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Abstract. We study equilibrium computation for exchange markets. We
show that the market equilibrium of either of the following two markets:

1. The Fisher market with several classes of concave non-homogeneous
utility functions;

2. A mixed Fisher and Arrow-Debreu market with homogeneous and
log-concave utility functions

can be computed as convex programming and by interior-point algo-
rithms in polynomial time.

1 Introduction

The study of market equilibria occupies a central place in mathematical eco-
nomics. This study was formally started by Walras [12] over a hundred years
ago. In this problem everyone in a population of n players has an initial endow-
ment of divisible goods and a utility function for consuming all goods—their
own and others. Every player sells the entire initial endowment and then uses
the revenue to buy a bundle of goods such that his or her utility function is
maximized. Walras asked whether prices could be set for everyone’s good such
that this is possible. An answer was given by Arrow and Debreu in 1954 [1]
who showed that such an equilibrium would exist, under very mild conditions,
if the utility functions were concave. Their proof was non-constructive and did
not offer any algorithm to find such equilibrium prices.

Fisher was the first to consider an algorithm to compute equilibrium prices for
a related and different model where players are divided into two sets: producers
and consumers; see Brainard and Scarf [2, 11]. Consumers spend money only to
buy goods and maximize their individual utility functions of goods; producers
sell their goods only for money. The price equilibrium is an assignment of prices
to goods so that when every consumer buys a maximal bundle of goods then the
market clears, meaning that all the money is spent and all the goods are sold.
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Fisher’s model is a special case of Walras’ model when money is also considered
a good so that Arrow and Debreu’s result applies.

In a remarkable piece of work, Eisenberg and Gale [6, 9] give a convex pro-
gramming (or optimization) formulation whose solution yields equilibrium al-
locations for the Fisher market with linear utility functions, and Eisenberg [7]
extended this approach to derive a convex program for general concave and
homogeneous functions of degree 1. Their program consists of maximizing an
aggregate utility function of all consumers over a convex polyhedron defined
by supply-demand linear constraints. The Lagrange or dual multipliers of these
constraints yield equilibrium prices. Thus, finding a Fisher equilibrium becomes
solving a convex optimization problem, and it could be computed by the Ellip-
soid method or by efficient interior-point methods in polynomial time. Later,
Codenotti et al. [4] rediscovered the convex programming formulation, and Jain
et al. [10] generalized Eisenberg and Gale’s convex model to handling homoth-
etic and quasi-concave utilities introduced by Friedman [8]. Here, polynomial
time means that one can compute an ε approximate equilibrium in a number
of arithmetic operations bounded by polynomial in n and log 1

ε ; or, if there is a
rational equilibrium solution, one can compute an exact equilibrium in a number
of arithmetic operations bounded by polynomial in n and L, where L is the bit-
length of the input data. When the utility functions are linear, the current best
arithmetic operations complexity bound is O(

√
mn(m + n)3L) given by [13].

Little is known on the computational complexity for computing market equi-
libria with non-homogeneous utility functions and for markets other than the
Fisher and Arrow-Debreu settings. This note is to derive convex programs to
solve several more general exchange market equilibrium problems. We show that
the equilibrium of either of the following two markets:

1. The Fisher market with several classes of concave non-homogeneous utility
functions;

2. A mixed Fisher and Arrow-Debreu market with homogeneous and log-concave
utility functions

can be computed as convex programming and by interior-point algorithms in
polynomial time.

First, a few mathematical notations. Let Rn denote the n-dimensional Eu-
clidean space; Rn

+ denote the subset of Rn where each coordinate is non-negative.
R and R+ denote the set of real numbers and the set of non-negative real num-
bers, respectively.

A function u : Rn
+ → R+ is said to be concave if for any x, y ∈ Rn

+ and any
0 ≤ α ≤ 1, we have u(αx + (1− α)y) ≥ αu(x) + (1 − α)u(y). It is homothetic
if for any x, y ∈ Rn

+ and any α > 0, u(x) ≥ u(y) iff u(αx) ≥ u(αy). It is
monotone increasing if for any x,y ∈ Rn

+, x ≥ y implies that u(x) ≥ u(y). It is
homogeneous of degree d if for any x ∈ Rn

+ and any α > 0, u(αx) = αdu(x).
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2 Convex optimization for the Fisher market with
non-homogeneous utilities

Without loss of generality, assume that there is one unit of good for each type
of good j ∈ P with |P | = n. Let consumer i ∈ C (with |C| = m) have an initial
money endowment wi > 0 to spend and buy goods to maximize his or her utility
function for a given price vector p ∈ Rn

+:

maximize ui(xi)

subject to pT xi ≤ wi

xi ≥ 0;
(1)

where variable xi = (xi1; ...; xin) is a column vector whose jth coordinates xij

represents the amount of goods bought from producer j by consumer i, j =
1, ..., n. Let ui(xi) be concave and monotonically increasing. We also assume
that every consumer is interested in buying at least one type of good and every
type of good is sought by at least one consumer. Then, a price vector p ≥ 0,
together with vectors xi, i = 1, ...,m is called a Fisher equilibrium if xi is optimal
for (1) for the given p, and

∑
i xi = e (the vector of all ones). The last condition

requires that all the goods of the producers are sold.

2.1 Homogeneous and log-concave utilities

If ui(xi) is homogeneous of degree 1 (this is without loss of generality since any
homogeneous function with a positive degree can be monotonically transformed
to a homogeneous function with degree 1) and log(ui(xi)) is concave in xi ∈ Rn

+,
the Fisher equilibrium problem can be solved as an aggregate social convex
optimization problem (see Eisenberg and Gale [6, 9, 7]):

maximize
∑

i wi log(ui(xi))

subject to
∑

i xi = e, ∀j,
xi ≥ 0, ∀i;

(2)

where the objective function may be interpreted as a socially aggregated utility.
These homogeneous and log-concave functions include many classical utili-

ties:

– All constant elasticity functions

ui(x) =




n∑

j=1

(ajxj)(σ−1)/σ




σ/(σ−1)

, aj ≥ 0, 0 < σ < ∞;

– Piece-wise concave linear function

ui(x) = min
k
{(ak)T x}, ak ≥ 0, k = 1, ..., K;
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– The Cobb-Douglass utility function

ui(x) =
n∏

j=1

x
aj

j , aj ≥ 0.

Jain et al. [10] showed how to transform a homothetic utility function into an
equivalent homogeneous degree 1 and log-concave function. Thus, the Fisher
equilibrium problem with homothetic utilities can be also solved as a convex
optimization problem. A natural question arises: Does this approach apply to
more general non-homogeneous utility functions?

2.2 Necessary and sufficient condition for a Fisher equilibrium

Consider the optimality conditions of (1). Besides feasibility, they are

(∇ui(xi)T xi) · p ≥ wi · ∇ui(xi),

pT xi = wi,
xi ≥ 0,

(3)

where ∇u(x) denotes any sub-gradient vector of u(x) at x.
Thus, the complete necessary and sufficient conditions for a Fisher equilib-

rium are the following:

(∇ui(xi)T xi) · p ≥ wi · ∇ui(xi), ∀i
pT xi = wi,∑

i xi ≤ e,
pT e ≤ ∑

i wi,
xi, p ≥ 0, ∀i.

(4)

Note here that the condition pT xi = wi should be implied by the rest of
conditions in (4): Multiplying xi ≥ 0 to both sides of the first inequality in (4),
we have pT xi ≥ wi for all i, which, together with other inequality conditions in
(4), imply

∑

i

wi ≥ pT e ≥ pT

(∑

i

xi

)
=

∑

i

pT xi ≥
∑

i

wi,

that is, every inequality in the sequence must be tight which implies pT xi = wi

for all i. Thus, the reduced necessary and sufficient Fisher equilibrium conditions
become

(∇ui(xi)T xi) · p ≥ wi · ∇ui(xi), ∀i∑
i xi ≤ e,
pT e ≤ ∑

i wi,
xi, p ≥ 0, ∀i.

(5)

The inequalities and equalities in (5) are all linear, except the first

(∇ui(xi)T xi) · p ≥ wi · ∇ui(xi).
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An immediate observation is, if every consumer i is interested in exactly one
type of good, that is, ui(xi) is a univariate concave function ui(xij̄i

) for some
j̄i ∈ P , then the above condition becomes a single inequality:

(u′i(xij̄i
) · xij̄i

) · pj̄i
≥ wi · u′i(xij̄i

),

or simply
xij̄i

· pj̄i
≥ wi.

One can transfer this non-linear inequality to

log(xij̄i
) + log(pj̄i

) ≥ log(wi)

which is a convex inequality (meaning that the set of feasible solutions is convex).
Thus, the Fisher equilibrium set is convex and can be found by solving a convex
optimization problem. It turns out that this simple trick works for other utilities
as well, as we shall present in the next subsection.

2.3 Concave and non-homogeneous utilities

Consider ui(xi) in the following additive or separable form:

ui(xi) =
∑n

j=1 aij(xij + bij)dij ,

or
ui(xi) =

∑n
j=1 aij log(xij + bij),

(6)

where aij , bij ≥ 0, and 0 < dij ≤ 1, for all i and j, are given, and variable xij

represents the amount of goods bought from good j by consumer i, j = 1, ..., n.
One can see that ui(xi) is a concave and monotone increasing function in xi =
(xi1; ...;xin) ≥ 0.

This utility function (6) includes as special case several popular utilities:

– linear utility functions: dij = 1 for all j in the first form;
– certain constant elasticity functions: bij = 0 and dij = d, 0 ≤ d ≤ 1, for all

j in the first form;
– the Cobb-Douglass utility function: bij = 0 in the second form;
– a non-homogeneous Cobb-Douglass utility functions given by [3]: the second

form.

Note that ui(xi) (6),can be non-homothetic; see, for example, u(x, y) =
√

x + y.
Chen at al. [3] developed approximation algorithm with running time polynomial
in n and 1

ε for the utility function in the second form of (6).

Lemma 1. Given ui(xi) in the forms of (6), (∇ui(xi)T xi) is concave, and
log(∇jui(xi)) is convex for every j, in xi ∈ Rn

+.
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Proof. For simplicity, let us omit index i, so that

u(x) =
n∑

j=1

aj(xj + bj)dj

or

u(x) =
n∑

j=1

aj log(xj + bj).

Thus, for the first form

∇u(x) = (..., ajdj(xj + bj)dj−1, ...),

so that
∇u(x)T x =

∑

j

ajdj(xj + bj)dj−1xj .

It is easily see that each (xj + bj)dj−1xj is concave in xj ≥ 0 since 0 ≤ dj ≤ 1;
therefore, so is the sum:

∑
j ajdj(xj + bj)dj−1xj .

Furhtermore,

log(∇ju(x)) = (dj − 1) log(xj + bj) + log(ajdj)

which is convex in xj > 0 for every j.
Similarly, one can prove the lemma for the the second form. This completes

the proof. tu
Thus, one can rewrite the nonlinear inequality in (5) as

log(∇ui(xi)T xi) + log(pj) ≥ log(wi) + log(∇jui(xi)), ∀j,
which is a convex inequality (the set of feasible solutions is convex) by Lemma
1. Thus,

Theorem 1. If utilities ui(xi) are given in the forms of (6), then the Fisher
equilibrium set of (5) is convex and can be computed as a convex optimization
problem; for example, by using polynomial-time interior-point methods.

3 Convex optimization for the Fisher market where
consumers may retain money

In the classical Fisher market, consumers spend money only to buy goods and
maximize their individual utility functions of goods; producers sell their goods
only for money. Now consider a market where each consumer can retain certain
amount of money from his or her own budget, that is, his or her utility includes
the amount of retained money:

maximize ui(xi, si)

subject to pT xi + si ≤ wi

xi, si ≥ 0,

(7)
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where again xi = (xi1; ...; xin) and its jth component xij represents the amount
of good j bought by consumer i, and si denotes the retained money (e.g., de-
posited in a bank for a short-time interest gain). We assume that ui(xi, si) is
a monotone increasing and concave function of (xi, si) ≥ 0. This mixed market
has a number of applications in managing supply chains and resource allocations.

3.1 The mixed market Equilibrium

In this mixed market, an equilibrium is defined as a non-negative price vector
p ∈ Rn

+ at which there exist a bundle of goods (xi ∈ Rn
+, si ≥ 0) for each

consumer i ∈ C such that the following conditions hold:

1. The vector (xi; si) optimizes retailer i’s utility (7) given her money budget
wi.

2. For each good j, the total amount available equals the total amount con-
sumed by the consumers, that is,

∑
i∈C xij = 1.

3. The sum of the spending and retaining money equals the sum of the money
possessed by all consumers, that is,

∑
j∈P pj +

∑
i∈C si =

∑
i∈C wi.

The existence of such an equilibrium is immediately implied by the existence
of an Arrow-Debreu equilibrium by treating money as an additional “good”.
One may attempt to prove the existence using the Fisher equilibrium model.
However, in such a Fisher equilibrium model the price for the money “good”
(si) has to be fixed to 1 (the same as wi), which is difficult to enforce. Thus,
we need to invoke the Arrow-Debreu model by assigning price pn+1 to a unit of
money. Then, each consumer’s problem becomes

maximize ui(xi, si)

subject to pT xi + pn+1si ≤ pn+1wi,
xi, si ≥ 0,

where the total supply of money is
∑

i wi. Therefore, the Arrow-Debreu theorem
implies that an equilibrium price vector (p; pn+1) ∈ Rn+1

+ exists. In particular,
pn+1 > 0 at every Arrow-Debreu equilibrium since money has a value at least
to every producer. By dividing (p; pn+1) by pn+1, we have an equilibrium price
for all goods, and the price for the money “good” equals 1:

Corollary 1. An equilibrium always exists for the Fisher market where con-
sumers may retain money.

However, it was unknown if the mixed market admits a convex program
for computing its equilibrium, or it has to use the more difficult Arrow-Debreu
equilibrium framework to compute it, even the utility is homogeneous and log-
concave. The computational complexity issue of the mixed market equilibrium
problem is important, since there is a fundamental difference between the Fisher
and Arrow-Debreu models with respect to computational complexity. For exam-
ple, when the utility is Leontief

ui(x) = min
{

xj

aj
: aj > 0

}
,
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a homogeneous of degree one and log-concave function, the Fisher market equi-
librium can be computed as a convex program in polynomial time while the
Arrow-Debreu market equilibrium is NP-hard to decide; see Ye [14] and Code-
notti et al. [5].

We settle the computational complexity issue of the mixed market equilib-
rium problem in the next subsection by showing that any optimal solution to
a convex program yields an equilibrium if the utility functions are log-concave
and homogeneous of degree one.

3.2 Convex optimization for computing an equilibrium

From (4), the necessary and sufficient conditions for the mixed market equilib-
rium are

(p; 1) ≥ wi

∇ui(xi,si)T (xi;si)
· ∇ui(xi, si), ∀i∑

i xi ≤ e,∑
j pj +

∑
i si ≤

∑
i wi,

xi, p ≥ 0, ∀i;
(8)

where one can see that the price for the money good is set to 1.
Let ui(xi, si) be homogeneous of degree one and log(ui(xi, si)) be concave in

(xi; s)i) ∈ Rn+1
+ . Recall that this function includes all constant elasticity, piece-

wise concave linear, the Cobb-Douglass utility, and the Leontief utility functions.
Now consider the convex optimization problem

maximize
∑

i wi log(ui(xi, si))− s

subject to
∑

i xij ≤ 1, ∀j,∑
i si − s = 0,

(xi, si) ≥ 0, ∀i.
(9)

The first set of constraint inequalities indicates that the demand does not exceed
the supply; the second simply records the total amount of money retained by
all consumers as s. Then, the retained amount s is subtracted linearly from the
aggregate social utility function. This makes economical sense since this amount
has been withdrawn from the exchange market by the consumers so that one
should extract them from the aggregated social utility for the exchange market.

We have

Theorem 2. Let (x̄i, s̄i), i = 1, ...,m, be an optimal solution for convex program
(9), and let pj be an optimal Lagrange multiplier for each good j in the first
constraint set of (9). Then, these solutions form an equilibrium for the mixed
market (7).

Proof. First, the feasible set of the optimization problem (9) is linear, com-
pact and convex, the maximal solution exists and the maximum value is finite.
Moreover, the objective function to be maximized is concave. Thus, the first-
order optimality conditions are necessary and sufficient for an optimal solution
(x̄i, s̄i). These optimality conditions can be written (using the fact that the
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optimal Lagrange multiplier for the second constraint automatically equals 1)
as:

wi

ui(x̄i,s̄i)
∇xiui(x̄i, s̄i) ≤ p, ∀i

wi

ui(x̄i,s̄i)
∂si

ui(x̄i, s̄i) ≤ 1, ∀i
wi

ui(x̄i,s̄i)

(∇xi
ui(x̄i, s̄i)T x̄i + ∂si

ui(x̄i, s̄i)s̄i

)
= pT x̄i + s̄i,

(10)

where p = (p1, ..., pn) and pj is the optimal Lagrange multiplier for each j
in the first constraint set of (9). The third equality of condition (10) is called
the complementarity condition, which, together with the fact that ui(xi, si) is
homogeneous of degree one, namely ui(x̄i, s̄i) = ∇ui(x̄i, s̄i)T (x̄i; s̄i), imply

pT x̄i + s̄i =
wi

ui(x̄i, s̄i)
(∇xi

ui(x̄i, s̄i)T x̄i + ∂si
ui(x̄i, s̄i)s̄i

)

=
wi

ui(x̄i, s̄i)
(∇ui(x̄i, s̄i)T (x̄i; s̄i))

=
wi

ui(x̄i, s̄i)
· ui(x̄i, s̄i)

= wi,

so that ∑

i

(pT x̄i + s̄i) =
∑

i

wi.

Thus, (x̄i, s̄i), i = 1, ..., m, and p satisfy the equilibrium conditions of (8). tu
It is well-known that one can use interior point methods to solve the linearly

constrained convex program (9) to yield both primal and dual optimal solutions
in polynomial time; see [13]. Therefore, an equilibrium for the mixed market (7)
can be found in polynomial time.
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