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Abstract. In this paper we study semidefinite programming (SDP)
models for a class of discrete and continuous quadratic optimization prob-
lems in the complex Hermitian form. These problems capture a class of
well–known combinatorial optimization problems, as well as problems
in control theory. For instance, they include Max–3–Cut with arbi-
trary edge weights (i.e. some of the edge weights might be negative).
We present a generic algorithm and a unified analysis of the SDP re-
laxations which allow us to obtain good approximation guarantees for
our models. Specifically, we give an (k sin(π/k))2/(4π)–approximation
algorithm for the discrete problem where the decision variables are k–
ary and the objective matrix is positive semidefinite. To the best of our
knowledge, this is the first known approximation result for this family
of problems. For the continuous problem where the objective matrix is
positive semidefinite, we obtain the well–known π/4 result due to [2], and
independently, [12]. However, our techniques simplify their analyses and
provide a unified framework for treating these problems. In addition, we
show for the first time that the integrality gap of the SDP relaxation is
precisely π/4. We also show that the unified analysis can be used to ob-
tain an O(1/ log n)–approximation algorithm for the continuous problem
in the case where the objective matrix is not positive semidefinite.

1 Introduction

Following the seminal work of Goemans and Williamson [6], there has been an
outgrowth in the use of semidefinite programming (SDP) for designing approxi-
mation algorithms. Recall that an α–approximation algorithm for a problem P
is a polynomial–time algorithm such that for every instance I of P, it delivers
a solution that is within a factor of α of the optimum value [5]. It is well–known
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that SDPs can be solved in polynomial time (up to any prescribed accuracy)
via interior–point algorithms (see, e.g., [10]), and they have been used very suc-
cessively in the design of approximation algorithms for, e.g., graph partitioning,
graph coloring, and quadratic optimization problems [4, 11].

In this paper, we consider a class of discrete and continuous quadratic opti-
mization problems in the complex Hermitian form. Specifically, we consider the
following problems:

maximize zHQz

subject to zj ∈ {1, ω, . . . , ωk−1} j = 1, 2, · · · , n
(1)

and

maximize zHQz

subject to |zj | = 1 j = 1, 2, · · · , n

z ∈ Cn

(2)

where Q ∈ Cn×n is a Hermitian matrix, ω is the principal k–th root of unity, and
zH denotes the conjugate transpose of the complex vector z ∈ Cn. The difference
between (1) and (2) lies in the values that the decision variables are allowed to
take. In problem (1), we have discrete decision variables, and such variables can
be conveniently modelled as roots of unity. On the other hand, in problem (2), the
decision variables are constrained to lie on the unit circle, which is a continuous
domain. Such problems arise from many applications. For instance, the Max–
3–Cut problem with arbitrary edge weights can be formulated as an instance of
(1). On the other hand, (2) arises from the study of robust optimization as well
as control theory [9, 2].

It is known that both of these problems are NP–hard, and thus we will settle
for approximation algorithms. Previously, various researchers have considered
SDP relaxations for (1) and (2). However, approximation guarantee is known
only for the continuous problem [2, 12], and to the best of our knowledge, no
such guarantees are known for the discrete problem.

Our main contribution is to present a generic algorithm and a unified treat-
ment of the two seemingly very different problems (1) and (2) using their nat-
ural SDP relaxations, and to give the first known approximation result for the
discrete problem. Specifically, we are able to achieve an (k sin(π/k))2/(4π)–
approximation ratio for the discrete problem4. As a corollary, we obtain an
0.537–approximation algorithm for Max–3–Cut with arbitrary edge weights.
This should be contrasted with the 0.836–approximation algorithm of Goemans
and Williamson [7] for Max–3–Cut with non–negative edge weights. For this
particular case, our result might be seen as a generalization of Nesterov’s result
[8] that gives an 2/π–approximation for Max–Cut with arbitrary edge weights.

For the continuous problem, our analysis also achieves the π/4 guarantee of
[2, 12]. However, our analysis is simpler than that of [2, 12], and it follows the
4 Recently, Zhang and Huang [13] have informed us that by extending their analysis in

[12], they are able to obtain the same approximation ratio for the discrete problem.



same framework as that of the discrete problem. Moreover, we give a tight ex-
ample showing that the integrality gap of the SDP relaxation is precisely π/4. In
addition, we show that the unified analysis can be used to obtain an O(1/ log n)–
approximation algorithm for the continuous problem in the case where the objec-
tive matrix is not positive semidefinite. This result also provides an alternative
analysis of the algorithm by Charikar and Wirth [3] for the (real) quadratic
optimization problem.

One apparent difficulty in analyzing SDP relaxation–based algorithms for
problems (1) and (2) is that the usual Goemans–Williamson analysis [6, 7] (and
its variants thereof) only provides a term–by–term estimate of the objective
function and does not provide a global estimate. Although global techniques
for analyzing (real) SDP relaxations exist [8], it is not clear how they can be
applied to our problems. Our analysis is mainly inspired by a recent result of
Alon and Naor [1], who proposed three different methods for analyzing (real)
SDP relaxations in a global manner using results from functional analysis. One
of these methods uses averaging with Gaussian measure and the simple fact that∑

i,j qijvi · vj ≥ 0 if the matrix Q = (qij) is positive semidefinite and vi · vj is
the inner product of two vectors vi and vj in some Hilbert space. Our results for
(1) and (2) in the case where Q is positive semidefinite are motivated by this
method. Although the assumption that Q is positive semidefinite is essential to
make the analyses go through, we manage to analyze our algorithm in a unified
way for the case where Q is not positive semidefinite as well.

2 Complex Quadratic Optimization

Let Q ∈ Cn×n be a Hermitian matrix. Given an integer n ≥ 1, consider the
following discrete quadratic optimization problem:

maximize zHQz

subject to zj ∈ {1, ω, . . . , ωk−1} j = 1, 2, · · · , n
(3)

where ω is the principal k–th root of unity. We note that as k goes to infinity,
the discrete problem (3) becomes a continuous optimization problem:

maximize zHQz

subject to |zj | = 1 j = 1, 2, · · · , n

z ∈ Cn

(4)

Although problems (3) and (4) are quite different in nature, the following complex
semidefinite program provides a relaxation for both of them:

maximize Q • Z

subject to Zjj = 1 j = 1, 2, · · · , n

Z º 0
(5)

We use wSDP to denote the optimal value of the SDP relaxation (5).



Our goal is to get a near optimal solution for problem (3) and (4). Below
we present a generic algorithm that can be used to solve both (3) and (4). Our
algorithm is quite simple, and it is similar in spirit to the algorithm of Goemans
and Williamson.
Algorithm

STEP 1. Solve the SDP relaxation (5) and obtain an optimal solution Z∗.
Since Z∗ is positive semidefinite, we can obtain a Cholesky decomposition Z∗ =
V V H , where V = (v1, v2, · · · , vn).

STEP 2. Generate two independent normally distributed random vector x ∈
Rn and y ∈ Rn with mean 0 and covariance matrix 1

2I. Let r = x + yi.
STEP 3. For j = 1, 2, · · · , n, let ẑj = f(vj ·r), where the function f(·) depends

on the structure of the problem and will be fixed later. Let ẑ = (ẑ1, ẑ2, · · · , ẑn)
be the resulting solution.

In order to prove the performance guarantee of our algorithm, we are inter-
ested in analyzing the quantity:

ẑHQẑ = Q • ẑẑ =
∑

l,m

Qlmẑlẑm =
∑

l,m

Qlmf(vl · r)f(vm · r)

Since our algorithm is randomized, we compute the expected objective value
given solution ẑ. By linearity of expectation, we have:

E[ẑHQẑ] =
∑

l,m

QlmE[f(vl · r)f(vm · r)]

To that end, it would be sufficient to compute the quantity E[f(vl · r)f(vm · r)]
for any l,m, and this will be the main concern of our analysis. The analysis,
of course, depends on the choice of the function f(·). However, the following
Lemma will be useful and it is independent of the function f(·). Recall that for
two vectors b, c ∈ Cn, we have b · c =

∑n
j=1 bjcj .

Lemma 1 For any pair of vectors b, c ∈ Cn, E[(b · r)(c · r)] = b · c, where
r = x + yi and x ∈ Rn and y ∈ Rn are two independent normally distributed
random vector with mean 0 and co-variance matrix 1

2I.

Proof. Omitted in this extended abstract.

3 Discrete Problems where Q is Positive Semidefinite

In this section, we assume that Q is Hermitian and positive semidefinite. We
consider the discrete complex quadratic optimization problem (3).

In this case, in the generic algorithm presented in Section 2, we specify the
function f(·) as follows:

f(z) =





1 if arg(z) ∈ [−π/k, π/k)
ω if arg(z) ∈ [π/k, 3π/k)
...

...
ωk−1 if arg(z) ∈ [(2k − 3)π/k, (2k − 1)π/k)

(6)



This way, we guarantee that ẑj ∈ {1, ω, . . . , ωk−1} for j = 1, 2, · · · , n, i.e. ẑ is a
feasible solution of problem (3).

Then, we can establish the following lemma:

Lemma 2

E[(b · r)f(c · r)] =
k sin(π/k)

2
√

π
(b · c)

Proof. By rotation invariance, we may assume without loss of generality that
b = (b1, b2, 0, . . . , 0) and c = (1, 0, . . . , 0). Then, we have:

E[(b1r1 + b2r2)f(r1)] = b1E[r1f(r1)]

=
b1

π

∫

R

∫

R

(x− iy)f(x− iy) exp{−(x2 + y2)} dxdy

=
b1

π

∫ ∞

0

∫ 2π

0

ρ2e−iθf(ρe−iθ)e−ρ2
dθdρ

Now, observe that, for j = 1, . . . , k, we have:

∫ (2j−1)π/k

(2j−3)π/k

f(ρe−iθ)e−iθ dθ = ωj−1

∫ (2j−1)π/k

(2j−3)π/k

e−iθ dθ = 2 sin(π/k)

In particular, the above quantity is independent of j. Moreover, since we have:

∫ ∞

0

ρ2e−ρ2
dρ =

√
π

4

it follows that:

E[(b1r1 + b2r2)f(r1)] =
k sin(π/k)

2
√

π
b1 =

k sin(π/k)
2
√

π
(b · c)

We are now ready to prove the main result of this section.

Theorem 1 When Q is positive semidefinite and Hermitian, there exists an
(k sin( π

k ))2

4π –approximation algorithm for (3).

Proof. It follows from Lemma 1 and Lemma 2 that:

E

[{
(b · r)− 2

√
π

k sin(π
k )

f(b · r)
} {

(c · r)− 2
√

π

k sin(π
k )

f(c · r)
}]

= −(b · c) +
4π

(k sin(π
k ))2

E[f(b · r)f(c · r)]



Therefore, we have:

E[ẑHQẑ] =
(k sin(π

k ))2

4π

n∑

l=1

n∑
m=1

qlm(vl · vm)

+
(k sin(π

k ))2

4π

n∑

l=1

n∑
m=1

qlmE

[{
(vl · r)− 2

√
π

k sin(π
k )

f(vl · r)
} {

(vm · r)− 2
√

π

k sin(π
k )

f(vm · r)
}]

≥ (k sin(π
k ))2

4π

n∑

l=1

n∑
m=1

qlm(vl · vm) =
(k sin(π

k ))2

4π
wSDP (7)

The last inequality is true since

E

[{
(vl · r)− 2

√
π

k sin(π
k )

f(vl · r)
} {

(vm · r)− 2
√

π

k sin(π
k )

f(vm · r)
}]

is an inner product of two vectors in a Hilbert space, which together with the
fact that Q is positive semidefinite shows that:

n∑

l=1

n∑
m=1

qlmE
[{

(vl · r)− 2√
π

f(vl · r)
}{

(vm · r)− 2√
π

f(vm · r)
}]

≥ 0

It follows that our algorithm gives an (k sin( π
k ))2

4π –approximation.

Now, let us consider problem (4) when Q is positive semidefinite. This prob-
lem can be seen as a special case of (3) by letting k → ∞. In this case, the
function f(·) defined in (6) is as follows:

f(t) =

{ t
|t| if |t| > 0

0 if t = 0
(8)

Note that as k → ∞, we have (k sin( π
k ))2

4π → π/4. This establishes the following
result, which has been proved independently by Ben–Tal, Nemirovski and Roos
[2], and Zhang and Huang [12]. However, our proof is quite a bit simpler.

Corollary 1 When Q is positive semidefinite and Hermitian, there exists an
π
4 –approximation algorithm for (4).

Next, we show that our analysis is in fact tight for the continuous complex
quadratic optimization problem (4). We give a family of examples which shows
that the natural SDP relaxation for the above problem has an integrality gap
arbitrarily close to π/4. We begin with a technical lemma.

Lemma 3 Let u, v be two random, independent vectors on the unit sphere of
Cp. Then, we have:

E[|u · v|2] =
1
p
; E[|u · v|] =

(√
π

2
+ o(1)

)
1√
p



Proof. Omitted in this extended abstract.

To construct the tight example, let p and n À p be fixed. Let v1, . . . , vn be
independent random vectors chosen uniformly according to the normalized Haar
measure on the unit sphere of Cp. We define A = (aij) by aij = 1

n2 vi · vj . By
construction, the matrix A is positive semidefinite and Hermitian. Moreover, we
have: ∑

i,j

aijvi · vj =
1
n2

∑

i,j

|vi · vj |2

By taking n → ∞, the right–hand side converges to the average of the square
of the inner product between two random vectors on the unit sphere of Cn. By
Lemma 3, this value is 1/p, and hence the optimal value of the SDP relaxation
is at least 1/p.

Now, let zi ∈ C be such that |zi| = 1. Then, we have:

zHAz =
∑

i,j

aijzizj =

∣∣∣∣∣
1
n

n∑

i=1

zivi

∣∣∣∣∣

2

Hence, the value of the original SDP is the square of the maximum possible
modulus of a vector 1

n

∑n
i=1 zivi. If we somehow know that the direction of this

optimal vector is given by the unit vector c, then we must set zi = f(vi · c) in
order to maximize the modulus. It then follows that:

1
n

n∑

i=1

zivi · c =

∣∣∣∣∣
1
n

n∑

i=1

zivi

∣∣∣∣∣

by the Cauchy–Schwarz inequality. Moreover, this quantity converges to the
average value of |v · c| as n → ∞. By letting n arbitrarily large and choosing
an appropriate ε–net of directions on the sphere, we conclude that with high
probability, the value of the original SDP is at most [(

√
π/2 + o(1))/

√
p]2 =

(π/4 + o(1))/p, which yields the desired result.

4 Continuous Problems where Q is not Positive
Semidefinite

In this section, we deal with problem (4) where the matrix Q is not positive
semidefinite. However, for convenience, we assume that wSDP > 0 such that the
standard definition of approximation algorithm makes sense for our problem. It
is clear that wSDP > 0 as long as all the diagonal entries of Q are zeros.

Again, we use our generic algorithm presented in Section 2. In this case, we
specify the function f(·) as follows:

f(t) =

{ t
T if |t| ≤ T

t
|t| if |t| > T

(9)



where T is a large constant which will be fixed later. If we let zj = f(vj · r), the
solution z = (z1, . . . , zn) obtained by this rounding may not be feasible, as the
point may not have unit modulus. However, we know that |zj | ≤ 1. Thus, we
can further round the solution as follows:

ẑ =

{
z/|z| with probability (1 + |z|)/2

−z̄/|z| with probability (1− |z|)/2

We then have the following:

Fact. For i 6= j, E[ẑiẑj ] = E[zizj ].

This shows that the expected value of the solution on the circle equals that of
the “fractional” solution obtained by applying f(·) to the SDP solution. There-
fore, we could still restrict ourselves to the rounding function f(·).

Define
g(T ) =

1
T
− 1

T
e−T 2

+
√

π(1− Φ(
√

2T ))

where Φ(·) is the probability distribution function of N(0, 1).

Lemma 4 E[(b · r)f(c · r)] = g(T )(b · c)
Proof. Again, without loss of generality, we assume that c = (1, 0, . . . , 0) and
b = (b1, b2, 0, . . . , 0). Then, we have:

E[(b · r)f(c · r)]

= E
[
(b1r̄1 + b2r̄2)

r1

T

∣∣∣|r1| ≤ T
]

+ E
[
(b1r̄1 + b2r̄2)

r1

|r1|
∣∣∣|r1| > T

]

=
1
T

E
[
b1|r̄1|2

∣∣∣|r1| ≤ T
]

+ E
[
b1|r̄1|

∣∣∣|r1| > T
]

=
b1

T
· 1
π

∫

x2+y2≤T 2
(x2 + y2) exp(−(x2 + y2))dxdy

+
b1

π

∫

x2+y2>T 2

√
x2 + y2 exp(−(x2 + y2))dxdy

=
b1

πT

∫ 2π

0

∫ T

0

ρ3 exp(−ρ2) dρdθ +
b1

π

∫ 2π

0

∫ ∞

T

ρ2 exp(−ρ2) dρdθ

= g(T )b1

where the last equality follows from the facts:
∫ T

0

ρ3 exp(−ρ2)dρ =
1
2

(
1− (T 2 + 1) exp(−T 2)

)

and ∫ ∞

T

ρ2 exp(−ρ2)dρ =
1
2

(
T exp(−T 2) +

√
π(1− Φ(

√
2T ))

)



Lemma 5 E[f(c · r)f(c · r)] = 1
T 2 − 1

T 2 exp(−T 2)

Proof. The proof is similar to that of Lemma 2. We again assume that c =
(1, 0, . . . , 0).

E[f(c · r)f(c · r)]

= E
[ r̄1

T

r1

T

∣∣∣|r1| ≤ T
]

+ E
[

r̄1

|r1|
r1

|r1|
∣∣∣|r1| > T

]

=
1

T 2
· 1
π

∫

x2+y2≤T 2
(x2 + y2) exp(−(x2 + y2)) dxdy

+
1
π

∫

x2+y2>T 2
exp(−(x2 + y2)) dxdy

=
1

T 2
· 1
π

∫ 2π

0

∫ T

0

ρ3 exp(−ρ2) dρdθ +
1
π

∫ 2π

0

∫ ∞

T

ρ exp(−ρ2) dρdθ

=
1

T 2
(1− (T 2 + 1) exp(−T 2)) + exp(−T 2)

=
1

T 2
− 1

T 2
exp(−T 2)

Theorem 2 If T = 3
√

ln(n), then we have E[ẑHQẑ] ≥ 1
10 ln(n) wSDP .

Proof. It follows from Lemma 1 and Lemma 4 that:

E[{(b·r)−Tf(b·r)}{(c · r)− Tf(c · r)}] = (1−2Tg(T ))(b·c)+T 2E[f(b·r)f(c · r)]
Then, we have:

E[ẑHQẑ] =
n∑

k=1

n∑
m=1

2Tg(T )− 1
T 2

qkm(vk · vm)

+
1

T 2

n∑

k=1

n∑
m=1

qkmE[{(vk · r)− Tf(vk · r)}{(vm · r)− Tf(vm · r)}]

Again, the quantity E[{(b · r) − Tf(b · r)}{(c · r)− Tf(c · r)}] can be seen as
an inner product of two vectors in a Hilbert space. Moreover, by letting b = c
and using Lemma 5, we know that the norm of an Euclidean unit vector in this
Hilbert space is:

2− 2Tg(T )− exp(−T 2) = exp(−T 2)− 2T
√

π(1− Φ(
√

2T ))

It follows that:

1
T 2

n∑

k=1

n∑
m=1

qkmE[{(vk · r)− Tf(vk · r)} · {(vm · r)− Tf(vm · r)}]

≥ −exp(−T 2)− 2T
√

π(1− Φ(
√

2T ))
T 2

n∑

k=1

n∑
m=1

|qkm|



On the other hand, one can show that wSDP ≥ 1
6n3

∑
k,m |qkm|. Thus, we have:

1
T 2

n∑

k=1

n∑
m=1

qkmE[{(vk · r)− Tf(vk · r)} · {(vm · r)− Tf(vm · r)}]

≥ −exp(−T 2)− 2T
√

π(1− Φ(
√

2T ))
T 2

6n3 wSDP

from which it follows that:

E[ẑHQẑ] ≥
(

2Tg(T )− 1
T 2

− exp(−T 2)− 2T
√

π(1− Φ(
√

2T ))
T 2

6n3

)
wSDP

≥ 1− (2 + 6n3) exp(−T 2)
T 2

wSDP

By letting T = 3
√

ln n, we have E[ẑHQẑ] ≥ 1
10 ln nwSDP when n ≥ 3 as desired.
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