THE MITRE SYNTACTIC ANALYSIS PROCEDURE FOR
TRANSFORMATIONAL GRAMMARS*

Arnold M. Zwicky," Joyce Friedman,'
Barbara C. Hall,' and Donald E. Walker
The MITRE Corporation
Bedford, Massachusetts

INTRODUCTION

A solution to the analysis problem for a class of
grammars appropriate to the description of natural
languages is essential to any system which involves
the automatic processing of natural language inputs
for purposes of man-machine communication, trans-
iation, information retrieval, or data processing. The
analysis procedure for transformational grammars
described in this paper was developed to explore the
feasibility of using ordinary English as a computer
control language.

*The research reported in this paper was sponsored by the
Electronic Systems Division, Air Force Systems Command,
under Contract AF19 (628) 2390. The work was begun in
the summer of 1964 by a group consisting of J. Bruce Fra-
ser, Michael L. Geis, Hall, Stephen Isard, Jacqueline W.
Mintz, P. Stanley Peters, Jr.,, and Zwicky. The work has
been continued by Friedman, Hall, and Zwicky, with com-
puter implementations by Friedman and Edward C. Haines.
Walker has directed the project throughout. The grammar
and procedure are described in full detail in reference 1. This
paper is also available as ESD-TR-65-127.

tPresent addresses of Zwicky, Friedman and Hall are, re-
spectively: Department of Linguistics, University of Illinois,
Urbana; Computer Science Department, Stanford University,
Stanford, Calif.; Department of Linguistics, University of
California, Los Angeles.

317

The Problem of Syntactic Analysis

Given a grammar* G which generates a language
L(G), we can define the recognition problem for G
as the problem of determining for an arbitrary string
x of symbols, whether or not x € L(G). The more
difficult problem of syntactic analysis is to find, given
any string x, all the structures of x with respect to G.

The syntactic analysis problem varies with the class
of grammars considered, since both the formal prop-
erties of the languages generated and the definition of
structure depend on the form of the grammar.

A context-free (CF) phrase-structure grammar is
a rewriting system in which all rules are of the form
A — ¢, where ¢ is a non-null string and A is a single
symbol; in context-sensitive (CS) phrase-structure
grammars all rules are of the form Y; A Yz = Y11 @ o,
where A and ¢ are as before and , and y» are strings
(possibly null) of terminal and/or nonterminal sym-
bols. A derivation in a phrase-structure grammar is
represented by a tree in which the terminal elements
constitute the derived string. In a transformational
grammar there is, in addition to a phrase-structure

*The linguistic concepts on which this work is based are
due to Noam Chomsky; see, for example, references 2-6.

318 PROCEEDINGS — FALL JOINT COMPUTER CONFERANCE, 1965

component, a set of transformational rules which op-
erates upon trees from the phrase-structure compo-
nent to produce trees representing sentences in their
final form.

For both types of phrase-structure grammars the
syntactic analysis problem is known to be solvable.
In the case of CF grammars, a number of general
recognition and syntactic analysis procedures have
been developed and programmed. Several syntactic
analysis algorithms for CS grammars given by Grif-
fiths (1964).8

The case of transformational grammars is com-
plicated by the fact that they do not correspond ex-
actly to any well-studied class of automata. In
fact, a number of decisions crucial to their formali-
zation have yet to be made. This situation makes it
impossible to describe a general recognition proce-
dure for transformational grammars without explicit
conventions about the form and operation of trans-
formational rules. Since there is no widespread
agreement as to the most desirable conventions, it
is likely that different people working on the analy-
sis problem for transformational grammars are ac-
tually working on quite different problems. A solu-
tion to the problem with one set of conventions will
not necessarily be a solution to the problem with a
different set of conventions. Furthermore, the solu-
tion in one case would not necessarily imply the
existence of a solution in another.

The area of formal properties of transformational
grammars needs more study; the results of this at-
tempt to solve the syntactic analysis problem for a
particular one may help in determining the further
restrictions needed on the form of transformational
rules.

THE MITRE GRAMMAR

In order to develop an analysis procedure it was
necessary to fix on a particular set of conventions
for transformational grammar. Many of these con-
ventions agree essentially with the more or less
standard conventions in the literature; points on
which general agreement has not been reached will
be noted.

The grammar contains two principal compo-
nents: a CS phrase-structure component and a
transformational component.* The rules in the

*There is a third component, the lexicon, which will not
be discussed in detail here.

phrase-structure component serve to generate a set
of basic trees that are then operated upon by the
rules of the transformational component to produce
a set of surface trees.

Phrase-structure Component

A CS phrase-structure rule Y A Yo = Py @ P is
written in the form A — ¢/ — Y2. 1 or ¥ or both
may be null. The rules are ordered; consecutive rules
expanding the same symbol in the same context are
considered to be subrules of a single rule. A rule in
this sense is thus an instruction to choose any one
of the specified expansions.

The initial symbol of the grammar is SS, and the
first phrase-structure rule is SS — # S #.7 Further in-
stances of SS and S are introduced by later rules.
These instances are expanded during a succeeding
pass through the phrase-structure rules during which
new instances may be introduced, etc. The result is
a tree that may contain sentence-within-sentence
structures of arbitrary depth. This version of the
phrase-structure component differs somewhat from
the more usual versions, but is similar to the version
presented in Chomsky.?

We shall use the following tree terminology: x is
a daughter of y, x (not necessarily immediately) dom-
inates y, x is the (immediate) right (left) sister of y,
X is terminal, and the sequence X3, X2, . . ., Xn is a
(proper) analysis of x. We shall also refer to the
(sub) tree headed by x. These terms are all either
standard of self-explanatory.

Transformational Component

Form of the Rules. A transformational rule speci-
fies a modification of a tree headed by the node SS
or S. Every such rule has two main parts, a descrip-
tion statement and an operation statement.

The description statement sets forth general con-
ditions that must be satisfied by a given tree. If
these conditions are not met, then the rule cannot
be applied to the tree. The conditions embodied in
a description statement are conditions on analyses of

tThe first phrase-structure rule in the MITRE grammar
differs from this rule by allowing for the conjunction of any
number of sentences. SS may then dominate a sequence of
conjoined sentences. S, on the other hand, never immediately
dominates such a sequence.

SYNTACTIC ANALYSIS FOR TRANSFORMATIONAL GRAMMARS 319

sentences (trees headed by SS, # S #, or S%); a de-
scription statement is to be interpreted as requiring
that the given tree have at least one analysis out of a
set of analyses specified by the description statement.

If a tree satisfies the conditions embodied in a
description statement, then the operations apply to
the subtrees headed by the nodes in the analysis. The
operation statement lists the changes to be made —
the deletions, substitutions, and movements (adjunc-
tions) of subtrees.

In addition to a description statement and an op-
eration statement, a transformational rule may in-
volve a number of restrictions. A restriction is an
extra condition on the subtrees. The extra condition
is either one of equality (one subtree must be iden-
tical to another) or of dominance (the subtree must
contain a certain node, or must have a certain anal-
ysis, or must be a terminal node). Boolean combi-
nations of restrictions are permitted.

The form of a transformational rule can be illus-
trated by the following example:

TWH2

(#) (Q) (3NIL NG) (AUXA) ($SKIP NP AP $RES 19)
1 2 3 4 5

(5) ADLES 4 $RES 19: dom WH

ERASE 5

The description statement of this rule (TWH2)
consists of five numbered and parenthesized des-
cription segments. Each segment specifies one part
of an analysis. When several grammatical symbols
(symbols not beginning with $) are mentioned in a
segment, the interpretation of the segment is that
the corresponding part of the analysis must be a
subtree headed by one of these symbols. When
$NIL is mentioned in a segment, the interpretation
is that the corresponding part of the analysis is op-
tional—that is, the corresponding part may be a null
subtree; if, however, some analysis can be found in
which the correspcnding part is not null, that analy-
sis must be chosen. The occurrence of $SKIP in a
segment is equivalent to a variable between that
segment and the preceding one.* $RES must be fol-
lowe¢ by the number of the restriction to which it
refers. There is an implicit variable at the end (but
not at the beginning) of every description state-
ment.

In a more informal and traditional notation, the

*This distinction is not important for our discussion here.
See the discussion in reference 1.

*$SKIP and $NIL may not both be used in a single seg-
ment.

description statement of TWH?2 would be written as

#+ Q+ (NG) — AUXA - X — ig
2 3 4
Y+ #
T 5

In our system there is no way of referring to a se-
quence of subtrees as a single part of an analysis,
althiugh there is in the more informal notation.

In outline, the routine that searches through a
tree for an analysis that conforms to a given de-
scription statement searches from left to right
through the tree, attempting (in the case of a seg-
ment containing $NIL) to find a real node before
assuming that a segment is null, attempting always
(in the case of a segment containing $SKIP) to
“skip” the smallest possible number of nodes, and
checking (in the case of a segment containing
$RES n) to see if a restriction is satisfied as soon
as a node to which the restriction applies is found.
In case one part of the search fails, either because
the required nodes cannot be found or because a
restriction is not satisfied, the routine backs up to
the most recent point at which there remains an al-
ternative (e.g., the alternative of searching for NP
or for AP in the fifth segment of TWH2). As each
part of the analysis is found, the appropriate sub-
trees are marked with numbers corresponding to the
numbers on the description segments. The tree then
undergoes the modifications specified in the opera-
tion statement.

The operation statement of TWH2 consists of an
(ordered) list of two instructions. There are three
types of instructions: the adjunction instructions, the
substitution instruction, and the erasure instruction.
The adjunction instructions are of the form (¢) AD
n, where ¢ is a sequence containing numerals (re-
ferring to the marked subtrees) or particular gram-
matical symbols or both, where AD is one of the four
adjunction operations — ADLES (add as left sis-
ter), ADRIS (add as right sister), ADFID (add as.
first daughter), or ADLAD (add as last daughter)
— and where n is a numeral referring to a marked
subtree. The instruction (5) ADLES 4 specifies the
adjunction of a copy of the subtree marked 5 as the
left sister of the node heading the subtree marked 4.
Substitution instructions are of the form (¢) SUB n,
where ¢ and n are as before. When such an instruc-
tion is applied, copies of the elements of ¢ replace the

320 PROCEEDINGS — FALL JOINT COMPUTER CONFERANCE, 1965

subtree marked n, and this subtree is automatically
erased.*

Erasure instructions are of the form ERASE n
(erase the subtree marked n and any chain of non-
branching nodes immediately above this subtree) or
ERASE @ (erase the entire tree). The ERASE 9
instruction permits us to use the transformational
component as a “filter” that rejects structures from
which no acceptable sentence can be derived.

Derivations. The transformational rules are distin-
guished as being obligatory or optional, cyclical or
noncyclical, and singular’ly or embedding. The oblig-
atory/optional distinction requires no special com-
ment here.

A rule is cyclical if it can be applied more than
once before the next rule is applied. A rule may be
marked as cyclical either (a) because it can be ap-
plicable in more than one position in a given sen-
tence (say, in both the subject and object noun
phrases), or (b) because it can apply once to yield
an output structure and then apply again to this
output. Otherwise, the rule is marked as noncycli-
cal. In the present grammar case (b) does not oc-
cur.

Singulary rules are distinguished from embedding
rules on the basis of the conditions placed upon the
tree search. In the case of a singulary rule the
search cannot continue “into a nested sentence”—
that is, beneath an instance of SS or S within the
sentence being examined; the search may, of course,
pass over a nested sentence. In the case of an
embedding rule the search can continue into a nest-
ed sentence, but not into a sentence nested in a
nested sentence. Singulary rules operate “on one lev-
el,” embedding rules “between one level and the
next level below.”

The transformational rules of our grammar are
grouped into three sets—a set of initial singularies, a
set of embeddings with related singularies, and a set
of final singularies.” The rules are linearly ordered
within each set.

The initial singularies operate on the output of
the phrase structure component; they can be consid-
ered as applying, in order, to all subtrees simultane-

*If $NIL is chosen in the nth description segment, then
(¢) AD n or (¢) SUB n is vacuous. Null terms in ¢ are
ignored; if all of ¢ is null the instruction is vacuous.

tThere is also a fourth set, conjunction rules. Because of
the treatment of conjunction in the “English Preprocessor
Manual™! is currently being revised, conjunction has been
omitted from this presentation.

ously, since these rules do nothing to disturb the
sentence-within-sentence nesting in a tree. There
are numerous ways to order the application of these
rules with respect to the nesting structure of a tree,
and they are all equivalent in output.

The embeddings and related singularies operate
on the output of the initial singularies. These rules
require a rather elaborate ordering. Let us define a
lowest sentence as an instance of # S # in which S
does not dominate # and a next-to-lowest-sentence
as an instance of # S # in which S dominates at least
one lowest sentence and no instance of # S # that are
not lowest sentences. At the beginning of the first
pass through the embeddings and related singularies,
all lowest sentences are marked. The rules will be
applied, in order, to the marked subtrees. At the be-
ginning of each subsequent pass, all next-to-lowest-
sentences will be marked, and the rules will again be
applied, in order, to all marked subtrees. Character-
istically, the embedding rules, when applied during
these later passes, erase boundary symbols and thus
create new next-to-lowest sentences for the following
pass. However, only those subtrees marked at the
beginning of a pass can be operated upon during
the pass. The process continues until some pass
(after the first) in which no embedding rules have
been applied.

The final singularies operate on the output of the
embeddings and related singularies. They can be
considered as applying, in order, to all subtrees
simultaneously.

A tree that results from the application of all ap-
plicable transformational rules is a surface tree.
Each surface tree is associated with one of the sen-
tences generated by the grammar.

Dimensions

The MITRE Grammar generates sentences with a
wide variety of constructions—among them, passives,
negatives, comparatives, there-sentences, relative
clauses, yes-no question, and WH-questions. The
dimensions of the grammar (excluding all rules con-
cerned with conjunction) are as follows:

Phrase Structure Component:
Transformational Component:

75 rules
approximately 275 subrules

13 initial singularies

SYNTACTIC ANALYSIS FOR TRANSFORMATIONAL GRAMMARS 321

26 embeddings and related
singularies, including 9 embeddings

15 final singularies

54 rules

THE MITRE ANALYSIS PROCEDURE

The MITRE analysis procedure takes as input an
English sentence and yields as output the set of all
basic trees underlying that sentence in the MITRE
grammar. If the procedure yields no basic tree, the
input sentence is not one generated by the grammar.
If the procedure yields more than one basic tree,
the input sentence is structurally ambiguous with
respect to the grammar,

There are five parts to the procedure: lexical
look-up, recognition by the surface grammar, re-
versal of transformational rules, checking of presum-
able basic trees, and checking by synthesis. These
parts are described in detail in the following sec-
tions.

Lexical Look-up

The first step of the process is the mapping of
the input string into a set of pre-trees, which are
strings of subtrees containing both lexical and
grammatical items. The pre-trees are obtained
from the input string by the substitution of lexical
entries for each word.

A lexical entry for a word may be identical to the
word (in the case of grammatical items like A and
THE). More often, a lexical entry for a word indi-
cates a representation of the word in terms of more
abstract elements (NEG ANY for NONE), a

ADJ

| for
GREEN
GREEN), or a combination of abstract representa-
PRES SG VTR
| for
OPEN
OPENS). A word may have several lexical entries.

The number of pre-trees associated with an input
string is then the product of the numbers of lexical
entries for the words in the string. Thus, the string
CAN THE AIRPLANE FLY # has 15 associated
pre-trees, which can be schematically represented as:

category assignment for the word (

tion and category assignment (

PRES SG M \
CAN
PRES PL M VINT
CAI;N FLY
N(I:T SG THE NCT SG \PRES PL VII‘IIT
CAN AIRPLANE FLY My
VTR
AN
PRES PL VTR NC|T G
CAN FLY

Of these 15 pre-trees, only

#PRES SG M THE NCT SG VINT #

|
CAN AIRPLANE FLY

is a correct assignment of lexical entries to the words
in the input string.*

Recognition by the Surface Grammar

The surface grammar is an ordered CF phrase-
structure grammar containing every expansion
which can occur in a surface tree. Unavoidably, the
surface grammar generates some trees which are not
correct surface trees, even though the corresponding
terminal string may be a sentence obtainable by the
grammar with some other structure.

In the second step of the analysis procedure the
surface grammar is used to construct from each
pre-tree a set of presumable surface trees associa-
ted with the input string. Since the surface grammar
is context-free, and context-free parsing algorithms
are known to exist, no details will be given here for
this step of the analysis.

In the course of recognition by the surface gram-
mar, some pre-trees may be rejected. For example,
9 of the 15 pre-trees in the previous section are
rejected in this way. From other pre-trees one or
more presumable surface trees will be constructed.

The remaining steps of the analysis procedure are
designed to determine, for each presumable surface
tree, whether or not the tree is in fact a surface tree
for the input sentence.

*Since the MITRE grammar generates neither imperatives
nor noun-noun compounds, the interpretation of CAN THE
AIRPLANE FLY as analogous to CORRAL THE SADDLE
HORSE is excluded.

322 PROCEEDINGS — FALL JOINT COMPUTER CONFERANCE, 1965

Reversal of Transformational Rules

The next step in the analysis procedure reverses
the effect of all transformational rules that might
have been applied in the generation of the given
presumable surface tree.

The “undoing” of the forward rules is achieved
by rules that are very much like the forward rules in
their form and interpretation. The discussion under
Form of the Rules, above, applies to reversal rules
as well as to forward rules, with the following addi-
tions:

~(a) There is a new adjunction instruction, ADRIA
(add as right aunt — that is, add as right sister
of the parent).
(b) Adjunction and substitution instructions have
been generalized to permit instructions like:

(A) ADRIS n (1B cl) SUB n
N

/\
B C 231
| /\
1 2 D

Such instructions are used to restore entire sub-
trees deleted by forward rules.

(c) In the reversal of optional forward rules, a
marker OPTN is added as a daughter of a speci-
fied node, which in every case is either terminal
or else has only a lexical expansion. Some such
device is required if the result of the final syn-
thesis step is to correspond to the original input
string. The constraint on the placement of
OPTN insures that the marker will not interfere
with the operation of other reversal rules.

As with forward rules, reversal rules are either
cyclical or noncyclical, and either singulary or
embedding. All reversal rules are obligatory.*

The reversal rules are grouped together in the
same way as the forward rules, and the order of
their application within each group is essentially
the opposite of the order of the corresponding for-
ward rules. In many cases, one reversal rule undoes
one forward rule. There are three types of excep-
tions, however: (a) several reversal rules may be
required to attain the effect of undoing a single for-
ward rule; (b) for some rules, notably the rules
with ERASE @ instructions, no reversal is needed;

*Optional reversal rules are required when two distinct
basic trees are mapped into identical surface trees by the
application of forward rules. No such example occurs in the
present MITRE grammar.

(c) in some cases the reversing of several forward
rules can be combined in whole or in part into a
single reversal rule.

Reversed final singularies are first applied to all
subtrees. Then reversed embeddings and related sin-
gularies are applied in several passes. The first pass
deals with the highest sentences in the tree. Later
passes move downward through the tree, one level
at a time. New lower sentences are created when
boundary symbols are inserted during the reversal
of embedding transformations; in general, a sen-
tence created on one pass is dealt with on the next.
Finally, reversed initial singularies are applied ev-
erywhere.

The effect of transformational reversal is to map
each presumable surface tree into a presumable basic
tree.t

Checking of Presumable Basic Trees

In the next step of the analysis procedure, each
presumable basic tree is checked against the
phrase-structure component of the (forward)
grammar. The check determines whether or not the
presumable basic tree can in fact be generated by
the phrase-structure component; if it cannot, it is
discarded.

Checking by §ynthe§js} It is possible that trans-
formational reversal and phrase-structure checking
could map a presumable surface tree T, into a basic
tree T that is not the basic tree underlying T;. For
example, the reversal rules map at least one presum-
able surface tree associated with THOSE PIG IS
HUGE into a basic tree underlying THAT PIG IS
HUGE. Even under the assumption that input sen-
tences are grammatical, the possibility remains. For
example, the reversal rules map at least one presum-
able surface tree associated with THE TRUCK HAS
A SURFACE THAT WATER RUSTS into a basic
tree underlying THE TRUCK HAS A SURFACE
THAT RUSTS. Similarly, they map at least one pre-
sumable surface tree associated with THEY CAN
FISH into a basic tree underlying THEY CAN A
FISH.

Revision of the present reversal rules and the
introduction of rejection rules into the transforma-
tional reversal step might make a synthesis step

*Distinct presumable surface trees may be mapped into
identical presumable basic trees; the resultants of distinct
presumable surface trees will continue to be processed sep-
arately, however.

SYNTACTIC ANALYSIS FOR TRANSFORMATIONAL GRAMMARS 323

unnecessary. However, the above examples demon-
strate that with the present rules this step is essential.

In the synthesis step, the full set of forward trans-
formational rules is applied to each basic tree that
survives the previous checking step. Each optional
rule becomes obligatory, with the presence of the
marker OPTN (in the appropriate position) as an
added condition on its applicability.

The synthesis step maps a basic tree T, derived
from a presumable surface tree T, into a surface tree
Ts. If T, and Tz are not identical, then T, is dis-
carded as a possible source for the input string. If T,
and T are identical, then T: is a basic tree underly-
ing T: (and hence, underlying the input string).

Dimensions

The dimensions of the additional components of
the analysis procedure are as follows:

49 rules
approximately 550
subrules

30 final singularies

92 embeddings and
related singularies

12 initial singularies

134 rules

Surface Grammar:

Reversal Rules:

AREAS FOR FURTHER INVESTIGATION

We are investigating a number of problems both
in the grammar and in the analysis procedure, with
the objectives of making the grammar more ade-
quate and the procedure more efficient.

Among the grammatical problems are the use of
syntactic features (see Chomsky®) and the addition
of further rejection rules in the transformational
component. The treatment of conjunction is being
revised. Other topics requiring investigation include
adverbial clauses, superlatives, verbal complements,
imperatives, and nominalizations.

We are examining a number of ways to improve
the efficiency of the analysis procedure. If the input
vocabulary is to be of an appreciable size, an effi-
cient and sophisticated lexical look-up routine
will be required. We are using computer experi-
ments to determine the extent to which the use of a
CS surface grammar, either as the basis of a CS
parsing routine or as a check on the results of CF

parsing would improve the procedure by elimina-
ting some incorrect surface trees at an early stage.
Some increase in the efficiency of the reversal
step might be achieved by making use of a prepro-
grammed path through the reversal rules, or by us-
ing information that certain surface grammar rules
signal the applicability or inapplicability of certain
reversal rules. Similarly, the efficiency of the final
synthesis step might be improved by making use of
a preprogrammed path through the forward trans-
formational rules, or by using information that cer-
tain reversal rules have been applied.
Analysis by Synthesis

The first analysis procedure proposed for trans-
formational grammars was the “analysis by synthe-
sis” model of Matthews.® Basically this procedure
involves generating sentences until one is found
which matches the input sentence; the steps used in
the generation provide the structural description.
No attempt to program the analysis-by-synthesis
procedure for transformational grammars has been
reported in the literature. In its raw form this pro-
cedure would take an astronomically long time. One
way to refine the procedure would be to use a “pre-
liminary analysis” of some sort, which would have
to be extensive to make any appreciable change in
efficiency. As a result, there may be no sharp bound-
ary between refined analysis-by-synthesis and
direct analysis with a final checking-by-synthe-
sis step. In the case of the MITRE procedure the
final synthesis step plays a relatively minor role in
the total procedure.

Petrick’s Procedure

S. R. Petrick!® has proposed and programmed a
general solution to the analysis problem which is
similar in many respects to the MITRE procedure.
One of the main differences between his approach
and ours is that he alternates the use of reversal
rules and phrase-structure rules, while we use first
the phrase-structure rules of the surface grammar
and then the reversal rules. Furthermore, while Pe-
trick’s reversal rules are all optional, ours are all
obligatory. It follows that although we may have a
larger number of structures to consider at the begin-
ning of reversal step, this number does not increase
as it does at every step in Petrick’s procedure.

At the present time the procedures differ in gen-

324 PROCEEDINGS — FALL JOINT COMPUTER CONFERANCE, 1965

erality, for Petrick has shown that there are algo-
rithms for the construction of his surface grammar
and reversal rules. In the case of the MITRE proce-
dure, the question of the existence of comparable
algorithms has not yet been resolved.

Kuno’s Procedure

Another approach to the analysis problem has
been proposed in Kuno.!! Kuno attempts to find
basic trees, without using reversal rules, by con-
structing a context-free surface grammar and asso-
ciating with each of its rules information about the
form of the basic tree.

Kuno reported that an experimental program for
this system had been written and was being tested
‘on a small grammar. At that time it was not known
whether an algorithm for constructing the required
phrase-structure grammar existed.

COMPUTER TESTS

To test the grammar and the procedure a set of
FORTRAN subroutines (called SYNN), designed
to be combined in several different programs, has
been written. In one order, the subroutines carry
out the procedure from the stage at which presuma-
ble surface trees have been obtained, through the
base tree, to the final step of comparison of the de-
rived surface tree with the given presumable surface
tree. In other orders they can, for example, convert
base trees to surface trees and back, or check sur-
face trees against context-sensitive grammars.

We describe first the subroutines, in groups cor-
responding to the major components of the MITRE
procedures, then some of the programs and the re-
sults of running the programs on a subset of the
grammar,

Subroutines

Because the primary operations are operations on
trees, the main subroutines of the SYNN package
analyze and manipulate trees. Three of the subrou-
tines treat trees without reference to the grammar:
CONTRE reads in a tree and converts it to the in-
ternal format, TRCPY stores a copy of a tree for
later comparison, and TREQ compares two trees to
see if they are identical.

In the SYNN package there are four subroutines
that deal with phrase-structure grammars. CONCSG

and CONCFG read in context-sensitive and context-
free grammars, respectively, and convert them to
internal format. CHQCS and CHQCF check the
current tree against the indicated grammar by a
regeneration procedure.

Most of the subroutines of SYNN are concerned
with the transformational components. Separate sub-
routines read in the transformational rules, control
the application cycle, mark levels of embedded sub-
trees, search for an analysis, check restrictions, and
perform the operations.

The application of the forward rules is controlled
by the subroutine APPFX, and the application of
the reversal rules by APPBX. The application cy-
cles are as described in the section Reversal of
Transformational Rules, above, except that each
transformational rule has a keyword which is used
to bypass the search if the transformational key-
word does not occur in the tree.

There is also a generation subroutine GENSR
which is best described as a “constrained-ran-
dom” generator. Within constraints specified by the
user the subroutine generates a pseudo-random
base tree to which other subroutines of SYNN can
be applied.

Programs

In initial tests of the grammar and procedure the
most useful combination of subroutines was in the
program SYNI1, which goes from basic tree to sur-
face tree and back to basic tree, checking at every
step. This first program is an iteration of the sub-
routines CONTRE, TRCPY, CHQCS, APPFX,
CHQCF, APPBX, CHQCS, TREQ. When all parts
are correct, the final result is the same as the input,
and this is indicated by the final comment of the
TREQ subroutine.

The program SYN2 carries out the steps of the
MITRE procedure without the first two steps, lexi-
cal look-up and context-free parsing. Its basic
cycle is CONTRE, TRCPY, APPBX, CHQCS,
APPFX, CHQCF, TREQ. After each of the sub-
routines an indicator is checked to see if the tree
should be rejected.

The program SYN3, which uses the generation
subroutine, is like SYN2 except that GENSR re-
places CONTRE in the basic cycle. Inputs for
GENSR are easier to prepare than those of

SYNTACTIC ANALYSIS FOR TRANSFORMATIONAL GRAMMARS 325

CONTRE, so that SYN3 is being used extensively
in debugging the grammar.

The lexical lock-up and context-free parsing
steps of the procedure have not been programmed.
Because algorithms for these steps are known to ex-
ist, it was decided that their programming could be
postponed and an existing program used.

Test Grammar

A subset of the grammar, familiarly known as the
JUNIOR grammar, was selected for initial tests of
the procedure. Its dimensions are:

(Forward)
Grammar
Phrase-Structure 61 rules
Component: 105 subrules
Transformational 11 initial singularies
Component: 6 embeddings and re-
lated singularies, in-
cluding two embed-
dings
3 final singularies
20 rules
Surface Grammar 32 rules
306 subrules
Reversal Rules 6 final singularies

15 embeddings and re-
lated singularies

11 initial singularies

32 rules

Twenty-six sentences (plus some variants) con-
stitute a basic test sample for the JUNIOR gram-
mar. This sample, which includes at least one test
for each transformational rule, contains (among
others) the sentences:

1. The airplane has landed.

2. Amphibious airplanes can land in water.

3. Did the truck deliver fifty doughnuts at
nine hundred hours?

4. Were seven linguists trained by a young
programmer for three months?

5. The general that Johnson met in Wash-
ington had traveled eight thousand miles.

6. Are there unicorns?

7. John met the man that married Susan in
Vienna.

8. There were seven young linguists at

MITRE for three months.
9. Can all of the ambiguous sentences be an-
alyzed by the program?
10. The linguist the ambiguous grammar was
written by is young.

SYNI1 has been run on the full set of sample sen-
tences. The total time for a run with 28 sentences
was 5.11 minutes on the 7030 computer.

SYN3 has likewise been run with the JUNIOR
grammar. As an example of running time, a typical
run generating 20 trees carried all of them through
the transformations and reversal rules in a total of 5
minutes. All but one of these trees contained
embedded sentences; half of them contained two
embeddings.

In another experiment, a CF parser was used
with SYN2 to simulate the full procedure. The re-
sults for sentences (1), (2), and (6) are:

Sentence
(1) (2) (6)
Pre-trees 12 90 1
Presumable surface trees 8 15 1
Presumable base trees 3 4 1
Correct base trees 1 2 1

In the worst case encountered, sentence (5),
there are 48 presumable surface trees.

It is clear from even these few numbers that if
the procedure is to be practical, it will be necessary
to incorporate a highly efficient routine for obtain-
ing surface trees and to work on the rapid elimina-
tion of spurious ones.

REFERENCES

1. “English Preprocessor Manual,” SR-132,
MITRE Corp. 1964, rev. 1965.

2. N. Chomsky, Syntactic Structures, Mouton,
The Hague, 1957.

3. , Aspects of the Theory of Syntax,
M.I.T. Press, Cambridge, Mass., 1965.

4, , “‘Formal Properties of Grammars,”
Handbook of Mathematical Psychology, R. D.
Luce, R. R. Bush and E. Galanter, eds., Wiley,
New York, 1963, vol. 2, pp. 323-418.

5. and G. A. Miller, “Introduction to the
Formal Analysis of Natural Languages,” ibid., pp.
269-321.

326 PROCEEDINGS — FALL JOINT COMPUTER CONFERANCE, 1965

6. and , “‘Finitary Models of Lan-
guage Users,” ibid., pp. 419-491.

7. T. V. Griffiths and S. R. Petrick, “On the
Relative Efficiencies of Context-Free Grammar
Recognizers,” Comm. ACM, vol. 8, pp. 289-300
(1965).

8. T. V. Griffiths, “Turing machine recognizers
for general rewriting systems. IEEE Symp. Switching
Circuit Theory and Logical Design. Princeton, N. J.,
November, 1965, pp. 47-56.

9. G. H. Matthew-~, “Analysis by Synthesis of

Sentences of Natural Languages,” 1961 Internation-
al Conference on Machine Translation and Applied
Language Analysis, HM Stationery Office, London,
1962, vol. 2, pp. 531-540.

10. S. R. Petrick, “A Recognition Procedure for
Transformational Grammars,” Ph.D. thesis, M.L.T.,
1965.

11. S. Kuno, “A System for Transformational
Analysis,” paper presented at the 1965 Internation-
al Conference on Computational Linguistics, New
York City, May 20, 1965.

ERRATA

Page 318

Column 1, line 10

Insert are analysis . algorithms for CS grammars are
given by Griffiths (1964). 8

Column 2, line 30

Read or standard or self-explanatory.
Page 319
Column 2, line 4
Read although although there is in the more informal
notation.
Page 320
Column 1, Footnote 2, line 1
Delete of There is also a fourth set, conjunction
rules. Because __ the treatment, etc.

Column 2, line 12

Read instances one lowest sentence and no instances of
#S# that are

Column 2, line 40

Read questions clauses, yes-no questions, and WH-
questions. The

Column 2 (bottom) and
Page 321, Column 1 (top)

For correct format of listing, read:

Phase Structure Component: 75 rules
: approximately 275 subrules -

Transformational Component: 13 initial singularies
26 embeddings and related singularies,
including 9 embeddings
15 final singularies
54 rules

ERRATA (cont.)

Page 321

Column 1, Para. 4, line 8

For correct representation of
OPEN read:

Page 322
Column 1, item (b)

For proper representation of
displayed items read:

(A) ADRIS n
AN

B C
| /7 \
i 2 D

Column 2, line 26

Correct heading format for
Checking by Synthesis

Page 323
Column 2, after line 12

For major heading above the
secondary heading, Analysis by
Synthesis, insert:

Page 325
Column 1, line 3

Read look-up

PRES SG VTR

OPEN

1 B

Identical in type face and placement to
heading shown in line 18: Checking of
Presumable Basic Trees

OTHER APPROACHES TO THE ANALYSIS
PROBLEM (identical in type and placement
to the major heading, AREAS FOR
FURTHER INVESTIGATION, Page 323,
Column 1)

The lexical look-up and context-free
parsing

ERRATA (cont.)

Page 325 (cont.)
Column 1, displayed listing

For correct format of listing, read:

(Forward) Grammar

Phase Structure Component:

Transformational Component:

Surface Grammar

Reversal Rules

Pge 326
Column 1, Ref. 8, line 2

Replace period with comma;
insert closing quotation marks

61
105

32
306

15
11
32

rules
subrules

initial singularies

embeddings and related singularies,
including 2 embeddings

final singularies

rules

rules
subrules

final singularies

embeddings and related singularies
initial singularies

rules

for general rewriting systems,' IEEE
Symp. Switching

	Introduction
	The MITRE grammar
	The MITRE analysis procedure
	Areas for further investigation
	Computer tests
	References
	Errata

