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Neural unit

Take weighted sum of inputs, plus a bias

Instead of just using z, we'll apply a nonlinear activation 
function f:

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1 Units

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term
a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be
represented as:

z = b+
X

i

wixi (7.1)

Often it’s more convenient to express this weighted sum using vector notation; recall
from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector
we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input vector
x, and we’ll replace the sum with the convenient dot product:

z = w · x+b (7.2)

As defined in Eq. 7.2, z is just a real valued number.
Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, theactivation
activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y = a = f (z)

We’ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,
and the rectified linear ReLU) but it’s pedagogically convenient to start with the
sigmoid function since we saw it in Chapter 5:sigmoid

y = s(z) =
1

1+ e�z (7.3)

The sigmoid (shown in Fig. 7.1) has a number of advantages; it maps the output
into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s
differentiable, which as we saw in Section ?? will be handy for learning.

Figure 7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is
nearly linear around 0 but outlier values get squashed toward 0 or 1.
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Non-Linear Activation Functions

5

Sigmoid

We're already seen the sigmoid for logistic regression:
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Final function the unit is computing
7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.
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Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)
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An example
Suppose a unit has:
w = [0.2,0.3,0.9] 
b = 0.5 
What happens with input x:
x = [0.5,0.6,0.1] 

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)
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takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.
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intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.
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when x is positive, and 0 otherwise:
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takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
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The XOR problem

Can neural units compute simple functions of input?

Minsky and Papert (1969)
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Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
different language applications or network architectures. For example, the tanh func-
tion has the nice properties of being smoothly differentiable and mapping outlier
values toward the mean. The rectifier function, on the other hand has nice properties
that result from it being very close to linear. In the sigmoid or tanh functions, very
high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated
and have derivatives very close to 0. Zero derivatives cause problems for learning,
because as we’ll see in Section 7.4, we’ll train networks by propagating an error
signal backwards, multiplying gradients (partial derivatives) from each layer of the
network; gradients that are almost 0 cause the error signal to get smaller and smaller
until it is too small to be used for training, a problem called the vanishing gradientvanishing

gradient
problem. Rectifiers don’t have this problem, since the derivative of ReLU for high
values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and does not have a non-linear activation function. The



Perceptrons

A very simple neural unit 
• Binary output  (0 or 1)
• No non-linear activation function

7.2 • THE XOR PROBLEM 5

output y of a perceptron is 0 or 1, and is computed as follows (using the same weight
w, input x, and bias b as in Eq. 7.2):

y =
⇢

0, if w · x+b  0
1, if w · x+b > 0 (7.7)

It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 7.4 shows the necessary weights.
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Figure 7.4 The weights w and bias b for perceptrons for computing logical functions. The
inputs are shown as x1 and x2 and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, showing weights w1 = 1 and w2 = 1 and bias weight
b = �1. (b) logical OR, showing weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x1 and x2, the perception
equation, w1x1 +w2x2 +b = 0 is the equation of a line. (We can see this by putting
it in the standard linear format: x2 = (�w1/w2)x1 +(�b/w2).) This line acts as a
decision boundary in two-dimensional space in which the output 0 is assigned to alldecision

boundary
inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the
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Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
different language applications or network architectures. For example, the tanh func-
tion has the nice properties of being smoothly differentiable and mapping outlier
values toward the mean. The rectifier function, on the other hand has nice properties
that result from it being very close to linear. In the sigmoid or tanh functions, very
high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated
and have derivatives very close to 0. Zero derivatives cause problems for learning,
because as we’ll see in Section 7.4, we’ll train networks by propagating an error
signal backwards, multiplying gradients (partial derivatives) from each layer of the
network; gradients that are almost 0 cause the error signal to get smaller and smaller
until it is too small to be used for training, a problem called the vanishing gradientvanishing

gradient
problem. Rectifiers don’t have this problem, since the derivative of ReLU for high
values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and does not have a non-linear activation function. The

4 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(a) (b)
Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
different language applications or network architectures. For example, the tanh func-
tion has the nice properties of being smoothly differentiable and mapping outlier
values toward the mean. The rectifier function, on the other hand has nice properties
that result from it being very close to linear. In the sigmoid or tanh functions, very
high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated
and have derivatives very close to 0. Zero derivatives cause problems for learning,
because as we’ll see in Section 7.4, we’ll train networks by propagating an error
signal backwards, multiplying gradients (partial derivatives) from each layer of the
network; gradients that are almost 0 cause the error signal to get smaller and smaller
until it is too small to be used for training, a problem called the vanishing gradientvanishing

gradient
problem. Rectifiers don’t have this problem, since the derivative of ReLU for high
values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and does not have a non-linear activation function. The
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output y of a perceptron is 0 or 1, and is computed as follows (using the same weight
w, input x, and bias b as in Eq. 7.2):

y =
⇢

0, if w · x+b  0
1, if w · x+b > 0 (7.7)

It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 7.4 shows the necessary weights.
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Figure 7.4 The weights w and bias b for perceptrons for computing logical functions. The
inputs are shown as x1 and x2 and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, showing weights w1 = 1 and w2 = 1 and bias weight
b = �1. (b) logical OR, showing weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x1 and x2, the perception
equation, w1x1 +w2x2 +b = 0 is the equation of a line. (We can see this by putting
it in the standard linear format: x2 = (�w1/w2)x1 +(�b/w2).) This line acts as a
decision boundary in two-dimensional space in which the output 0 is assigned to alldecision

boundary
inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the
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Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
different language applications or network architectures. For example, the tanh func-
tion has the nice properties of being smoothly differentiable and mapping outlier
values toward the mean. The rectifier function, on the other hand has nice properties
that result from it being very close to linear. In the sigmoid or tanh functions, very
high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated
and have derivatives very close to 0. Zero derivatives cause problems for learning,
because as we’ll see in Section 7.4, we’ll train networks by propagating an error
signal backwards, multiplying gradients (partial derivatives) from each layer of the
network; gradients that are almost 0 cause the error signal to get smaller and smaller
until it is too small to be used for training, a problem called the vanishing gradientvanishing

gradient
problem. Rectifiers don’t have this problem, since the derivative of ReLU for high
values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0
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unit that has a binary output and does not have a non-linear activation function. The

7.2 • THE XOR PROBLEM 5

output y of a perceptron is 0 or 1, and is computed as follows (using the same weight
w, input x, and bias b as in Eq. 7.2):

y =
⇢

0, if w · x+b  0
1, if w · x+b > 0 (7.7)

It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 7.4 shows the necessary weights.
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Figure 7.4 The weights w and bias b for perceptrons for computing logical functions. The
inputs are shown as x1 and x2 and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, showing weights w1 = 1 and w2 = 1 and bias weight
b = �1. (b) logical OR, showing weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x1 and x2, the perception
equation, w1x1 +w2x2 +b = 0 is the equation of a line. (We can see this by putting
it in the standard linear format: x2 = (�w1/w2)x1 +(�b/w2).) This line acts as a
decision boundary in two-dimensional space in which the output 0 is assigned to alldecision

boundary
inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the
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Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
different language applications or network architectures. For example, the tanh func-
tion has the nice properties of being smoothly differentiable and mapping outlier
values toward the mean. The rectifier function, on the other hand has nice properties
that result from it being very close to linear. In the sigmoid or tanh functions, very
high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated
and have derivatives very close to 0. Zero derivatives cause problems for learning,
because as we’ll see in Section 7.4, we’ll train networks by propagating an error
signal backwards, multiplying gradients (partial derivatives) from each layer of the
network; gradients that are almost 0 cause the error signal to get smaller and smaller
until it is too small to be used for training, a problem called the vanishing gradientvanishing

gradient
problem. Rectifiers don’t have this problem, since the derivative of ReLU for high
values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
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inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called h) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReLU that correctly computes
the XOR function.

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the
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Pause the lecture and try for yourself!



Why? Perceptrons are linear classifiers

Perceptron equation given x1 and x2, is the equation of a line

w1x1 + w2x2 + b = 0

(in standard linear format:     x2 = (−w1/w2)x1 + (−b/w2)    )

This line acts as a decision boundary 
• 0 if input is on one side of the line
• 1 if on the other side of the line 
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Solution to the XOR problem

XOR can't be calculated by a single perceptron
XOR can be calculated by a layered network of units. 
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(a) (b)
Figure 7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
different language applications or network architectures. For example, the tanh func-
tion has the nice properties of being smoothly differentiable and mapping outlier
values toward the mean. The rectifier function, on the other hand has nice properties
that result from it being very close to linear. In the sigmoid or tanh functions, very
high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated
and have derivatives very close to 0. Zero derivatives cause problems for learning,
because as we’ll see in Section 7.4, we’ll train networks by propagating an error
signal backwards, multiplying gradients (partial derivatives) from each layer of the
network; gradients that are almost 0 cause the error signal to get smaller and smaller
until it is too small to be used for training, a problem called the vanishing gradientvanishing

gradient
problem. Rectifiers don’t have this problem, since the derivative of ReLU for high
values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and does not have a non-linear activation function. The

ReLU

ReLU
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Feedforward Neural Networks

Can also be called multi-layer perceptrons (or 
MLPs)  for historical reasons8 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

x1 x2

y1

xn0…

…

+1

b

…
U

W

y2 yn2

h1 h2 h3 hn1

Figure 7.8 A simple 2-layer feedforward network, with one hidden layer, one output layer,
and one input layer (the input layer is usually not counted when enumerating layers).

Recall that a single hidden unit has parameters w (the weight vector) and b (the
bias scalar). We represent the parameters for the entire hidden layer by combining
the weight vector wi and bias bi for each unit i into a single weight matrix W and
a single bias vector b for the whole layer (see Fig. 7.8). Each element Wji of the
weight matrix W represents the weight of the connection from the ith input unit xi to
the jth hidden unit h j.

The advantage of using a single matrix W for the weights of the entire layer is
that now the hidden layer computation for a feedforward network can be done very
efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function g (such as the sigmoid, tanh, or ReLU activation
function defined above).

The output of the hidden layer, the vector h, is thus the following, using the
sigmoid function s :

h = s(Wx+b) (7.8)

Notice that we’re applying the s function here to a vector, while in Eq. 7.3 it was
applied to a scalar. We’re thus allowing s(·), and indeed any activation function
g(·), to apply to a vector element-wise, so g[z1,z2,z3] = [g(z1),g(z2),g(z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll refer to the input layer as layer 0 of the network, and have n0
represent the number of inputs, so x is a vector of real numbers of dimension n0,
or more formally x 2 Rn0 , a column vector of dimensionality [n0,1]. Let’s call the
hidden layer layer 1 and the output layer layer 2. The hidden layer has dimensional-
ity n1, so h 2 Rn1 and also b 2 Rn1 (since each hidden unit can take a different bias
value). And the weight matrix W has dimensionality W 2 Rn1⇥n0 , i.e. [n1,n0].

Take a moment to convince yourself that the matrix multiplication in Eq. 7.8 will
compute the value of each h j as s

�Pn0
i=1 Wjixi +b j

�
.

As we saw in Section 7.2, the resulting value h (for hidden but also for hypoth-
esis) forms a representation of the input. The role of the output layer is to take
this new representation h and compute a final output. This output could be a real-
valued number, but in many cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a single
output node, and its value y is the probability of positive versus negative sentiment.



Binary Logistic Regression as a 1-layer Network
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Multinomial Logistic Regression as a 1-layer Network
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Reminder: softmax: a generalization of sigmoid

For a vector z of dimensionality k, the softmax is:

Example:
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distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s ). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is

1q
2ps2

j

exp

 
�
(q j �µ j)2

2s2
j

!
(5.27)

If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

q̂ = argmax
q

MY

i=1

P(y(i)|x(i))⇥
nY

j=1

1q
2ps2

j

exp

 
�
(q j �µ j)2

2s2
j

!
(5.28)

which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�a
nX

j=1

q 2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)

1  i  k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
exp(z1)Pk
i=1 exp(zi)

,
exp(z2)Pk
i=1 exp(zi)

, ...,
exp(zk)Pk
i=1 exp(zi)

#
(5.31)
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The denominator
Pk

i=1 exp(zi) is used to normalize all the values into probabil-
ities. Thus for example given a vector:

z = [0.6,1.1,�1.5,1.2,3.2,�1.1]

the resulting (rounded) softmax(z) is

[0.055,0.090,0.006,0.099,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
exp(wc · x+bc)

kX

j=1

exp(w j · x+b j)

(5.32)

Like the sigmoid, the softmax has the property of squashing values toward 0 or 1.
Thus if one of the inputs is larger than the others, it will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
Features in multinomial logistic regression function similarly to binary logistic re-
gression, with one difference that we’ll need separate weight vectors (and biases) for
each of the K classes. Recall our binary exclamation point feature x5 from page 4:

x5 =

⇢
1 if “!” 2 doc
0 otherwise

In binary classification a positive weight w5 on a feature influences the classifier
toward y = 1 (positive sentiment) and a negative weight influences it toward y = 0
(negative sentiment) with the absolute value indicating how important the feature
is. For multinominal logistic regression, by contrast, with separate weights for each
class, a feature can be evidence for or against each individual class.

In 3-way multiclass sentiment classification, for example, we must assign each
document one of the 3 classes +, �, or 0 (neutral). Now a feature related to excla-
mation marks might have a negative weight for 0 documents, and a positive weight
for + or � documents:

Feature Definition w5,+ w5,� w5,0

f5(x)
⇢

1 if “!” 2 doc
0 otherwise 3.5 3.1 �5.3

5.6.2 Learning in Multinomial Logistic Regression
The loss function for multinomial logistic regression generalizes the loss function
for binary logistic regression from 2 to K classes. Recall that that the cross-entropy
loss for binary logistic regression (repeated from Eq. 5.11) is:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.33)
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Two-Layer Network with softmax output
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Multi-layer Notation
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Replacing the bias unit

Let's switch to a notation without the bias unit
Just a notational change
1. Add a dummy node a0=1 to each layer
2. Its weight w0 will be the bias
3. So input layer a[0]

0=1, 
◦ And a[1]

0=1 , a[2]
0=1,…



Replacing the bias unit

Instead of: We'll do this:
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(first) hidden layer, and b[1] will mean the bias vector for the (first) hidden layer. n j
will mean the number of units at layer j. We’ll use g(·) to stand for the activation
function, which will tend to be ReLU or tanh for intermediate layers and softmax
for output layers. We’ll use a[i] to mean the output from layer i, and z[i] to mean the
combination of weights and biases W [i]a[i�1] +b[i]. The 0th layer is for inputs, so the
inputs x we’ll refer to more generally as a[0].

Thus we can re-represent our 2-layer net from Eq. 7.10 as follows:

z[1] = W [1]a[0] +b[1]

a[1] = g[1](z[1])

z[2] = W [2]a[1] +b[2]

a[2] = g[2](z[2])

ŷ = a[2] (7.11)

Note that with this notation, the equations for the computation done at each layer are
the same. The algorithm for computing the forward step in an n-layer feedforward
network, given the input vector a[0] is thus simply:

for i in 1..n
z[i] = W [i] a[i�1] + b[i]

a[i] = g[i](z[i])
ŷ = a[n]

The activation functions g(·) are generally different at the final layer. Thus g[2]
might be softmax for multinomial classification or sigmoid for binary classification,
while ReLU or tanh might be the activation function g(·) at the internal layers.

Replacing the bias unit In describing networks, we will often use a slightly sim-
plified notation that represents exactly the same function without referring to an ex-
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 n0X

i=1

Wjixi +b j

!
, (7.14)

we’ll instead use:

s

 n0X

i=0

Wjixi

!
, (7.15)
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Use cases for feedforward networks

Let's consider 2 (simplified) sample tasks:
1. Text classification
2. Language modeling

State of the art systems use more powerful neural 
architectures, but simple models are useful to 
consider!
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Classification: Sentiment Analysis

We could do exactly what we did with logistic 
regression
Input layer are binary features as before
Output layer is 0 or 1 U

W

xnx1

σ



Sentiment Features
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nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability P(y =
1|x). How do we make a decision? For a test instance x, we say yes if the probability
P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.



Feedforward nets for simple classification

Just adding a hidden layer to logistic regression
• allows the network to use non-linear interactions between features 
• which may (or may not) improve performance.
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Even better: representation learning

The real power of deep learning comes 
from the  ability to learn features from 
the data
Instead of using hand-built human-
engineered features for classification
Use learned representations like 
embeddings!
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Neural Net Classification with embeddings as input features!

h1 h2 h3 hdh…
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Projection layer
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Issue: texts come in different sizes
This assumes a fixed size length (3)!  
Kind of unrealistic.   
Some simple solutions (more sophisticated solutions later)
1. Make the input the length of the longest review

• If shorter then pad with zero embeddings
• Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same 
dimensionality as a word) to represent all the words
• Take the mean of all the word embeddings
• Take the element-wise max of all the word embeddings
• For each dimension, pick the max value from all words 49
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Reminder: Multiclass Outputs

What if you have more than two output classes?
◦ Add more output units (one for each class)
◦ And use a “softmax layer”
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Neural Language Models (LMs)

Language Modeling: Calculating the probability of the 
next word in a sequence given some history. 
• We've seen N-gram based LMs
• But neural network LMs far outperform n-gram 

language models
State-of-the-art neural LMs are based on more 
powerful neural network technology like Transformers
But simple feedforward LMs can do almost as well!
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Simple feedforward Neural Language Models

Task: predict next word wt

given prior words wt-1, wt-2, wt-3, …
Problem: Now we’re dealing with sequences of 
arbitrary length.
Solution: Sliding windows (of fixed length)
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Why Neural LMs work better than N-gram LMs

Training data:
We've seen:  I have to make sure that the cat gets fed. 
Never seen:   dog gets fed
Test data:
I forgot to make sure that the dog gets ___
N-gram LM can't predict "fed"!
Neural LM can use similarity of "cat" and "dog" 
embeddings to generalize and predict “fed” after dog
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Intuition: training a 2-layer Network
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Intuition: Training a 2-layer network

For every training tuple (𝑥, 𝑦)
◦ Run forward computation to find our estimate 3𝑦
◦ Run backward computation to update weights: 

◦ For every output node
◦ Compute loss 𝐿 between true 𝑦 and the estimated #𝑦
◦ For every weight 𝑤 from hidden layer to the output layer

◦ Update the weight
◦ For every hidden node

◦ Assess how much blame it deserves for the current answer
◦ For every weight 𝑤 from input layer to the hidden layer

◦ Update the weight
58



Reminder: Loss Function for binary logistic regression

A measure for how far off the current answer is to 
the right answer
Cross entropy loss for logistic regression:
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the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right
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simplifies to 1� ŷ):
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Reminder: gradient descent for weight updates

Use the derivative of the loss function with respect to 
weights !

!"
𝐿(𝑓 𝑥;𝑤 , 𝑦)

To tell us how to adjust weights for each training item 
◦ Move them in the opposite direction of the gradient

◦ For logistic regression
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example):

wt+1 = wt �h d
dw

L( f (x;w),y) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =

2

66664

∂
∂w1

L( f (x;q),y)
∂

∂w2
L( f (x;q),y)

...
∂

∂wn
L( f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)
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5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L( f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
# where: L is the loss function
# f is a function parameterized by q
# x is the set of training inputs x(1), x(2), ..., x(m)

# y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L( f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.



Where did that derivative come from?

Using the chain rule!   f (x) = u(v(x)) 
Intuition (see the text for details)
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Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)



How can I find that gradient for every weight in 
the network?

These derivatives on the prior slide only give the 
updates for one weight layer: the last one! 
What about deeper networks?
• Lots of layers, different activation functions?
Solution in the next lecture:
• Even more use of the chain rule!! 
• Computation graphs and backward differentiation!
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Training Neural Nets: Overview



Simple Neural 
Networks and 
Neural 
Language 
Models

Computation Graphs and 
Backward Differentiation



Why Computation Graphs
For training, we need the derivative of the loss with 
respect to each weight in every layer of the network 
• But the loss is computed only at the very end of the 

network! 
Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986) 

• Backprop is a special case of backward differentiation
• Which relies on computation graphs. 
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Computation Graphs

A computation graph represents the process of 
computing a mathematical expression
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Example: 
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Computations:



Backwards differentiation in computation graphs

The importance of the computation graph 
comes from the backward pass
This is used to compute the derivatives that we’ll 
need for the weight update. 



Example

70

The derivative !"
!#

, tells us how much a small change in a 
affects L. 

We want:

7.4 • TRAINING NEURAL NETS 13

Or for a network with one hidden layer and softmax output, we could use the deriva-
tive of the softmax loss from Eq. ??:

∂LCE

∂wk
= ( {y = k}� p(y = k|x))xk

=

 
{y = k}� exp(wk · x+bk)PK

j=1 exp(w j · x+b j)

!
xk (7.22)

But these derivatives only give correct updates for one weight layer: the last one!
For deep networks, computing the gradients for each weight is much more complex,
since we are computing the derivative with respect to weight parameters that appear
all the way back in the very early layers of the network, even though the loss is
computed only at the very end of the network.

The solution to computing this gradient is an algorithm called error backprop-
agation or backprop (Rumelhart et al., 1986). While backprop was invented spe-error back-

propagation
cially for neural networks, it turns out to be the same as a more general procedure
called backward differentiation, which depends on the notion of computation
graphs. Let’s see how that works in the next subsection.

7.4.3 Computation Graphs
A computation graph is a representation of the process of computing a mathematical
expression, in which the computation is broken down into separate operations, each
of which is modeled as a node in a graph.

Consider computing the function L(a,b,c) = c(a+2b). If we make each of the
component addition and multiplication operations explicit, and add names (d and e)
for the intermediate outputs, the resulting series of computations is:

d = 2⇤b
e = a+d
L = c⇤ e

We can now represent this as a graph, with nodes for each operation, and di-
rected edges showing the outputs from each operation as the inputs to the next, as
in Fig. 7.10. The simplest use of computation graphs is to compute the value of
the function with some given inputs. In the figure, we’ve assumed the inputs a = 3,
b = 1, c = �2, and we’ve shown the result of the forward pass to compute the re-
sult L(3,1,�2) = �10. In the forward pass of a computation graph, we apply each
operation left to right, passing the outputs of each computation as the input to the
next node.

7.4.4 Backward differentiation on computation graphs
The importance of the computation graph comes from the backward pass, which
is used to compute the derivatives that we’ll need for the weight update. In this
example our goal is to compute the derivative of the output function L with respect
to each of the input variables, i.e., ∂L

∂a , ∂L
∂b , and ∂L

∂c . The derivative ∂L
∂a , tells us how

much a small change in a affects L.
Backwards differentiation makes use of the chain rule in calculus. Suppose wechain rule

are computing the derivative of a composite function f (x) = u(v(x)). The derivative



The chain rule

Computing the derivative of a composite function:

f (x) = u(v(x))

f (x) = u(v(w(x))) 
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Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
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of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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to compute these derivatives. Fig. 7.11 shows the backward pass. At each node we
need to compute the local partial derivative with respect to the parent, multiply it by
the partial derivative that is being passed down from the parent, and then pass it to
the child.
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Figure 7.11 Computation graph for the function L(a,b,c) = c(a+2b), showing the back-
ward pass computation of ∂L

∂a , ∂L
∂b , and ∂L
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Backward differentiation for a neural network

Of course computation graphs for real neural networks are much more complex.
Fig. 7.12 shows a sample computation graph for a 2-layer neural network with n0 =
2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W [1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W [2]a[1] +b[2]

a[2] = s(z[2])

ŷ = a[2] (7.27)

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in orange. In order to do the backward
pass, we’ll need to know the derivatives of all the functions in the graph. We already
saw in Section ?? the derivative of the sigmoid s :

ds(z)
dz

= s(z)(1�s(z)) (7.28)

We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

d tanh(z)
dz

= 1� tanh2(z) (7.29)

The derivative of the ReLU is

d ReLU(z)
dz

=

⇢
0 f or x < 0
1 f or x � 0 (7.30)
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Backward differentiation for a neural network

Of course computation graphs for real neural networks are much more complex.
Fig. 7.12 shows a sample computation graph for a 2-layer neural network with n0 =
2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W [1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W [2]a[1] +b[2]

a[2] = s(z[2])

ŷ = a[2] (7.27)

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in orange. In order to do the backward
pass, we’ll need to know the derivatives of all the functions in the graph. We already
saw in Section ?? the derivative of the sigmoid s :

ds(z)
dz

= s(z)(1�s(z)) (7.28)

We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

d tanh(z)
dz

= 1� tanh2(z) (7.29)

The derivative of the ReLU is

d ReLU(z)
dz

=

⇢
0 f or x < 0
1 f or x � 0 (7.30)
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Of course computation graphs for real neural networks are much more complex.
Fig. 7.12 shows a sample computation graph for a 2-layer neural network with n0 =
2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W [1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W [2]a[1] +b[2]

a[2] = s(z[2])

ŷ = a[2] (7.27)

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in orange. In order to do the backward
pass, we’ll need to know the derivatives of all the functions in the graph. We already
saw in Section ?? the derivative of the sigmoid s :
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We’ll also need the derivatives of each of the other activation functions. The
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Backward differentiation for a neural network

Of course computation graphs for real neural networks are much more complex.
Fig. 7.12 shows a sample computation graph for a 2-layer neural network with n0 =
2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W [1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W [2]a[1] +b[2]

a[2] = s(z[2])

ŷ = a[2] (7.27)

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in orange. In order to do the backward
pass, we’ll need to know the derivatives of all the functions in the graph. We already
saw in Section ?? the derivative of the sigmoid s :

ds(z)
dz

= s(z)(1�s(z)) (7.28)

We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

d tanh(z)
dz

= 1� tanh2(z) (7.29)

The derivative of the ReLU is

d ReLU(z)
dz

=

⇢
0 f or z < 0
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Backward differentiation for a neural network

Of course computation graphs for real neural networks are much more complex.
Fig. 7.12 shows a sample computation graph for a 2-layer neural network with n0 =
2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W [1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W [2]a[1] +b[2]

a[2] = s(z[2])

ŷ = a[2] (7.27)

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in orange. In order to do the backward
pass, we’ll need to know the derivatives of all the functions in the graph. We already
saw in Section ?? the derivative of the sigmoid s :
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dz

= s(z)(1�s(z)) (7.28)

We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

d tanh(z)
dz

= 1� tanh2(z) (7.29)

The derivative of the ReLU is

d ReLU(z)
dz

=

⇢
0 f or z < 0
1 f or z � 0 (7.30)



Starting off the backward pass: !"
!#

(I'll write 𝑎 for 𝑎["] and 𝑧 for 𝑧["] )

𝐿 !𝑦, 𝑦 = − y log( !𝑦) + 1 − 𝑦 log(1 − !𝑦)
𝐿 𝑎, 𝑦 = − y log 𝑎 + 1 − 𝑦 log(1 − 𝑎)

!"
!$
= !"

!#
!#
!$

𝜕𝐿
𝜕𝑎

= − 𝑦
𝜕 log 𝑎
𝜕𝑎

+ (1 − y)
𝜕 log 1 − 𝑎

𝜕𝑎

= − 𝑦
1
𝑎
+ 1 − y

1
1 − 𝑎

−1 = −
𝑦
𝑎
+
𝑦 − 1
1 − 𝑎

𝜕𝑎
𝜕𝑧

= 𝑎(1 − 𝑎) 𝜕𝐿
𝜕𝑧

= −
𝑦
𝑎
+
𝑦 − 1
1 − 𝑎

𝑎 1 − 𝑎 = a − y
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Backward differentiation for a neural network

Of course computation graphs for real neural networks are much more complex.
Fig. 7.12 shows a sample computation graph for a 2-layer neural network with n0 =
2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W [1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W [2]a[1] +b[2]

a[2] = s(z[2])

ŷ = a[2] (7.27)

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in orange. In order to do the backward
pass, we’ll need to know the derivatives of all the functions in the graph. We already
saw in Section ?? the derivative of the sigmoid s :

ds(z)
dz

= s(z)(1�s(z)) (7.28)

We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

d tanh(z)
dz

= 1� tanh2(z) (7.29)

The derivative of the ReLU is

d ReLU(z)
dz

=

⇢
0 f or x < 0
1 f or x � 0 (7.30)



Summary

For training, we need the derivative of the loss with respect to 
weights in early layers of the network 
• But loss is computed only at the very end of the network! 
Solution: backward differentiation
Given a computation graph and the derivatives of all the 
functions in it we can automatically compute the derivative of 
the loss with respect to these early weights.
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