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O. Introduction. A Smullyan system (ss) S is a
‘quadruple (K, V, P, A), where K is a finite alphabet of
symbols called constants V a finite alphabet of symbols
called variables, P a finite alphabet of symbols called
predicates, and A a finite set of axioms of the forus

(1) B,a, .
(i1) Byo; & Bo%s & ee. & B = B 0 .4 (n>1)-
where the s are non-null strings on K U V and where the Bi

are symbols in P. A theorem of S is any string which is
either an axiom of S or is derivable from the axioms by a
finite number of appllcatlons of (a) uniform substitution

of non-null strings in K* for variables, and (b) modus ponens.
A string oo € K¥ is said to vpe B—generated by S if Bo is a
theorem of S, and a set L is said to be generated by S i there
isaBe€P such that L is the set of all B-generated strings.
These definitions are based on the presentation of elementary
formal systems in Smullyan 1961.

A one-symbol Smullyan system (oss) is an ss in which
X is a unit set; throughout our discussion this member of
K is denoted by '|'s. A ~one-predicate Smullyan system is
an ss in which P is a unit set; in citing theoreus of a
one-predicate system, we shall systematlcally omit occurrences
of the predicate symbol.

Examples: The set of all strings of |s of length 2" (n > 0)
is generated by a one-predicate oss with two axioms:

(1) |
X - XX

The set of all strings of |s with a Fibonacci lengthn
(1, 2. 3, 5, 8,...) is generated by a une-predicate oss with
four axioms:

(2) l
-
L
X & XY & XXY = XXXy
(using the fact that x, x+y, and 2x+y are all Fibonacci
numbers if and only if they are consecutive,] in which




case 3x+2y is the next Fibonacci number after 2x+y).
The set of all strings of the form: n Os followed by

|s (n > 0) is generated by a one-predicate (but two-symbol)
Smullyan system with three axioms:

(3) 0}

00f ]|

x0|y & x00|yz - x000|yzz]| |
(us1ng ‘the fact .that if u12 = v, and (u1+1)2 = v, + Vv,, then

(u +2) v, tav, + 2). |

1+ The Squares Problems. We now ask which sets of
strings (equivalently, which sets of positive integers) are
generable by oss's. Dana Scott has shown that some of these
sets are nonrecursive (see Appendix A). On the other hand,
it is difficult to devise oss's to generate some extremely
elementary sets. One such set, which we have been unable to
generate w1th an oss, is the set of all strings of |s of
length n2, n 2 1. This set is easily obtained with two
symbols 1n K, merely restore a predicate symbol B throughout
the axioms in (3) above, and add the axioms

(4) cl
BxO|y - Cly

But a one-symbol solution has eluded us. We have atteumpted
to construct such a solution along the lines of the oss for
Fibonacci numbers given in (2) above; that is, we have
attempted to construct a series of condltlons cn the form of
square numbers X, Xygeoey Xy which would insure that the

numbers are consecutive squares. In particular, we have
considered sequences of integers of the form

(5) ’ xo=m§
X, = m2 + 2n + 1
X, =u + Ln + 4
x; = uC + 2in + i°
If there is.an 1 > 1 such that every x, (O <t g4) is a

square, yta,.if and only if n = m, then a (one-predicate)

oss for squares is easily constructed:



(6) |
[

II;;;|~ (1+1)° times
X & xyy|l & «.0 & ny---yll---L ~ ny--fyllf--.

Y—'/ S

2i 48 2(1+1) (i+1)2
(because the fact that all the Xt's are squares will insure .

that they are consecutive). It is known that i # 1, 2, or 3.
For i = 1, we have’

= 2

y; =m + 2n + 1
If we choose any m 2’1 and jJ 2 1, and let y; = m + 27 + 1
and n = 1/2 (y12 - - 1) = 2j (m+ j+ 1) + m, then n is
an integer distinct from m such that m2 + 2n + 1 is a square.’
The corresponding construction for i=3% is given in Appendix B.
There remain two open questions:

Is there an i such that x, through x; in (5) are all
squares if and only if n = m?

If not, is the set of all strings of |s of square
length nevertheless generable by an 0ss?

The following theorem lends extra interest to the
problem of squares:

Theorem: If an oss of form (6) generates the set
of strings whose lengths are squares, then any recursively
enumerable set of non-null strings can be generated by an
0SS.

Proof: If R is any r.e. set of positive 1ntegers it
follows from the theorem of Appendix A that the set of
strings with lengths 2B such that n € R can be generated by
an oss.” Say that we have an oss which C-generates these
strings. The problem, then, is to 'get the n down off the 2'.

One way of doing this mlgnt be to invoke the 'pairing
function' K(x, y) = %x+ y)2 + 2x + y. This function has the
property that for non-negative integers x, y, z, W,

K(x, y) = K(z, w) if and only if x = gz and v = w.2

Suppose for the moment that we could produce axious

which would have the effect of.(8')-(10'),

(8" If x is C-generated, then K'(x, @) is D-generated.

(9%) If K'(xx, y) is D-generated, then K'(x, y|) is
D-generated.

(107%) If k'(|, y) is D-generated, then y is E-generated.



wvhere by K'(x ) we mean the string whose length is
K ( x(x{, x(yi g, and by ¢ we mean the empty string. It
would then follow that a string of length X( ar, s§ vould
be D-generated if and only if 2F¥ 8 were C-generated, and
hence that a string of length n would be E-generated if and
only if one of length 2B were C-generated.

Now, if a set of axioms of form (6) S-generates the
strings whose lengths are squares, we know that if

X, Xyy|,eee, Xyyeooylle-.| are all S-generated, then their

2i L}é'
lengths are consecutive squares, and hence the length of x is
the square of the length of y. Let us write sq(x, y) as an
abbreviation for the conjunction. .. )
|

SxX & Sxyy| & eees & SXYX;;jY“"

2i ié—/
Then _
(8) Cx & sq(x, z) - Dzxx
€)) sq(xxy, z) & sq(xy|, w) & Dzxxxxy - Dwxxy|
(10) sa(ly, z) & Dx||ly - Ey '

are the desired axious.

2. Perplexing problems arise in even very simple
one-predicate oss's. - Consider, for example the following
axioms suggested by S.D.I.: .

(11) |
X - XXX
xx| - x

Clearly, every string generated by this oss is of a length
congruent to O or 1 modulo 3.

Problem: Is every string of length congruent to
either O or 1 modulo 3 generated by this 0ss?

It is not hard to show that if 3k or 3k + 1 is the
least integer congruent to O or 1 modulo 3 but not generated
by the oss of (11), then k = 81j + 80, for some j > O. Values
of j from O througﬁ 27 have been checked by computer (an
Elliott 4100 machine at the University of Edinburgh), so that
if the answer to this third problem is NO, the smallest exception
is not less than 7044, the value of 3k for j = 28. The
difficulty in atteupts to show that the answer to the third
problem is YES arise from the fact that patterns in +the
generation -of strings are hard to discern; some fairly short °
strings require quite long derivations, for no obvious reason.
Thus, to derive the string of length 7 from the initial
string, of length 1, one of the two following 15-step
derivations is required (where an application of the axiom



\
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X - XxxX 1s indicated by the index a, and application of
axiom xx| - X by the index b):
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APPENDIX A.

Theorem (D. Scott): Given any partial recursive furciion
T, there is an oss which generates the set of strings with
lengths 2® such that T(n) = m for some n.

Corollary: There is no effective procedure for deciding
whether a given string of |s is generable by a given oss.

Outline of proof of theorem: Theorem IIa of Minsky 1961
states that any partial recursive function T can be revresented
by a program operating on an integer S using instructions I. of
the forms J

- (1) Multiply by kj and go to Ij;
(ii) Divide by kj and go to Ij if kjls, othervise
AR 1

go to I." . ~
Jo -
where the.system starts at I, with S = 2" and halts at I. with
s = 2 T(n), 0 a

It is a simple matter to mimic the operation of such a
prograu with an oss. We first choose an integer M greater
than the number of amy instruction in the program. We shall
make the oss imitate the Minsky program by B-generating a
string of length MS+j whenever the program operates on the
integer S with instruction I..

In order t0 reflect theJ fact that the Minsky progran
can operate on 28, for any n, with instruction Iy, the oss
must B-generate ail strings of length M.2%. To achieve this,
we introduce a predicate symbol A and axioums

All-.-]] M times
Ax - Axx
Ax - Bx

The oss then both A-generates and B-generates each string
of the desired form (The purpose of introducing the exira
symbol A, rather than B-generating the set directly, is to
avoid writing the axiom Bx - Bxx, which would B-generate
unwanted strings at a later point.). :

Then, for each instruction Ij of form (i), we add an
axion .



B}goo-oxl'loool - BXX_...)FH-..!

M J M'Kj Jq
and for each instruction I. of form (ii) we add the axiom
BxX...x||eoo| = Bux...x||...|

Mok g 3 M 3

as well as an axiom . .. . c
Bx\}f;:oo?(ll'ooo_lj - B}ix—:’oo.?cl l';ool‘”

e’ s mm— T L

Mka Mel+3 Mk M1t
for each 1, 0 < 1 < kj'

Lemna: The oss described above B-generates a string
of MS+j |s if and only if the Minsky program can apply the
‘instruction I, to the integer S at some stage of a comdputation
which begins By applying IO to an integer of the forum 20.

The lemma can be proved by induction in a straightforward
fashion. By way of illustration, we shall go through a bit of
the proof that if the program applies I. to S, then a string
of length MS+j is B-generated. J

Let us assume, inductively, that the program applies I
to the integer T and that MT+q is B-generated, where I0 is
of form (ii). Then the next step of the program will Be to apply
I, toT/k_ , if k_|T, or I to T otherwise. We must thus
show that a string of length MT/kq + q, is B-generated if

k,|T or that one of MT+g, is B-generated otherwise.

If k IT, the string of length MT+q which we assume to be
B—generatgd can be decomposed as Mek_  blocks of |s of length
T/k_ followed by a block of q |s... THus. the axiom

q
BxXXeooX||oes] - Bxx...x|]...]
S e —— PR o — —

Mok, T q M a;
applies to the string, when we substitute a string of length
T/k_ for the variable x, and insures that a string of length
MT/ké + q; is generated. '
If kéXT, then MT+q = M'kq'x + M1 + g for some.integer X
and some 1, 0 < 1 < k . Therefore we can use the axion
e L A S
M°kq Mel+q M-kq M’l+q2
with the desired result.



Tt follows frou tle leuma that if T is a peritial recursive
function, and m an integer, then T(n) = m, for some n, if and
only if the oss corresponding to the Minsky machine which
computes T B-generates M¢2™ + h. Thus to prove the theoren

we need only add the axiom

BxX...X||...] = Ox

and the oss C-generates the desired set.

APPENDIX B. 3
We seek m, n, X5, Xy, X3, X3 such that
2
(1) Xy = W
°©_ 2

X =u +2n
X, = mé + 4n + 4
Xz = w + én + 9
Equivalently, we .seek m, n, k, h, 1 such that
(2) n+en+ 1= (m+ k)P
we 4+ hn + 4 = (m+ k + h)°
W+ 6n+9=(u+k+hn+ 1)

From (2) it follows that k > h > 1, so that we may set
k=h+r, 1=h~ s, and search for positive integral solutions
of : _ :

(3) W +2n+ 1= (u+h+ r)?
(L) we + Lo+ 4 o= (m+.2h + r)°
(5) w2 +6n+ 9= (m+3htr-s)’

Equations (3) and (4) will be simultaneously satisfied if
there are x, h, and r such that ” '

(6) (wthtr) - w2 + 2 = (wr2h+r)2 - (wthtr)?
where n is defined by ’ T

(7) 2n + 3 = (m+2h+r)? - (m+h+r)® .

Then from (6) it follows that -

(8) m = 1/2r (282 - 12 - 2) = 1/p (W2-1) - r/2 .

if there are x, h, ry; and s such that
(9) : (m+2h+r)2‘# (m+h+r)2 + 2 = (pi+3h+r-s)2---(m+2h+r)2

Similarly, (4) and (5) will be simultaneously satisiied



given the definition of n in (7). TFrom (9) we derive

(10) m= 1/2s (2h2—2+82—2sr—6sh) = 1/s (ha—i) + s8/2 - r - 3n
Thus, all of (3), (4), (5) will be satisfied if there are h,

s, and r such that : ‘ :

(11) 1/r (12-1) - v/2 = 1/s (1®-1) + s/2 - v - 31

with m defined as in (8) and n defined as in (7). Tren, (11)

is .equivalent to the quadratic equation

(12) (r-s)h® - 3rsh - (1 + rs/2)(r-s) = O

with the solution L ‘ '

_ 3rst,/ 9rdsd + L{(r-s)2 + 2rs(r-s)<
(]3) h = Z(I""S)

Now, the eéxpression under the radical in (13) will de the-
square of 3rs+2(r-s) if and only if r-s = 6. Hence if we
choose any even s and set

(14) r=8+6 .
_ 3rgT (3rs + 2(r-s
h = ===502s) A

we will have a solution to (11). Since we want h 0 be a
positive integer, we choose ..

(15) o 3rs + (3rs + 2(r-s)). _ Is , ,
. - 2(r-s) T2
(wvhich is an integer because s is even). Then, from (8),
(16) m=1/r ((E% + 1)2 - 1) -r/2 =1/4 rs? + rs - v/2

which is also a (positive) integer, as is n in (7). Thus,
we have a solution of (3)-(5) with m, n, h, r, and s all
positive integers; and there is one such solution for each
choice of even s.
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1Suppgse that x and x+y are Fibonacci and not consecuiive,
and lét z be the Fibonzcci number immediately preceding X+y.
Then 2x+y < X+y+z. But x+ty+z is the Fibonaccl number inmmediately
following x+y, so.that 2x+y cannot be Fibonacci.

200 see this, note that (x+y+1)% > K(x,y), so0 that
(x+y)2 is the greatest square less than or equal to X(x, y)-



Then (z+*.‘.’)2 is the greatest square less than or egual to K(z, w),

so K(x, y) = K(z, u) implics (x+y)2 = £z+w) which implies

x+y = z+w. But then x = K(x, y)- (XTy) (X+y = K(z, w)- (z+v) - (z+7)
= z, and hence y = W also.
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