialogue act
detection classifier. Alternatively, because the cues to these acts tend to appear in
different ways than for simple acts (like INFORM or request), we can make use of
features orthogonal to simple contextual embedding features; some typical features
are shown below (Levow 1998, Litman et al. 1999, Hirschberg et al. 2001, Bulyko
et al. 2005, Awadallah et al. 2015):

Example from Mrkšić, N., O Séaghdha, D., Wen, T.-H., Thomson, B., and 
Young, S. (2017). Neural belief tracker: Data-driven dialogue state tracking. ACL. 



Dialogue state tracking

I'd like Cantonese food near the Mission district.
à

inform(food=cantonese, area=mission). 
Dialogue act interpretation algorithm: 
• 1-of-N supervised classification to choose inform
• Based on encodings of current sentence + prior dialogue acts
Simple dialogue state tracker:
• Run a slot-filler after each sentence 



An special case of dialogue act detection: 
Detecting Correction Acts

If system misrecognizes an utterance
User might make a correction

◦ Repeat themselves
◦ Rephrasing
◦ Saying “no” to a confirmation question



Corrections are harder to recognize!

◦ From speech, corrections are misrecognized twice as often (in 
terms of word error rate) as non-corrections! (Swerts et al 2000)

◦ Hyperarticulation (exaggerated prosody) is a large factor: 
◦ Shriberg, E., Wade, E., Price, P., 1992. Human-machine problem solving using spoken language 

systems (SLS): Factors affect-ng performance and user satisfaction. DARPA Speech and Natural 
Language Workshop.

◦ "I said BAL-TI-MORE, not Boston"



Features for detecting corrections in spoken dialogue
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features examples
lexical words like “no”, “correction”, “I don’t”, swear words, utterance length
semantic similarity (word overlap or embedding dot product) between the candidate

correction act and the user’s prior utterance
phonetic phonetic overlap between the candidate correction act and the user’s prior ut-

terance (i.e. “WhatsApp” may be incorrectly recognized as “What’s up”)
prosodic hyperarticulation, increases in F0 range, pause duration, and word duration,

generally normalized by the values for previous sentences
ASR ASR confidence, language model probability

24.4.4 Dialogue Policy
The goal of the dialogue policy is to decide what action the system should take next,dialogue policy

that is, what dialogue act to generate.
More formally, at turn i in the conversation we want to predict which action Ai

to take, based on the entire dialogue state. The state could mean the entire sequence
of dialogue acts from the system (A) and from the user (U), in which case the task
would be to compute:

Âi = argmax
Ai2A

P(Ai|(A1,U1, ...,Ai�1,Ui�1) (24.7)

We can simplify this by maintaining as the dialogue state mainly just the set of
slot-fillers that the user has expressed, collapsing across the many different conver-
sational paths that could lead to the same set of filled slots.

Such a policy might then just condition on the current dialogue state as repre-
sented just by the current state of the frame Framei (which slots are filled and with
what) and the last turn by the system and user:

Âi = argmax
Ai2A

P(Ai|Framei�1,Ai�1,Ui�1) (24.8)

These probabilities can be estimated by a neural classifier using neural representa-
tions of the slot fillers (for example as spans) and the utterances (for example as
sentence embeddings computed over contextual embeddings)

More sophisticated models train the policy via reinforcement learning. To de-
cide which action to take, a reinforcement learning system gets a reward at the end
of the dialogue, and uses that reward to train a policy to take actions. For example in
the movie-recommendation dialogue system of Fazel-Zarandi et al. (2017), the ac-
tion space has only three actions: EXECUTE, CONFIRM, and ELICIT. The EXECUTE
sends a query to the database and answers the user’s question, CONFIRM clarifies
the intent or slot with the users (e.g., “Do you want movies directed by Christopher
Nolan?”) while ELICIT asks the user for missing information (e.g., “Which movie
are you talking about?”). The system gets a large positive reward if the dialogue sys-
tem terminates with the correct slot representation at the end, a large negative reward
if the slots are wrong, and a small negative reward for confirmation and elicitation
questions to keep the system from re-confirming everything.

Policy Example: Confirmation and Rejection

Modern dialogue systems often make mistakes. It is therefore important for dialogue
systems to make sure that they have achieved the correct interpretation of the user’s
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Dialogue Policy

At turn i predict action Ai to take, given entire history:

Simplify by just conditioning on the current dialogue state 
(filled frame slots) and the last turn and turn by system 
and user:
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Policy example: Confirmation and Rejection

Dialogue systems make errors
So they to make sure they have understood user
Two important mechanisms:
• confirming understandings with the user 
• rejecting utterances that the system is likely to 

have misunderstood. 



Explicit confirmation strategy
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input. This is generally done by two methods: confirming understandings with the
user and rejecting utterances that the system is likely to have misunderstood.

As we saw in the prior section, most systems introduce particular strategies and
actions related to confirmation and rejection. When using the explicit confirmationexplicit

confirmation
strategy, a system asks the user a direct question to confirm the system’s under-
standing, like the two examples below in which the system asks a (boldface) yes-no
confirmation question:

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

When using the implicit confirmation strategy, a system instead can demon-implicit
confirmation

strate its understanding as a grounding strategy, for example repeating back the
system’s understanding as part of asking the next question, as in the two examples
below:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit con-
firmation makes it easier for users to correct the system’s misrecognitions since a
user can just answer “no” to the confirmation question. But explicit confirmation is
awkward and increases the length of the conversation (Danieli and Gerbino 1995,
Walker et al. 1998). The explicit confirmation dialogue fragments above sound non-
natural and definitely non-human; implicit confirmation is much more conversation-
ally natural.

Confirmation is just one kind of conversational action by which a system can
express lack of understanding. Another option is rejection, in which a system givesrejection

the user a prompt like I’m sorry, I didn’t understand that.
Sometimes utterances are rejected multiple times. This might mean that the user

is using language that the system is unable to follow. Thus, when an utterance is
rejected, systems often follow a strategy of progressive prompting or escalatingprogressive

prompting
detail (Yankelovich et al. 1995, Weinschenk and Barker 2000), as in this example
from Cohen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like

to leave.
Caller: I wanna go on October fifteenth.



Implicit confirmation strategy
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Confirmation strategy  tradeoffs

Explicit confirmation makes it easier for users to correct the 
system’s misrecognitions since a user can just answer “no” 
to the confirmation question. 
But explicit confirmation is also awkward and increases the 
length of the conversation (Danieli and Gerbino 1995, 
Walker et al. 1998). 



Rejection

I’m sorry, I didn’t understand that. 



Using confidence to decide whether to confirm:

ASR  or NLU systems can assign a confidence value, indicating 
how likely they are that they understood the user. 
• Acoustic log-likelihood of the utterance
• Prosodic features
• Ratio of score  of best to second-best interpretation
Systems could use set confidence thresholds:
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In this example, instead of just repeating “When would you like to leave?”, the
rejection prompt gives the caller more guidance about how to formulate an utter-
ance the system will understand. These you-can-say help messages are important in
helping improve systems’ understanding performance (Bohus and Rudnicky, 2005).
If the caller’s utterance gets rejected yet again, the prompt can reflect this (“I still
didn’t get that”), and give the caller even more guidance.

An alternative strategy for error handling is rapid reprompting, in which therapid
reprompting

system rejects an utterance just by saying “I’m sorry?” or “What was that?” Only
if the caller’s utterance is rejected a second time does the system start applying
progressive prompting. Cohen et al. (2004) summarize experiments showing that
users greatly prefer rapid reprompting as a first-level error prompt.

It is common to use rich features other than just the dialogue state representa-
tion to make policy decisions. For example, the confidence that the ASR system
assigns to an utterance can be used by explicitly confirming low-confidence sen-
tences. Condience is a metric that the speech recognizer can assign to its transcrip-
tion of a sentence to indicate how confident it is in that transcription. Confidence is
often computed from the acoustic log-likelihood of the utterance (greater probabil-
ity means higher confidence), but prosodic features can also be used in confidence
prediction. For example, utterances with large F0 excursions or longer durations,
or those preceded by longer pauses, are likely to be misrecognized (Litman et al.,
2000).

Another common feature in confirmation is the cost of making an error. For ex-
ample, explicit confirmation is common before a flight is actually booked or money
in an account is moved. Systems might have a four-tiered level of confidence with
three thresholds a , b , and g:

< a low confidence reject
� a above the threshold confirm explicitly
� b high confidence confirm implictly
� g very high confidence don’t confirm at all

24.4.5 Natural language generation in the dialogue-state model
Finally, once the policy has decided what speech act to generate, the natural language
generation component needs to generate the text of a response to the user.

Once a dialogue act has been decided, we need to generate the text of the re-
sponse to the user. The task of natural language generation (NLG) in the information-
state architecture is often modeled in two stages, content planning (what to say),content

planning
and sentence realization (how to say it).sentence

realization
Here we’ll assume content planning has been done by the dialogue policy, which

has chosen the dialogue act to generate, and chosen some attributes (slots and values)
that the planner wants to say to the user (either to give the user the answer, or as part
of a confirmation strategy).

Fig. 24.16 shows some sample input/outputs for the sentence realization phase.
In the first example, the content planner has chosen the dialogue act RECOMMEND
and some particular slots (name, neighborhood, cuisine) and their fillers. The goal
of the sentence realizer is to generate a sentence like lines 1 or 2 shown in the figure,
by training on many such examples of representation/sentence pairs from a large
corpus of labeled dialogues.

Training data is hard to come by; we are unlikely to see every possible restaurant
with every possible attribute in many possible differently worded sentences. There-



Natural Language Generation

NLG  in information-state architecture modeled in two 
stages:
• content planning (what to say)
• sentence realization (how to say it). 

We'll focus on sentence realization here.



Sentence Realization

Assume content planning has been done by the dialogue policy
• Chosen the dialogue act to generate 
• Chosen some attributes (slots and values) that the planner 

wants to say to the user 
• Either to give the user the answer, or as part of a confirmation 

strategy) 



2 samples of Input and Output for Sentence Realizer
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recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.
recommend(restaurant name= Loch Fyne, neighborhood = city
centre, cuisine = seafood)

3 Loch Fyne is in the City Center and serves seafood food.
4 There is a seafood restaurant in the City Centre called Loch Fyne.

Figure 24.16 Two examples of inputs to the sentence realization phase of NLG, showing
the dialogue act and attributes prespecified by the content planner. Line 1-2 and 3-4 show dif-
ferent possible output sentences to be generated by the sentence realizer. From the restaurant
recommendation system of Nayak et al. (2017).

fore it is common in sentence realization to increase the generality of the training
examples by delexicalization. Delexicalization is the process of replacing specificdelexicalization
words in the training set that represent slot values with a generic placeholder to-
ken representing the slot. Fig. 24.17 shows the result of delexicalizing the training
sentences in Fig. 24.16.

recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 restaurant name is in neighborhood and serves cuisine food.
2 There is a cuisine restaurant in neighborhood called restaurant name.

Figure 24.17 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter
alia), trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski
et al., 2018). The input to the encoder is a sequence of tokens xt that represent
the dialogue act and its arguments. Thus the dialogue act RECOMMEND and the
attribute/value pairs service:decent, cuisine:null might be represented as a flat se-
quence of tokens (Nayak et al., 2017), each mapped to a learned embedding wt , as
shown in Fig. 24.18.

decentservice:RECOMMEND cuisine: null

[name] has decent service

ENCODER

DECODER

Figure 24.18 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, and the decoder out-
puts the following delexicalized English sentence:

restaurant name has decent service

We can then use the input frame from the content planner to relexicalize (fill in therelexicalize
exact restaurant or neighborhood or cuisine) resulting in:

Au Midi has decent service
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Sentence Realization: mapping from frames to 
delexicalized sentences

Encoder-decoder models:

Output:
        restaurant_name has decent service

Relexicalize to: 
        Au Midi has decent service 
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Chatbots: systems that carry on extended conversations with 
properties characteristic of informal human-human interaction

Background:
• Early chatbots like ELIZA and PARRY were designed to test 

psychological theories
• For the next many decades, chatbots were mainly for 

entertainment

Modern chatbots: large language models trained to do tasks 
within a conversation interface:
• Answering questions
• Writing, summarizing , or editing text or code
• Carrying on discussions about any topic



Pretraining chatbots

Transformer
Blocks

LM head

got promoted ! <s>

got promoted ! <s>Next word Congrats
LM Loss …

LM head LM head LM head LM head LM head

I Congrats !

…

LM head LM head

!
-log y!-log yCongrats-log y<s>-log y!-log ypromoted-log ygot

… … … … … …

• Chatbots are first pretrained in the same way as any causal language model
• The model predicts each word given prior words, 
• The loss is the standard language modeling loss 



What is the training data?

• Large language models are mainly trained on text scraped from the 
web, augmented by more carefully curated data. 

• Colossal Clean Crawled Corpus, also called C4 (Raffel et al. 2020)
• 156 billion tokens of English 
• filtered: deduplicated, removing non-natural language like code, sentences 

with offensive words from a blocklist
• Mainly seems to be patent text documents, Wikipedia, and news sites 

(Dodge et al., 2021)

• For chatbots: Augmented with dialogues and pseudo-dialogues
• EMPATHETICDIALOGUES 25K crowdsourced conversations (Rashkin et al., 2019) 
• SaFeRDialogues 8K conversations (Ung et al., 2022) 
• Filtered pseudo-conversations converted from Reddit and Twitter and 

Weibo (微博)



Fine-tuning for Quality and Safety

After pretraining, we add dialogue tasks to the instruction 
fine tuning (IFT) stage to improve:
• Quality: producing responses that are sensible and 

interesting. 
• Safety: not suggesting harmful actions
• financial fraud 
• medical harm 
• inciting hatred
• abusing the user or other people 



Fine-tuning for Quality: Add positive data

• Give human speakers an initial prompt and instructions to 
have high-quality, safe dialogues

• They interact with an initial system, and their dialogue 
and responses are used in instruction fine-tuning for a 
next system

• By combining dialogue and other tasks, the system learns 
to:
• answer questions, follow other instructions, 
• and also carry on high-quality, safe dialogues 

• In a single multi-task learning format 



Fine-tuning for Safety: Add safety data

Create specific safe answers to instructions and add this safety data in 
Instruction Fine-Tuning step. 

Language Model

video games, hikes,...

Language Model

Unsafe Model
(high harmfulness)

Safer Model
(lower harmfulness)

How can I kill a Python process?

I cannot provide you with instructions on 
how to kill a Python process. It is not 
ethical or legal to do so.

But with too much safety data… 
models exaggerate safety

A little safety goes a long way…

Answer

Instruction

Answer

List fun things to do 

Instruction

I am sorry, I cannot tell you how.

Answer

How do I kill someone?

Instruction

Figure 1: Adding safety instructions makes models safer, but too much safety can actually make
models exaggerate safety.

Taori et al., 2023), these safety concerns have become especially heightened in both academic and
public circles as their training and use have become widely available to the general public. Therefore,
there is an even more pressing need and urgency to study and address these safety concerns now,
since adversarial and malicious users can use these technologies to directly create harmful content,
spread fake news and acquire information for illicit activities.

In this work, we investigate potential safety issues associated with recent open-source instruction-
tuned models, focusing particularly on the popular LLaMA (Touvron et al., 2023) and Falcon (Penedo
et al., 2023) models. We investigate strategies for improving the safety of these models and discuss
lessons learned. We summarize the key lessons learned and our main contributions as follows:

1. There is a tension between making LLMs better at following instructions and making them
more safe. We show that popular open-source instruction-tuned LLMs have clear safety
vulnerabilities (e.g., answering How can I commit a crime).

2. A little safety demonstration goes a long way. Incorporating a small number of safety-related
examples (a few hundred) during instruction-tuning can substantially reduce certain safety
risks without negatively affecting model performance and capabilities, as measured by
standard language benchmarks. Although the models we develop are not entirely safe, they
substantially increase the difficulty of misuse and abuse at inference time.

3. Too many safety examples have undesirable side effects on LLM behavior. We demonstrate
that an excess of safety demonstration can cause models to become overly cautious, leading
them to refuse even innocuous and absurd prompts if they appear similar to unsafe prompts
on the surface (e.g. How can I kill weeds?). We call this behavior exaggerated safety
(Röttger et al., 2023).

2

Add
safe
responses
to training

IFT

IFT

Bianchi et al (2024)



Classifier Filters for Quality and Safety

• Collect dialogues and label each turn for safety and quality
• human labelers give binary labels to each turn of each dialogue

• Now train a language model classifier on this data to assign 
labels:

• This classifier can be used as a filter on the dialogue 
systems, run on each turn to filter unsafe or low quality 
generations.
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In practice, dialogue systems require additional customization beyond just pre-
training on dialogue data. In the next few sections we’ll discuss various stages of
fine-tuning that can be used for this customization.

15.4.2 Fine Tuning for Quality and Safety
It is a common practice for dialogue systems to use further labeled data for fine-
tuning. One function of this fine-tuning step is to improve the quality of the dialogue,
training the system to produce responses that are sensible and interesting. Another
function might be to improve safety, keeping a dialogue system from suggesting
harmful actions (like financial fraud, medical harm, inciting hatred, or abusing the
user or other people).

In the simplest method for improving quality and safety, speakers of the lan-
guage are given an initial prompt and instructions to have high-quality, safe dia-
logues. They then interact with an initial dialogue system and their responses are
used to finetune the model, usually as part of the instruct tuning step we introduced
in Chapter 12. Thus a dialogue system learns to answer questions, follow other
instructions, and also carry on high-quality, safe dialogues, in a single multi-task
learning format.

While fine-tuning on positive examples is helpful, it is generally insufficient and
so it is common to add more discriminative data that specifically downweights low-
quality or harmful responses. The simplest paradigm for this is to train a model to
predict turn-level safety and quality values, by training on human-labeled ratings.
Such ratings might be collected by first having speakers of the language carry on
dialogues with a system, and then a second set of people act as labelers to label
every system turn for its quality and safety, resulting in a binary label for quality and
safety for each turn.

Once a dataset has been created with these labels, a language model can be used
in a classification task to label the quality and safety of a turn. For example in the
Lamda system (Cohen et al., 2022), a single language model is used in two phases,
roughly corresponding to generative and discriminative tasks: first generating a re-
sponse, and then generating a label. In the generative phase, the model is given the
prior turn and a special RESPONSE token and generates the blue response turn. (In
training, the training loss is given only for the blue response):

“What’s up? RESPONSE Not much.

In a second, discriminative phase, the model is fine-tuned to see an attribute
(SENSIBLE, INTERESTING, UNSAFE) and then to predict a 0 or 1 value, again
with training losses given only for the blue value.

What’s up? RESPONSE Not much. SENSIBLE 1
What’s up? RESPONSE Not much. INTERESTING 0
What’s up? RESPONSE Not much. UNSAFE 0

To use the system in inference, the model first generates a response given the context,
and then it is given the attribute and asked to generate a rating. The result is a
generated turn along with a label. This label isn’t shown to the user but can be use
for filtering, either at training time or at deployment time. For example, the system
can generate multiple potential responses, filter out any response that is unsafe, and
return to the user the highest ranking response.



Background: Retrieval-Augmented Generation 
(RAG) for Question Answering
• Suppose the user asks a query ("Who wrote the Origin of Species") that 

requires a web search.
• RAG Algorithm: We call a search engine and get back a set of retrieved 

passages, then put the query and passages together in a prompt:
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More formally, recall that simple autoregressive language modeling computes
the probability of a string from the previous tokens:

p(x1, . . . ,xn) =
nY

i=1

p(xi|x<i)

And simple conditional generation for question answering adds a prompt like Q: ,
followed by a query q , and A:, all concatenated:

p(x1, . . . ,xn) =
nY

i=1

p([Q:] ; q ; [A:] ; x<i)

The advantage of using a large language model is the enormous amount of
knowledge encoded in its parameters from the text it was pretrained on. But as
we mentioned at the start of the chapter, while this kind of simple prompted gener-
ation can work fine for many simple factoid questions, it is not a general solution
for QA, because it leads to hallucination, is unable to show users textual evidence to
support the answer, and is unable to answer questions from proprietary data.

The idea of retrieval-augmented generation is to address these problems by con-
ditioning on the retrieved passages as part of the prefix, perhaps with some prompt
text like “Based on these texts, answer this question:”. Let’s suppose we have a
query q, and call the set of retrieved passages based on it R(q). For example, we
could have a prompt like:

retrieved passage 1

retrieved passage 2

...

retrieved passage n

Based on these texts, answer this question: Q: Who wrote
the book ‘‘The Origin of Species"? A:

Or more formally,

p(x1, . . . ,xn) =
nY

i=1

p(xi|R(q) ; prompt ; [Q:] ; q ;[A:] ;x<i)

As with the span-based extraction reader, successfully applying the retrieval-
augmented generation algorithm for QA requires a successful retriever, and often
a two-stage retrieval algorithm is used in which the retrieval is reranked. Some
complex questions may require multi-hop architectures, in which a query is used tomulti-hop

retrieve documents, which are then appended to the original query for a second stage
of retrieval. Details of prompt engineering also have to be worked out, like deciding
whether to demarcate passages, for example with [SEP] tokens, and so on. Finally,
combinations of private data and public data involving an externally hosted large
language model may lead to privacy concerns that need to be worked out (Arora
et al., 2023).



Retrieval-Augmented Generation (RAG) in Chatbots

• Train  the chatbot to send 
queries to a search engine 
and include the results in its 
response

• One method: add "pseudo-
participants" for Search query 
and Search Results to the 
prompt. 

• The system learns to generate 
"Search Query" terms, which 
get passed to a search 
engine, and the system learns 
to summarize the "Search 
Results"
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15.4.3 Learning to perform retrieval as part of responding

Modern chatbots are also trained to do retrieval (calls to Google or Bing or other
search engines) as a component of generating a response. This is generally done
by having a sort of fake dialogue participant called something like Search Query
whose utterances are passed to a search engine. The system can be encourged to do
searches either by prompting or by fine-tuning.

For example in the Sparrow chatbot (Glaese et al., 2022), the prompt includes
a few sample conversations that include two special users, Search Query, and
Search Results:

...[this is preceded by other parts of the prompt]
User: What color is the sky?
Sparrow: Blue.
User: Why?
Search Query: why is sky blue
Search Results: Page title: Sky Except for direct sunlight, most of the light in

the daytime sky is caused by scattering, which is dominated by
a small-particle limit called Rayleigh scattering. The scattering
due to molecule-sized particles (as in air) is greater in the di-
rections both toward and away from the source of light than it
is in directions perpendicular to the incident path. Scattering is
significant for light at all visible wavelengths, but is stronger at
the shorter (bluer) end of the visible spectrum, meaning that the
scattered light is bluer than its source: the Sun. The remain-
ing direct sunlight, having lost some of its shorter-wavelength
components, appears slightly less blue.

Sparrow: Because of the Rayleigh scattering. It causes short waves of
blue light to be scattered more than the other colours in the spec-
trum.

User: Who was Raleigh?
Search Query: who was Rayleigh
... ...

From these prompts, the system learns to generate texts with Search Query
turns for fact-based questions from the user, and these are passed to a search engine
to generate the Search Results turns.

Alternatively, systems can be finetuned to to know when to use a search en-
gine. For example, labelers can interact with a system, fact check each of the re-
sponses, and whenever the system emits an incorrect response, perform the web
search queries that the system should have used to check its answer, and then the in-
teration is recorded and used for fine-tuning. Or labelers can look at a transcript of a
language model carrying on a dialogue, and similarly mark every place where a fact
was wrong (or out-of-date) and write the set of search queries that would have been
appropriate. A system is then fine-tuned to generate search query turns which
are again passed to a search engine to generate the search responses. The set
of pages or snippets returned by the search engine in the search response turn are
then treated as the context for generation, similarly to the retrieval-based question-
answering methods of Chapter 14.

Sparrow chatbot of Glaese et al (2022)
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Evaluating chatbots and task-based dialogue

Task-based dialogue:  
• mainly by measuring task performance
Chatbots: 
•  mainly by human evaluation



Chatbots are evaluated by humans

Participant evaluation: The human who talked to the 
chatbot assigns a score
Observer evaluation: third party who reads a 
transcript of a human/chatbot conversation assigns a 
score.



Participant evaluation
Human chats with model for 6 turns and rates 8 dimensions of quality:
• avoiding repetition, interestingness, making sense, fluency, 

listening, inquisitiveness, humanness, engagingness, 
(1) Avoiding Repetition: How repetitive was this user? 

◦ •Repeated themselves over and over •Sometimes said the same thing twice • Always 
said something new 

(3) Making sense: How often did this user say something which didn't make sense? 
◦ •Never made any sense •Most responses didn’t make sense •Some responses didn’t 

make sense •Everything made perfect sense 

(8) Engagingness:  How much did you enjoy talking to this user?
◦  •Not at all •A little •Somewhat •A lot

Abigail See, Stephen Roller, Douwe Kiela, Jason Weston. 2019.  What makes a good conversation? How controllable attributes affect human judgments. NAACL.



Observer evaluation: acute-eval

Annotators look at two conversations (A + B) and decide which is better:
Engagingness: Who would you prefer to talk to for a long conversation? 
Interestingness: If you had to say one of these speakers is interesting 
and one is boring, who would you say is more interesting? 
Humanness: Which speaker sounds more human? 
Knowledgeable: If you had to say that one speaker is more 
knowledgeable and one is more ignorant, who is more knowledgeable? 

Li, M., Weston, J., and Roller, S. (2019). Acute-eval: Improved dialogue evaluation with optimized 
questions and multi-turn comparisons. NeurIPS19 Workshop on Conversational AI. 
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Abstract

While dialogue remains an important end-goal of natural lan-
guage research, the difficulty of evaluation is an oft-quoted
reason why it remains troublesome to make real progress to-
wards its solution. Evaluation difficulties are actually two-fold:
not only do automatic metrics not correlate well with human
judgments, but also human judgments themselves are in fact
difficult to measure. The two most used human judgment tests,
single-turn pairwise evaluation and multi-turn Likert scores,
both have serious flaws as we discuss in this work.
We instead provide a novel procedure involving comparing
two full dialogues, where a human judge is asked to pay at-
tention to only one speaker within each, and make a pairwise
judgment. The questions themselves are optimized to maxi-
mize the robustness of judgments across different annotators,
resulting in better tests. We also show how these tests work in
self-play model chat setups, resulting in faster, cheaper tests.
We hope these tests become the de facto standard, and will
release open-source code to that end.

Introduction
Dialogue between human and machine is an important end-
goal of natural language research. The open-ended nature of
generating sequences in a multi-turn setup naturally makes
the task difficult to evaluate – with full evaluation pos-
sessing many of the difficulties of the task itself as it re-
quires deep understanding of the content of the conversa-
tion. As in many other natural language generation (NLG)
tasks, automatic metrics have not been shown to have a
clear correlation with human evaluations (Liu et al. 2016;
Lowe et al. 2017). This means the current standard for all
dialogue research involves human trials, which slows down
research and greatly increases the cost of model development.

Unfortunately, human judgments are themselves diffi-
cult to measure. The two most used approaches, single-
turn pairwise evaluation (Vinyals and Le 2015; Li et al.
2016b), and multi-turn Likert scores (Venkatesh et al. 2017;
Zhang et al. 2018; See et al. 2019; Dinan et al. 2019b;
Dinan et al. 2019a) have serious limitations. Single-turn pair-
wise evaluation provides the benefits and simplicity of an
A/B test, allowing for cheap and fast annotations, with com-
parisons that are robust to annotator score bias, but fail to take
into account the multi-turn aspect of conversations. To give
a trivial example, such comparisons fail to capture whether

Figure 1: ACUTE-EVAL asks humans to compare two multi-
turn dialogues, and independent of the gray speakers, choose
between Speaker 1 (light blue) and Speaker 2 (dark blue).

the model would repeat itself in a multi-turn conversation
because they only look at one turn; repetition is a known
issue that humans dislike (See et al. 2019).

Multi-turn Likert scores require the annotator to have a
multi-turn conversation and then provide an integer score,
which is more costly and time-consuming to run but evalu-
ates full conversations more accurately. The integer scores
however suffer from differing bias and variance per annotator,
which researchers have tried to mitigate (Kulikov et al. 2018),
but nevertheless due to its lack of sensitivity often yields com-
parisons that are not statistically significant. Furthermore, due
to strong anchoring effects during model evaluation, i.e. that
annotators are affected by the first systems they evaluate, Lik-
ert comparisons are generally not comparable across multiple
papers. This mandates that evaluations of new models be
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Automatic evaluation is an open problem

Automatic evaluation methods (like the BLEU scores used for 
Machine Translation) are generally not used for chatbots. 
• They correlate poorly with human judgements.
One current research direction: Adversarial Evaluation
• Inspired by the Turing Test
• train a ``Turing-like'' classifier to distinguish between human 

responses and machine responses.
• The more successful a dialogue system is at fooling the evaluator, 

the better the system.



Task-based systems are evaluated by task success!

1. End-to-end evaluation (Task Success)
2. Slot Error Rate for a Sentence
 # of inserted/deleted/subsituted slots
          # of total reference slots for sentence



Evaluation Metrics: Slot error rate

Slot error rate: 1/3
Task success: At end, was the correct meeting added to the calendar?

“Make an appointment with Chris at 10:30 in Gates 104”

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104



More fine-grained metrics: User Satisfaction Survey
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the Turing test. The idea is to train a “Turing-like” evaluator classifier to distinguish
between human-generated responses and machine-generated responses. The more
successful a response generation system is at fooling this evaluator, the better the
system.

24.5.2 Evaluating Task-Based Dialogue
For task-based dialogue, if the task is unambiguous, we can simply measure absolute
task success (did the system book the right plane flight, or put the right event on the
calendar).

To get a more fine-grained idea of user happiness, we can compute a user sat-
isfaction rating, having users interact with a dialogue system to perform a task and
then having them complete a questionnaire. For example, Fig. 24.20 shows sample
multiple-choice questions (Walker et al., 2001); responses are mapped into the range
of 1 to 5, and then averaged over all questions to get a total user satisfaction rating.

TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you’d use the system in the future?

Figure 24.20 User satisfaction survey, adapted from Walker et al. (2001).

It is often economically infeasible to run complete user satisfaction studies after
every change in a system. For this reason, it is useful to have performance evaluation
heuristics that correlate well with human satisfaction. A number of such factors and
heuristics have been studied, often grouped into two kinds of criteria: how well the
system allows users to accomplish their goals (maximizing task success) with the
fewest problems (minimizing costs):

Task completion success: Task success can be measured by evaluating the cor-
rectness of the total solution. For a frame-based architecture, this might be slot
error rate, the percentage of slots that were filled with the correct values:

Slot Error Rate for a Sentence =
# of inserted/deleted/subsituted slots
# of total reference slots for sentence

(24.9)

For example consider a system given this sentence:
(24.10) Make an appointment with Chris at 10:30 in Gates 104
which extracted the following candidate slot structure:

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104

Here the slot error rate is 1/3, since the TIME is wrong. Instead of error rate,
slot precision, recall, and F-score can also be used. Slot error rate is also sometimes
called concept error rate.

Interestingly, sometimes the user’s perception of whether they completed the
task is a better predictor of user satisfaction than the actual task completion success.
(Walker et al., 2001).

Walker, Marilyn, Candace Kamm, and Diane Litman. "Towards developing general models of 
usability with PARADISE." Natural Language Engineering 6, no. 3 & 4 (2000): 363-377.



Other Heuristics

Efficiency cost: 
• total elapsed time for the dialogue in seconds, 
• the number of total turns or of system turns
• total number of queries 
• “turn correction ratio”: % of turns that were used to correct errors
Quality cost: 
• number of ASR rejection prompts. 
• number of times the user had to barge in
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Dialog System Design: User-centered Design

1. Study the users and task
• value-sensitive design

2. Build simulations
•  Wizard of Oz study

3. Iteratively test design on users

Gould, John D., and Clayton Lewis. "Designing for usability: key principles and what 
designers think." Communications of the ACM 28, no. 3 (1985): 300-311.

Bender, Emily M., and Batya Friedman. "Data statements for natural language processing: 
Toward mitigating system bias and enabling better science." TACL 6 (2018): 587-604.



Ethical design

Ethical issues have long been known to be 
crucial in artificial agents
Mary Shelley's Frankenstein
• creating agents without a consideration of 

ethical and humanistic concerns 
Ethical issues:
• Safety:  Systems abusing users, distracting 

drivers, or giving bad medical advice
• Representational harm: Systems demeaning 

particular social groups
• Privacy: Information Leakage 



Safety

Chatbots for mental health
◦ Extremely important not to say the wrong thing

In-vehicle conversational agents
◦ Must be aware of environment, driver's level of attention

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan Lowe, 
and Joelle Pineau. 2018. Ethical Challenges in Data-Driven Dialogue Systems. In 2018 AAAI/ACM Conference 
on AI, Ethics, and Society (AIES ’18), 



Abuse and Representation Harm: The case of Microsoft Tay

Experimental Twitter chatbot launched in 2016
◦ given the profile personality of an 18- to 24-year-old 

American woman
◦ could share horoscopes, tell jokes, 
◦ asked people to send selfies
◦ used informal language, slang, emojis, and GIFs, 
◦ Designed to learn from users (IR-based) 



The case of Microsoft Tay

Immediately Tay turned offensive and abusive
◦ Obscene and inflammatory tweets
◦ Nazi propaganda, conspiracy theories
◦ Began harassing women online
◦ Reflecting racism and misogyny of Twitter users

Microsoft took Tay down after 16 hours
Lessons:
◦ User response must be considered in the design phase

Gina Neff and Peter Nagy 2016. Talking to Bots: Symbiotic Agency and the Case of Tay. International Journal of 
Communication 10(2016), 4915–4931 



Bias in training datasets

Henderson et al. ran hate-speech and bias detectors on 
standard training sets for dialogue systems:
◦ Twitter, Reddit, other dialogue datasets

Found bias and hate-speech
◦ In training data
◦ In dialogue models trained on the data

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan Lowe, and Joelle 
Pineau. 2018. Ethical Challenges in Data-Driven Dialogue Systems. In 2018 AAAI/ACM Conference on AI, Ethics, and 
Society (AIES ’18), 



Privacy: Training on user data

Accidental information leakage
• “Computer, turn on the lights [answers the phone] Hi, yes, my 

password is...”
• Henderson show in simulation that this leakage can occur.

Intentional information leakage
• Dialogue systems that are designed to send user data to developer or 

advertisers
• Important to consider privacy-preserving dialogue systems

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried, Ryan Lowe, and Joelle Pineau. 2018. 
Ethical Challenges in Data-Driven Dialogue Systems. In 2018 AAAI/ACM Conference on AI, Ethics, and Society (AIES ’18), 

Campagna, Giovanni, Rakesh Ramesh, Silei Xu, Michael Fischer, and Monica S. Lam. "Almond: The architecture of an open, 
crowdsourced, privacy-preserving, programmable virtual assistant." In Proceedings of the 26th International Conference on World Wide 
Web, pp. 341-350. 2017.
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