
CS140 Project Session 3

Virtual Memory

Syed Akbar Mehdi

Based on slides from Derrick Issacson’s (Win ’08) and Ben Sapp’s (Win ’07)



Overview

n Typical OS structure

P1 P2 P3 P4

User

Kernel

driver driver driver

Network Console Disk

Virtual MemoryIPC

File System
Socket

TCP/IP

CPU
Scheduler

System Call

Adopted from Lecture Notes L1 p.14



Taken from David Mazieres’s Slides from Fall ‘07



Taken from David Mazieres’s Slides from Fall ‘07



Taken from David Mazieres’s Slides from Fall ‘07



Paging

n Users think that they have the whole 
memory space.

¨Let them think that way.¨Let them think that way.

¨Load in their stuff only when they need it.

n Not enough space? Remove others’ stuff.

¨Which page should we remove?

¨Where does the removed page go?

Manage a “Frame Table” and a “Swap Table” for that…



Page Mapping in Pintos

Stack
Physical MemoryPHYS_BASE

4 GB

64 MB

One-to-one mapping

Kernel page

Physical page

User 
Pool

Kernel 
Pool

64 
MB

Un-initialized Data

Initialized Data

Code Segment

User page

Physical page
MB

This is the mapping 
you have to handle.



Page Table (1)

n Original in pintos
¨ Pintos base implementation already creates basic page directory 

& page table structure mappings. (Look at paging_init( ) in init.c)

¨ From upage to frame / kpage

e.g. user wants a new upage at vaddr:

n palloc_get_page(PAL_USER) returns a kpage

n Register vaddr ó kpage with pagedir_set_page()

n User accesses the mem space at kpage via vaddr

¨ Has this page been accessed/written to?

n read => pagedir_is_accessed() == true 

n written => pagedir_is_dirty() == true

¨ pagedir.c, Ref manual A.6, A.7



Page Table (2)

n Now with paging

¨ upage might not be in physical memory

n How do we know if it is or not?

n If not, then where is the user page?

¨ Supplemental Page Table

n Data structure ? (hash, list ??)n Data structure ? (hash, list ??)

n Who uses this table?

1. Page fault handler

2. Process termination handler



Page Faults

n Previously

¨ After every context switch, each process installed its own page 
table into the machine which contained all valid virtual to 
physical address space mappings.

¨ In this scheme, a page fault only occurred when the process 
accessed an invalid virtual address.accessed an invalid virtual address.

n Now

¨ A page fault is no longer necessarily an error, since it might only 
indicate that the page must be brought in from a disk file or from 
swap 

¨ Now, virtual address to physical address mappings are only 
done as and when needed.



Page Fault!

n What’s going on?

¨ What’s the faulting virtual addr? Is it valid?

¨ Which page contains this addr?

¨ Is the data in swap or filesys? Where exactly?¨ Is the data in swap or filesys? Where exactly?

n If there is no space to bring in the page from swap then evict 
a page.

¨ Or, do we need to grow the stack?

¨ If we obtain a new frame, don’t forget to register it.

n We need to call pagedir_set_page() to create the vaddr ó
kpage mapping.



How to Handle a Page Fault

n In page fault handler, you start with fault_addr, the virtual 

address the user faulted on.

n Find which virtual page it’s in, (using pg_round_down( ) 

in vaddr.h)

n Check Supp Page Table to see if the faulting page is in 

it.

¨ If not, is it an illegal access or attempt to grow stack ?

n Copy page in either from fs or swap (you’ll need to track 

where it is somehow)

¨ If there’s no free frame in memory to stick it, you’ll have to evict a 
page.



Frames and Eviction

n You need to keep track of all the possible places to put 

pages in user memory, i.e., frames. 

¨ Frame table to track which physical frames are occupied and by 
whom.

¨ Palloc( ) with USER_POOL to get available frames

n If no frame is free, must evict from the frame table using n If no frame is free, must evict from the frame table using 

clock algorithm.  (use access/dirty bits of PTE)

n Evicted page sent to disk…



Swap Disk

n You may use the disk on interface hd1:1 as the swap 
disk (see devices/disk.h)

n From vm/build
¨ pintos-mkdisk swap.dsk n, to create an n MB swap disk 

named swap.dsk

¨ Alternatively, create a temporary n-MB swap disk for a single 
run with --swap-disk=n.run with --swap-disk=n.

n Disk interface easy to use, for example: 
struct disk* swap_disk = disk_get(1,1);

disk_read(swap_disk,sector,buffer);

disk_write(swap_disk,sector,buffer);

n Maintain free slots in swap disk. Data structure needed.



Project Requirements

§ Page Table Management
§ Page fault handling
§ Virtual to physical mapping

§ Paging to and from (swap) disk
§ Implement eviction policies – some LRU 

approximation

§ Lazy Loading of Executables
§ Stack Growth
§ Memory Mapped Files

Easy extensions once

have paging infrastructure



More at Page Fault

n Lazy Loading of Exec

¨ Only bring in pages of a program as needed.

¨ Instead of using the swap disk as a backing store for the 

executable, you should use it’s file location, since it never 

changes

¨ Should be easy extension of previous work: just treat this like 

a page fault, but read from the file location on disk, instead of a page fault, but read from the file location on disk, instead of 

the swap disk.

n Stack Growth

¨ Page faults on an address that "appears" to be a stack 

access, allocate another stack page

n How to you tell if it is a stack access?

¨ First stack page can still be loaded at process load time (in 

order to get arguments, etc.)



Memory Mapped Files

n Example (of a user program)

¨ Map a file called foo into your address space at address 
0x10000000

void *addr = (void *)0x10000000; 

int fd = open("foo"); 

mapid_t map = mmap(fd, addr);

addr[0] = 'b';addr[0] = 'b';

write(addr, 64, STDOUT_FILENO)

n The entire file is mapped into consecutive virtual 

pages starting at addr. 

n Make sure addr not yet mapped, no overlap



To pass more tests…

n Synchronization
¨ Paging Parallelism

n Handle multiple page faults at the same time

n Synchronize the disk

n Resource DeallocationResource Deallocation
¨ Free allocated resources on termination

n Pages

n Locks

n Your various tables

n Others



Useful Functions

n uintptr_t pd_no (const void *va) 

n uintptr_t pt_no (const void *va) 

n unsigned pg_ofs (const void *va) 

n void *pg_round_down (const void *va) 

n void *pg_round_up (const void *va)n void *pg_round_up (const void *va)

n bool pagedir_is_dirty (uint32_t *pd, const void *vpage) 

n bool pagedir_is_accessed (uint32_t *pd, const void *vpage) 

n void pagedir_set_dirty (uint32_t *pd, const void *vpage, bool value) 

n void pagedir_set_accessed (uint32_t *pd, const void *vpage, 

bool value)

n What are they for?

¨ Read Ref manual A5 – A8



Suggested order of implementation.
1. Frame table: change process.c to use your frame table allocator.

1. Layer of abstraction on top of palloc_get_page().

2. Don’t do swapping yet. Fail when you run out of frames.

2. Supplemental page table and page fault handler: change 
process.c to record necessary info in table when loading 
executable and setting up its stack.

1. Add loading of code and data segments in page fault handler.

2. For now only consider valid accesses.

3. You should now pass all proj. 2 functionality tests, and only 
some of robustness tests.

3. Next implement eviction, etc.

1. Think about things like synchronization, aliasing, and eviction 

algorithm.




