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Abstract

[1, 2] have shown for the dynamic spectrum allocation problem that a competitive market

model (which sets a price for transmission power on each channel) leads to a greater social utility

(by reducing cross talk) than the Nash equilibrium. We show that the market equilibrium is

the solution of a linear complementarily problem, and hence the market model possesses no

additional computational complexity beyond that of the Nash equilibrium model and can be

calculated efficiently. We also show that under reasonable conditions, any tâtonnement process

for adjusting the prices will converge to the equilibrium prices. The conditions are that users

of a channel experience the same noise levels and that the cross-talk effects between users are

low-rank and weak.

1 Introduction

Dynamic spectrum management (DSM) is a technology to efficiently share the frequency spectrum

among users in a communication system. This technology can be used in digital subscriber line

(DSL) systems to reduce cross-talk interference and improve total system throughput (see [3, 4],
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and [5] for a survey). DSM is also a promising candidate for multiple access in overlay cognitive

radio technology [6, 7].

In DSM, multiple users coexist in a channel and this causes the co-channel interferences. This

interference (an externality) distinguishes DSM from other network-flow control problems [8, 9].

The goal of DSM is to manage the power allocations in all the channels in order to maximize the

sum of the data rates of all the users [3]. Unfortunately, the problem of maximizing the total rate

subject to power constraints is non-convex and cannot be solved efficiently in polynomial time.

Recently, the game-theoretic formulation of DSM has attracted interest in a variety of contexts:

for DSL [10, 3, 4], for frequency-selective Gaussian interference channels [11], for CDMA uplink

[12], for fading wireless channels [13], and for the general problem of power control (Chapter 6 of

[14]). In the game-theoretic formulation, each user maximizes her data rate, the Shannon utility

function, with the knowledge of other users’ current power allocations. This is a competitive game

whose pure Nash equilibrium exists and is unique under certain conditions. One merit of the game-

theoretic formulation is that the user’s problem is convex and can be solved efficiently when other

users’ power allocations are fixed. Various iterative water filling algorithms have been proposed to

solve the Nash equilibrium (e.g., [10]).

However, the power allocation in a Nash equilibrium may not be socially optimal. Because of

the non-cooperative nature of the Nash equilibrium, users tend to compete for “good” channels

regardless of the interferences caused to others to the detriment of overall system efficiency, when

they may all be better off by avoiding interference through the use of different channels. This is an

example of the well-known “tragedy of the commons” in economics [15]. A simple example of this

problem in DSM with two users and two channels was presented in [1].

Therefore we turn to the competitive market model for the DSM problem in [1], where in each

channel a fictitious price is imposed on power allocations. In the competitive market model, each

user maximizes her total data rate by purchasing some power in each channel, given her budget

constraint. The price for power in each channel is determined by some central office to balance

the channel load and to make the demand meet the supply. The existence of a market equilibrium

was proven in [1]. Also, it was shown in [2] that the market equilibrium achieves higher social

utility (total rate) than the Nash equilibrium, if we properly assign budgets to guarantee fairness

among all users. However, the challenge is to find the market equilibrium efficiently, especially the
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equilibrium prices. Traditionally, the price is determined by an auction type algorithm called the

tâtonnement process [15]. However, it is not known whether this process converges with Shannon

utility functions.

In this paper, we focus on solving this competitive market model for DSM and make three

contributions. We first show that the competitive market model can be formulated as a linear

complementarity problem (LCP) [16], as the Nash equilibrium model could [4], even though the

original problem is nonlinear. The key lies in a change of variables from {price, power allocation} to

{price, revenue}. Thus, the competitive market model possesses no additional computational com-

plexity beyond that of the Nash equilibrium model. Secondly, we show that when the interference

coefficients are user symmetric, then the problem is equivalent to finding KKT points of a QP, for

which an FPTAS (fully polynomial-time approximation scheme) exists [17]. Lastly, we prove that

under certain low-rank conditions, a simple distributed price-adjust tâtonnement process converges

to the equilibrium price, which is the first convergence result in spectrum management with the

Shannon utility functions.

The paper is organized as follows. The next section presents the problem formulation. Section 3

presents the LCP formulation and the FPTAS result, and section 4 is about the decentralized price-

adjustment tâtonnment process. We conclude in section 5 and present some of the technical proofs

in the appendices.

2 Problem Formulation

The notation in this paper is conventional. We use lower case, bold letters for vectors and capital,

bold letters for matrices. X ≥ 0 and x ≥ 0 are elementwise inequalities while X � 0 and X � 0

indicate that X is semi-positive definite and positive definite, respectively. In addition, I is the

identity matrix; ρ(X) is the spectral radius of X; X† is the Moore-Penrose pseudoinverse of X;

and (x)+ := max{x, 0}.

Consider a communication system consists of n users and m channels. The users coexist in

each channel and may transmit at the same time, causing interference to each other. Suppose the

power allocated by user i to channel j is xij ≥ 0. The total demand in channel j, the total power

allocated by all the users in that channel, is
∑n

i=1 xij . This may not exceed the channel limit cj .
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(Regulatory reasons may limit the total transmission power in a channel.)

For overlay cognitive radio [6], a natural extension would be to limit the weighted sum,
∑n

k=1 a
j
0kxkj ≤

cj , of the transmission powers of the secondary users in order to limit the interference experienced

by the channel’s primary user. Here aj
0k is the interference coefficient on channel j of user k with

the primary user. This extension would not substantially change our results.

An efficient allocation of spectrum requires that the total power in each channel is at its limit,∑n
i=1 xij = cj for all j. To achieve this, our competitive market model associates a price pj > 0

with each channel j. Alternatingly, users adjust their power allocations based on these prices and

the spectrum manager adjusts the prices so that eventually the market clears: the demand in each

channel equals the supply. For a given vector of prices, p := [p1, . . . , pm]>, each user i chooses the

power allocation xi := [xi1, . . . , xim]> that maximizes her utility function subject to her budget

wi
1.

User i uses the Shannon utility [18]

ui(xi, x̄i) :=
m∑

j=1

log

(
1 +

xij

σij +
∑

k 6=i a
j
ikxkj

)
. (1)

because it represents the user’s total data rate across all channels. Here x̄i := [x1, . . . ,xi−1,xi+1, . . . ,xn]>

is the power allocation of the other n − 1 users; σij > 0 is the noise level for user i on channel j;

and aj
ik ≥ 0 is the cross-talk coefficient for interference on channel j from user k 6= i on user i. We

do not normalize the channel capacities (by scaling the allocations {xij} and noise levels {σij}) in

order to show explicitly their influence on our results. The optimal power allocation x∗i (p, x̄i) of

user i, when she faces prices p and power allocations x̄i of the other users, is determined by the

following convex optimization problem

x∗i (p, x̄i) = arg max
xi

ui(xi, x̄i)

subject to p>xi ≤ wi,

xi ≥ 0.

(2)

This optimization problem has a unique solution because it is strictly convex. Fig. 1 illustrates this
1[2] discusses how to choose the users’ budgets.
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competitive market model for spectrum allocation.

Each users’ power-allocation problem has a water filling solution (Appendix A gives the deriva-

tion)

x∗ij =

 νi

pj
− σij −

∑
k 6=i

aj
ikxkj

+

(3)

where the dual variable νi is determined by the budget constraint

p>xi = wi, (4)

which is tight. Despite the use of prices, our derivation in Appendix A is analogous to the one in

[10].

The competitive equilibrium (CE) [19] of this model is the vector of prices p∗ and the cor-

responding user-optimal power allocations {x∗ij} so that the market clears. [1] proved that in

this model a CE exists. In the next section we describe the CE as an LCP and then describe a

decentralized price-adjustment process in section 4.

3 CE as LCP

Given a vector of prices p, the simultaneous solution of all users’ power-allocation problems is a

Nash equilibrium. By applying the fact that x = y+ is equivalent to x ≥ y ∧ x(x− y) = 0 ∧ x ≥ 0

to (3) and (4), we obtain the following LCP for the Nash equilibrium [4]:

xij ≥
νi

pj
− σij −

∑
k 6=i

aj
ikxkj ∀ij,

xij

xij −
νi

pj
+ σij +

∑
k 6=i

aj
ikxkj

 = 0 ∀ij,

xij ≥ 0 ∀ij,

p>xi = wi ∀i.

(5)

In the CE, prices p are also equilibrium variables. Thus simply adding the market clearing

condition to (5) results in a nonlinear complementarity problem for the CE. We now reformulate

the CE as an LCP. Let the revenue of user i on channel j be rij := xijpj . Define the vectors
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rj := [r1j , . . . , rnj ]>, σj := [σ1j , . . . , σnj ]>, w := [w1, . . . , wn]>, ν := [ν1, . . . , νn]>, and the slack

vectors sj . Also define the interference coefficient matrix Aj with ones on the diagonal, [Aj ]ii = 1,

and [Aj ]ik = aj
ik for k 6= i. Then (5) is equivalent to

Ajrj + σjpj − ν − sj = 0 ∀j,

rijsij = 0 ∀ij,

rj , sj ≥ 0 ∀j,∑
j

rj = w.

(6)

A competitive equilibrium is a set of prices and allocations that satisfy the above equilibrium

conditions (6) and the market clearing condition:
∑

i xij = cj or equivalently 1>rj = cjpj for each

channel j.

One can use this condition to eliminate prices from (6) and obtain the following LCP for the

CE: (
Aj +

1
cj
σj1>

)
rj − ν − sj = 0 ∀j,

rijsij = 0 ∀ij,

rj , sj ≥ 0 ∀j,∑
j

rj = w.

(7)

To see the structure of this LCP, consider the case of two channels, m = 2, and let M j :=

Aj + 1
cj
σj1>. Then, (7) becomes


M1 0 −I

0 M2 −I

I I 0



r1

r2

ν

 =


s1

s2

w

 ,

 r1

r2

 ≥ 0, and

 s1

s2

 ≥ 0, (8)

where we look for a complementarity solution r>1 s1 +r>2 s2 = 0. If both M1 and M2 are monotone
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matrices, that is, M1 +M>
1 and M2 +M>

2 are positive semidefinite, then the LCP matrix


M1 0 −I

0 M2 −I

I I 0

 (9)

is also monotone.

Note that the solution of an LCP is determined by a system of linear equations. Furthermore,

a solution of an LCP can be computed in polynomial time if the LCP matrix is monotone [16],

and a KKT point of a quadratic optimization problem can be computed by a fully polynomial-time

approximation scheme (FPTAS) [17]. Therefore, formulation (7) leads to our first few main results.

Theorem 1. Consider the competitive market model for spectrum management.

(i) Let the parameters wi, cj, σij, and aj
ik be rational. Then, there exists a CE with rational

entries, that is, the entries of the equilibrium point are rational values.

(ii) If the matrix Aj + 1
cj
σj1> is monotone for all j, then a CE can be computed in polynomial

time.

(iii) If the matrix Aj + 1
cj
σj1> is symmetric (in particular, if Aj is symmetric and σ1j = σij for

all i) for all j, then the competitive equilibria are the KKT points of the following QP

minimize
r1,...,rm

∑
j

1
2
r>j

(
Aj +

1
cj
σj1>

)
rj

subject to
∑

j

rj = w (with ν as the Lagrange multiplier)

rj ≥ 0 ∀j (with sj as the Lagrange multiplier).

(10)

(iv) There is a FPTAS to compute a CE equilibrium if the matrix Aj + 1
cj
σj1> is symmetric for

all j.

Assuming strict monotonicity (replacing “positive semidefinite” with ”positive definite” in the

definition of monotonicity) ensures that the CE is unique.

Corollary 2. There is a unique CE if the matrix Aj + 1
cj
σj1> is strictly monotone for all j.
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For example, a symmetric and weak-interference condition, that is, for all j,
∑

k 6=i a
j
ik < 1 for

all i and
∑

i 6=k a
j
ik < 1 for all k, will ensure that Aj is strictly monotone for all j. In addition, if we

have equal noise: σ1j = σij , ∀i, j, then Aj + 1
cj
σj1> will be strictly monotone for all j. The equal

noise condition is that all users of a channel experience the same background noise level.

4 Tâtonnement Process for Spectrum Management

In a centralized approach, the manager gathers all the parameters (budgets, noise levels, and

interference coefficients); solves (2) or (7); and then recovers and publishes the optimal power

allocations and prices. We now describe a decentralized spectrum management approach similar to

an open-outcry auction for a divisible good (or one for multiple copies of the same item). At such

an auction, the auction manager announces a price, notes the bids, and then repeats the process,

adjusting the price (up or down), until the quantity demanded equals the quantity for sale.

Unlike the centralized approach where the manager knows all the parameters and does all the

computation, this approach reduces the communication between users and distributes the compu-

tation so that each user or channel determines its own power allocations using the water-filling

solution, a simple computation requiring only knowledge of prices and the local interference level.

In the decentralized approach each user must only send its power allocations and receive the channel

prices from the spectrum manager (unlike the centralized approach where each user must transmit

the noise levels and interference coefficients to the manager). Such low communication overhead

is important for system such as distributed sensor networks where energy for sending messages is

limited. In fact, the spectrum manager need not exist if each user can observe the total demand

on each channel and calculate the price updates themselves. In this case the process would be fully

distributed and require no communication between users.

In our approach, the manager publish an initial vector of prices, p. Users then arrive at power

allocations forming a Nash equilibrium for these prices, that is, they arrive at rj and ν for fixed p
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that satisfy the conditions in (6):

Ajrj − ν − sj = −σjpj ∀j,

rijsij = 0 ∀ij,

rj , sj ≥ 0 ∀j,∑
j

rj = w.

(11)

Then, the auction manager checks the excess demand 1>xj − cj or 1>rj − cjpj and makes a price

adjustment for each channel j. This repeats, with the spectrum manager adjusting the prices each

iteration, until the market clears, i.e., until the demand in each channel equals the supply:

1>xj = 1>rj/pj = cj , ∀j. (12)

Analogous to the CE LCP in section 3, if the matrix Aj is monotone for all j, then a Nash

equilibrium of the LCP (11) can be computed in polynomial time for a given vector of prices

p. Moreover, the Nash equilibrium is unique if the matrix Aj is strictly monotone for all j.

Proposition 2 of [4] gives a similar condition for uniqueness. (The model in [4] does not have prices,

but these can easily be incorporated without affecting the results, by scaling the power allocations

and the noise levels.) On the other hand, if the matrix Aj is symmetric for all j, then the Nash

equilibria of (11) are the KKT points of the following QP

minimize
r1,...,rm

∑
j

(
1
2
r>j Ajrj + pjσ

>
j rj

)
subject to

∑
j

rj = w (with ν as the Lagrange multiplier)

rj ≥ 0 ∀j (with sj as the Lagrange multiplier).

(13)

Thus, similar to the way we constructed an FPTAS for the CE in section 3, there is an FPTAS to

compute a Nash equilibrium of (11) after the prices p are posted. However, these methods are still

centralized.

9



4.1 Decentralized Computation of a Nash Equilibrium

We now describe decentralized methods for solving (11) for a given vector of prices p. Our first

method works for the case where the matrices Aj are symmetric and positive semidefinite. Since

(13) is convex and Slater’s condition holds, it is equivalent to its Lagrange dual

max
ν

min
r1,...,rm

∑
j

(
1
2
r>j Ajrj + pjσ

>
j rj + ν>r

)
− ν>w

subject to rj ≥ 0 ∀j.

(14)

Note that the inner minimization is separable across channels,

max
ν
−ν>w +

∑
j


min
rj

1
2
r>j Ajrj + (pjσj + ν)>rj

subject to rj ≥ 0.

 (15)

Since the outer optimization problem is convex, almost any hill-climbing method for adjusting ν

will converge. We could for example increase νi for each user i where
∑

j rij < wi (and otherwise

decrease νi). In a similar fashion, the CE problem (10) can be decomposed across channels.

An iterative water-filling algorithm (IWFA) is a second decentralized method for finding a Nash

equilibrium (11) after prices are posted. It is a simple round-robin approach where users take turns

updating their power allocations. Corollary 1 in [4] shows that the IWFA converges linearly if the

matrix Aj is symmetric for all j. (As noted above, the model in [4] does not have prices, but these

can easily be incorporated.) The difference between our decetralized approach and the IWFA is

that we decompose the problem across channels while the IWFA decomposes the problem across

users.

4.2 Price Adjustment Based on Excess Demand

We return to the key question: how to adjust the prices and ensure that the process quickly

converges to a CE. Tâtonnement processes [15] are simple approaches that adjust the price based

on the excess demand: if the supply of power for a channel, cj , exceeds the total demand,
∑

i xij ,

then the price of power on that channel, pj , increases (and decreases if demand falls short of

supply). This is a very broad class of price-update rules, that can be applied in continuous time
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with prices and allocations continuously adjusting or it can be applied iteratively (i.e., in discrete

time), alternating between updating prices and power allocations. The condition for the convergence

of a tâtonnement process is weak gross substitutability (WGS). Theorem 4.1 of [20] (also found in

the classic [15]) shows that WGS is a sufficient condition for continuous-time tâtonnement processes

while [21] shows that it is a sufficient condition for discrete-time tâtonnement processes.

Theorem 3. (i) Suppose that prices for each product j are adjusted continuously by

dpj(t)
dt

= fj(yj(p(t))), (16)

where fj(·) is a sign preserving function (i.e., sign fj(y) = sign y) and yj is a measure of the

excess of product j. Then y → 0 if weak gross substitutability holds, that is, ∂lyj(p) ≥ 0 for

all l 6= j.

(ii) Suppose that prices for each product j are adjusted discretely by

pt+1
j = pt

j + fj(yj(pt)), (17)

where fj(·) is a sign preserving function (i.e., sign fj(y) = sign y) and yj is a measure of the

excess of product j. Then yt → 0 if weak gross substitutability holds, that is, ∂lyj(p) ≥ 0 for

all l 6= j.

With some conditions, we can prove WGS for our spectrum management problem. For algebraic

simplicity we use excess revenue instead of excess demand (this is without loss of generality since

for each j the factor pj could easily be incorporated into fj(y)).

Theorem 4. For each channel j define yj(p) = pj(
∑

i x
∗
ij − cj). Assume the following conditions

(i) symmetric, weak-interference condition:
∑

k 6=i a
j
ik < 1 and

∑
k 6=i a

j
ki < 1, ∀j;

(ii) low-rank condition: the interference coefficient matrices Aj can be written as Aj = Dj+ajb
>
j ,

∀j where Dj diagonal, Dj ,aj , bj ≥ 0, and aj , bj in the range of Dj; and

(iii) equal noise condition: σij = σj, ∀i, j.
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Then our spectrum model satisfies WGS, i.e., ∂lyj(p) ≥ 0 for all l 6= j, so that both continuous and

discrete tâtonnement price-adjustment processes converge.

Proof. See Appendix B.

We remark that condition (ii) in theorem 4 was used in [1, 2] to show the convexity of the

equilibrium set, where they assumed that aj
ik = aj

i ≤ 1 for all i, j, k. Thus, for all j, we can write

Aj = Dj + aj1>.

To the best of our knowledge, theorem 4 is the first convergence result for a tâtonnement price-

adjustment process applied to a spectrum management problem with the Shannon utility functions.

The conditions in theorem 4, excluding condition (ii), are similar to those in (2) for the CE to have

a unique solution. We conjecture that condition (ii) is not necessary and that WGS will hold when

only conditions (i) and (iii) are satisfied. For two channels, m = 2, convergence of the tâtonnement

process can be proven with weaker conditions.

Theorem 5. If m = 2 and the weak-interference condition holds for A>1 and A>2 , that is,
∑

k 6=i a
j
ki <

1 for all ij, then weak gross substitutability holds and tâtonnement price-adjustment processes con-

verge.

Proof. See Appendix B.

5 Conclusions

We considered the competitive market model for dynamic spectrum management of communica-

tion systems. We showed that the problem of finding the market equilibrium can be formulated

as a linear complementarity problem (LCP) and solved efficiently. Besides the centralized LCP

approach, we also studied decentralized tâtonnement processes. We proved conditions for these

simple price-adjustment processes to converge.

Acknowledgement The authors thank Erick Delage, Yichuan Ding, and Ramesh Johari for
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NSF DMS-0604513.
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A Derivation of the Water Filling Solution

The Lagrangian of user i’s power allocation problem (1) and (2) is

−
∑

j

log

(
1 +

xij

σij +
∑

k 6=i a
j
ikxkj

)
+ ν̃i

∑
j

pjxij − wi

−∑
j

λijxij , (18)

where λij ≥ 0 and ν̃i ≥ 0 are the associated Lagrange multipliers. Setting the gradient of the

Lagrangian with respect to xij to zero, we have

pj ν̃i −
1

σij + xij +
∑

k 6=i a
j
ikxkj

= λij ≥ 0. (19)

Since pj and σij are positive and the aj
ik are nonnegative, it follows that ν̃i > 0. Thus, the budget

constraint,
∑

j pjxij ≤ wi, is tight, and we can define νi := 1/ν̃i. Using (19), the complementary

slackness condition λijxij = 0, implies that if xij > 0, then λij = 0, or equivalently

xij =
νi

pj
− σij −

∑
k 6=i

ai
kjxkj . (20)

Similarly, xij = 0 implies λij ≥ 0, or equivalently turns the equality in (20) into ≥. This leads to

the water filling solution for the power allocation in (3) and (4).

B Proof of WGS

Proof of theorem 4. Let [r∗1(p), . . . , r∗m(p)] be the solution to (6). We rewrite yj(p) = 1>r∗j (p)−pj .

For j 6= l, we will show that both the left and right hand limits are ∂lyj(p) = 1>∂lr
∗
j (p) ≥ 0. Let

us look at the left hand limit (the right hand limit will be similar). Then there is a small open

interval (t − ε, t) in which the active set of the LCP is constant. Let the set Sj be the active set

of channel j, Sj := {i : sij = 0} and Ij the n × n matrix so that [Ij ]il := 1 if i = l ∈ Sj and 0

otherwise. Note that Ijsj = 0 and rij = 0 for i /∈ Sj , thus Ijrj = rj . Thus the first equation in

(6) becomes

IjAjIjrj = Ijν − pjIjσj . (21)
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Defining Āj := IjAjIj it follows that Āj
†
Ij = Āj

† and that one solution is

rj = Āj
†
ν − pjĀj

†
σj . (22)

Then the budget constraint (the last equation in (6)) gives us

∑
k

Ā
†
kν − pkĀ

†
kσk = w. (23)

Thus one solution for ν is

ν =

(∑
k

Ā
†
k

)†(
w +

∑
k

pkĀ
†
kσk

)
. (24)

Thus for j 6= l,

∂yj

∂pl
=

∂

∂pl
1>rj = 1>Ā†j

∂ν

∂pl
, (25)

∂yj

∂pl
= 1>Ā†j

(∑
k

Ā
†
k

)†
Ā
†
lσl. (26)

The equal noise condition and lemma 9 then prove the claim.

Proof of theorem 5. Following the proof of theorem 4 we need to show that ∂y2

∂p1
given by (26) is

nonnegative:
∂y2

∂p1
= 1>Ā†2

(
Ā
†
1 + Ā†2

)†
Ā
†
1σ1 = 1>

(
Ā2 + Ā1

)†
σ1. (27)

Since 0.5(Ā2 + Ā1)> is a channel matrix obeying weak interference we can apply lemma 8 to show

that 1>
(
Ā2 + Ā1

)† is a nonnegative vector. The fact that σ1 ≥ 0 completes the proof.

Lemma 6 (Sherman-Morrison Formula). Provided that C−1 exists and 1 + b>C−1a 6= 0, then

(C + ab>)−1 = C−1 − (C−1a)(b>C−1)
1 + b>C−1a

. (28)

Lemma 7. For i = 1, . . . ,m, let Aj = Dj + ajb
>
j where Dj diagonal, Dj ,aj , bj ≥ 0, and aj , bj

in the range of Dj. If for each i there exists j such that [Dj ]ii > 0, then,
(∑

j A
†
j

)−1
exists and is
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nonnegative.

Proof. Applying lemma 6 to the range of Aj we obtain A†j = D†j −Bj , where Bj :=
D†jajb

>
j D
†
j

1+b>j D
†
jaj

.

Since Dj ≥ 0, D†j ≥ 0. Therefore, aj , bj ≥ 0 implies Bj ≥ 0. Thus
∑

j A
†
j can be written as

∑
j

A†j = D −B, (29)

where D :=
∑

j D
†
j and B :=

∑
j Bj . Since D � 0, D−1 exists and we may define C :=

D−1/2BD−1/2. Note that D ≥ 0, B ≥ 0, and D diagonal. Thus D−1/2 ≥ 0 and C ≥ 0. Note

that for any x 6= 0,

∣∣∣x>Cx∣∣∣ =
∣∣∣xD−1/2BD−1/2x

∣∣∣ ≤∑
j

∣∣∣xD−1/2BjD
−1/2x

∣∣∣ (30)

=
∑

j

∣∣∣∣∣xD
−1/2D†jajb

>
j D

†
jD
−1/2x

1 + b>j D
†
jaj

∣∣∣∣∣ ≤∑
j

ρ((D†j)
1/2ajb

>
j (D†j)

1/2)
∥∥∥(D†j)

1/2D−1/2x
∥∥∥2

2

1 + b>j D
†
jaj

(31)

=
∑

j

(b>j D
†
jaj)(x>D−1/2D†jD

−1/2x)

1 + b>j D
†
jaj

≤ λ
∑

j

x>D−1/2D†jD
−1/2x (32)

where λ = maxj
b>j D

†
jaj

1+b>j D
†
jaj

. Since Dj ,a, b ≥ 0, λ ≥ 0 and since a and b are in the range of Dj ,

λ < 1. Therefore, for any x 6= 0,

∣∣∣x>Cx∣∣∣ <∑
j

x>D−1/2D†jD
−1/2x = x>D−1/2DD−1/2x = x>x. (33)

Hence, ρ(C) < 1 and thus (I − C)−1 =
∑∞

k=0C
k ≥ 0. Therefore, (

∑
j A
†
j)
−1 = (D − B)−1 =

D−1/2(I −C)−1D−1/2 ≥ 0.

Lemma 8. If A is a channel matrix satisfying the weak-interference assumption, that is,
∑

k 6=i a
j
ik <

1 for all i, then A−11 ≥ 0.

Proof. Since A is a channel matrix we can write A = I +B for some B ≥ 0. Hence

A−11 = (I +B)−11 = (I +B)−1(I −B)−1(I −B)1 =
(
I −B2

)−1 (I −B)1. (34)
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The weak interference assumption implies that ρ(B) < 1. Hence
(
I −B2

)−1 exists and equals∑∞
k=0B

2k ≥ 0. In addition, (I − B)1 > 0, due to the weak interference assumption. Thus

A−11 ≥ 0.

However, A−1σ may be negative for asymmetric noise levels.

Lemma 9. Assume conditions (i)–(iii) of theorem 4 hold. For each j consider a set Sj and

construct Āj so that [Āj ]il := [Aj ]il if i, l ∈ Sj and 0 otherwise. Then

1>Ā†j

(∑
k

Ā
†
k

)†
Āl
†1 ≥ 0 ∀j, l. (35)

Proof. Applying lemma 8 to the range of Āl implies that Ā†l 1 ≥ 0. Similarly for Āk. Applying

lemma 7 to the union of the ranges of Dj shows that
(∑

k Ā
†
k

)†
≥ 0. This proves the claim because

the product of nonnegative vectors and a nonnegative matrix is nonnegative.
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Figure 1: Competitive spectrum market model.
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