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Stochastic programs can effectively describe the decisiaking problem in an uncertain environment. Unfortunatel
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We demonstrate that for a wide range of cost functions thecézted distributionally robust stochastic program can be
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distribution underlying the daily return of assets.
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1. Introduction

Stochastic programs can effectively describe the decisiaking problem in an uncertain environment.
Unfortunately, the probability measures involved usuallye highly specialized form; thus, solving the
stochastic program can lead to real computational chadlengven on a more practical level, only rarely
does one holds enough information about the problem to cotoraispecific stochastic models. In an effort
to address these issues, a robust formulation for stoch@stgrams was proposed by Scarfin 1958 and has
gain a lot of interest since then (see Scarf (1958), Shapidokdeywegt (2002), Calafiore and El Ghaoui
(2006)). In this framework, one must define a set of probighitieasure that is assumed to include the true
stochastic model for the problem. For example, one can dentlie set of all distributions that matches a
given support, mean and/or covariance. The objective gbtbklem is then reformulated under worse case
analysis over the choice of a distribution in this set (haheeDistributionally Robust Stochastic Program):

(DRSP) minimize (1}(212%( E¢[h(x, §)]> ,

where¢ is a vector of stochastic parametefs,is a distribution of¢, D is the uncertainty set for this
distribution, andY is a convex feasible set for the decision variable

Although the DRSP optimization model has led to attractmetsons for specific problem forms, such
as single item news vendor, regret minimization, lineancleaconstrained and portfolio optimization prob-
lems (see Scarf (1958), Yue et al. (2006), Calafiore and EbGIH2006) and Popescu (2007) respectively
for details), the form still lacks encouraging computagéibproperties for a general version of the cost
functionh(x, ). Furthermore, the currently available methods can leadfatsa sense of security as they
often falsely assume exact knowledge of mean and covaritatstics for the stochastic parameters. For
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instance, in many data-driven problems, one needs to buailirecal point-estimates of these moments
based on limited historical data. As the experiments prtesen Section 5 will demonstrate, disregarding
the uncertainty in these estimates can lead to taking pamsides.

In this work, we make the following assumptions about the BR®del.

AssUMPTION1. The setX is convex and equipped with an oracle that can confirm felitgiluf x or
provide a separating hyperplane in polynomial timerin

ASSUMPTION2. The functionh(x,§) : R™ x R™ — R can be represented in the forfa(x,{) =
maxeq1,.. .k} hie(x,&) such that, for allk, A, : R* x R™ — R is convex inx and concave irf. Hence,
althoughh(x,§) is convex ink, it is not required to be concave § Furthermore, for eaclt, given a pair
(x,¢), itis assumed that one can in polynomial time:

1. Evaluate the value of(x, &)

2. Find a sub-gradient ok (x,£) in x

3. Find a sub-gradient of-h;,(x, &) in €.

AssUMPTION3. One can define valueg;,~, > 0 such that the distributiory, is known to lie in the
following non-empty set of distributions:

P(§eS) =
D1 (S, o, X0,71,72) = ( €] - /Lo) 5( (€] — o) <m )
E[(€ — o) (€ — ) ] 272X

where= is a linear matrix inequalityy, € int(S), 3, > 0, andS is a convex set ifiR™ for which there
exist an oracle that can confirm feasibility or provide a setilmg hyperplane in polynomial time.

Although its apparent technicality, Assumption 2 is verpgal as it allows:(x, &) to represent many cost
functions addressed by DRSPs in the past. Section 3.3 giMagaaview of such examples. As for Assump-
tion 3, we claim that, since the proposed distributional’3€tS, 1.0, X, 71, 72) accounts for moment uncer-
tainty, it can often in practice model one’s uncertaintyhe distribution of¢ more accurately than pre-
viously proposed. We will later validate this claim by showing that Assumpii is implied with high
probability by the knowledge that the distributigin has support o and that it is the distribution that
generated a set of independent samples,, ..., ar }-

After reviewing prior work and difficulties related to sahgg DRSP models in Section 2, we show in
Section 3 how, under the mentioned assumptions, the DRSBecaalved in polynomial time for a large
range optimization problems. In fact, the structureZdfsS, 1, >0,71,72) allows us to consider solving
instances of the DRSP that were previously shown to be itaoées for the usual form db which assumes
exact knowledge of the moments (see Example 1 of SectioroB8dre details). In Section 4, we also use
a frequentist approach to derive a new form of confidencerefgir the mean and covariance of a random
vector which naturally lead to usirB(S, 10, X0,71,72)- These results should convince the reader that the
distributional set that we present in this work is the rigttt® chose for distributional uncertainty in data-
driven problemsi(e., problems where knowledge ¢fis solely derived from historical data). We finally
apply our framework to a portfolio selection problem. In &&t5, we demonstrate that, beside presenting
computational advantages, in practice our model also padgdest on the actual distribution that drives
daily returns of popular stocks when compared to previopsiposed DRSP formulations.

2. Background

In a single stage stochastic program, one is interesteddimfiran assignment for € R™ that will minimize
the expected value of a cost function given some underlyargrpeter uncertainty:

(SP) mlmmlzeEf[ (x,8)] .

xeX
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Here,£ € R™ contains the stochastic parameters for which the distdbyt: is assumed to be known. The
functionh(x, §) is convex inx and maps a paix, £) to a cost (or penalty) value. Although the SP Problem
is known to be convex ix and can even in some rare cases be reformulated as a degtienmogram
(e.g, whenh(x, &) = £7x), in order to solve the general formulation, one must ofesort to Monte Carlo
approximations which can be computationally challengseg(Shapiro (2000)).

Another difficulty in practice arises from the need to comtoita distribution f. given only limited
information about the stochastic parameters. For instarmeEmight only have in hand a set of independent
samples(¢;, &, ..., &y} generated fronye. In this case, it is still possible to formulate unbiasednestes
of the moments of,:

M M
1 1 . .
Elg]~ 57> & E[(¢ ~EENE~EED )~ 7D (E-mE—n)" -
i=1 k=1
For this reason, there has been a strong interest in theatienvof upper bounds on expected cost given
information about mean, varianceX or supportS of the distributionf,. This problem is often referred to
as the Moment Problem:

(MP) aximize Ee[h(x,)] ,
whereD, (S, 1, X)) is the set of all probability measures with a given mean andigance and with support
onS. We refer the reader to Prékopa (1995) for more details eg#meral form of this problem. A popular
special case of this problem, which will be revisited in 88t8.3, occurs when the penalty function takes
the formh(x, ¢) =1{¢ € C}. Solving the MP in this case leads to the formulation of ies&ing multivariate
Chebyshev inequalities as shown in Marshall and Olkin (1@6@ Bertsimas and Popescu (2005). Lately,
the MP model with other forms of distributional sets has disen considered and put to practical use in
robustness analysis (segy, Barmish and Lagoa (1997)).

Although the MP model is interesting in its own right, it ideri only a mean for taking optimal decisions.
Therefore, in this work we will mostly be interested in solyithe DRSP model. This model was first pre-
sented by Scarf (1958) in the context of an inventory manageproblem and since then has been referred
to asminimax stochastic programmir{g.g, Dupacova (1980), Shapiro and Kleywegt (2002)), optaniz
tion with incompleteor limited distribution informatior{e.g, Ermoliev et al. (1985)) and more recently as
distributionally robustoptimization. Its main application have focused stocledstear programming with
or without chance constraints as in Calafiore and El Ghadi@g2and in Chen et al. (2007). Although
optimization models of a more general form have already lse@sidered, for instance in Ermoliev et al.
(1985), the field still lacks tractable solution methodstfam.

In his original model, Scarf’s considered a one dimensidegision variable: representing how much
inventory one should hold, arfdrepresented a random demand with known mean and varianeeeftrn
function had the fornk(z, ) = — min{rz — cx , r{ —cx}, which actually satisfies Assumption 2. To solve
this model, H. Scarf exploited the fact that the worse castiblition of demand could be chosen to be one
with all its weight on two points. This idea was successftélysed in other inventory management problem
model such asin Yue et al. (2006) and Zhu et al. (2006) whereltfective consisted instead of minimizing
the worse case regret, in absolute or relative terms, whathidwesult from having committed to a decision
once the true distribution is revealed.

More recently, a DRSP model was also proposed by Popesci)20@ddress portfolio optimization
problem. Here the return function takes a more interestiage:i(x, ) = —u(£"x) with u(-) including a
range of useful utility functions. Again, the presentediioh assumed known first and second moments of
the stochastic parameters and relied on characterizingdhge case distribution of investment returns as a
point distribution. Unfortunately, these examples ard paonly a few special cases were the DRSP with
known moments was shown to have a tractable solution. The awitribution of this paper is to provide
for a range of stochastic programming models a robust yetatiode framework which takes into account
distribution information that is limited with respect tothdts form and moments.
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3. Robust Stochastic Programming with Moment uncertainty

It is often the case in practice that one has limited inforamébout the distribution driving the stochastic
parameters which are involved in the decision-making ecEor example, an investment manager can
not know exactly the joint distribution of return for any dable securities. Or in a different context, man-
ufacturing decisions are rarely made knowing the distidvubf future demand. We believe that in such
problems, it is also rarely the case that one holds exaatrirdtion about the moments of the random vari-
ables that are involved. Although the assumption of knowmeiats has already led to interesting solutions
for these problems, we will show that there is more to be ghibeth on a theoretical and practical point
of view, by explicitly addressing limited moments inforriwett when solving stochastic programs.

In what follows, we represent the overall uncertainty indistribution f, as proposed in Assumption 3.
Given a convex suppo& for the distribution, we assume that the uncertainty in tret &ind second order
moments of the stochastic parametérsan be described by uncertainty sets centered atint(S) and
positive definite matrix:, > 0:

(B[] = 10)"25 M (E[E] — o) < m (1a)
E[(€ — 10) (€ — 110)"] = 71250 - (1b)

In this formulation, the parameteys > 0 andy, > 0 provide natural means of quantifying the size of one’s
confidence in his estimates of mean and covariance resplc@onstraint (1a) forces the meanéab lie

in an ellipsoid of radius, centered at the estimatg. On the other hand, Constraint (1b) forces the second
order moment matrif[(£ — o) (€ — 110) '] to lie in the intersection of two positive semi-definite cene

0= E[((€— o) (€ — o)) 2250 -

In other words, it describes how likelyis to be closed tq., in terms of the correlations expressedin
The distributional seb; (S, o, 20,71, 72) IS Necessarily non-empty since it can be shown to alwaysaont
the distribution that puts all of the weight at the pqiint

REMARK 1. While our proposed uncertainty model cannot be used teesgprbitrarily large confidence
in the second order statistics &fin sections 4 and 5, we will show how in practice there arensdivays
of assigningu,, Xy, 71 and~, based on historical data and generate meaningful decisifnsourse, in
some situation it might be interesting to add the followigstraint on the second order momeng of

Y380 JE[(€ — po) (€ —110)"] 2)

where0 < ~; < 1. Unfortunately, this leads to important computationafidifities for the general DRSP
form. Furthermore, in most applications of our model, weestghe worse case distribution to actually
achieve maximum variance, thus making Constraint (2) uessary. For example, the portfolio optimiza-
tion problem presented in Section 5 will have this charéstieecause a less predictable market necessar-
ily leads to a non-negative reduction in expected utilityegi that the utility function is concave.

In what follows, we will study the MP and the DRSP models urnitierdistributional set formulated in
terms of D, (S, 1o, 20, 71,72) Which will also be referred to in short-hand notatiorfag~:, - ).

3.1. The Moment Problem with Actual Moment Uncertainty

In this section, we address the Moment Problem with distidipal setD;(v;,7,). By Assumption 2,
h(x,§) =maxgeq,. k) hie(x, &) with eachh,(x, &) concave ir¢ for all x € X. We can now show a poly-
nomial method for finding the optimal value of this versiortted Moment Problem.

DEFINITION 1. LetW¥(~,,7,) be the optimal value of the moment problem:

maximize E¢|h(x, .
fe € D1i(mv2) 5[ ( 5)]
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Given that one consideyfs to be an infinite dimensional vector indexed$y S, such thatfs(§) : S — R,
andup € R™ to be a free variable, the valdeg v, ,~,) can be reformulated as the optimal value of the infinite
dimensional conic linear problem:

s fe

maximize E[h(x,£)]
subjéct to E[l]=1

(N—MO)T M
fe(§)>0, VEeS .

Such a problem can be referred to as our primal MP. As it imafiene with the moment problem, we
are about to shortcut the difficult in finding a worse case abilliy measure fo€ by making use of duality
theory. One can show that the conditions thgt int(S) andX, > 0 are sufficient conditions for strong
duality to hold in this problem. Intuitively, they ensureththe interior of the feasible set is non-empty in
the topology off.. We refer the reader to Shapiro (2001) (more specificallp®&siion 3.4) for a thorough
discussion on duality theory in the case of general conéaliproblems and general moment problems. In
our case, strong duality implies thé{~,,~2) is also the optimal value of the dual MP:

minimize 7>(%o @ Q) — g Qo + 1+ (Yo o P) = 215p + s (3a)
subject to q+ 2Qpuo + 2p =0 (3b)
'Q¢+ETq+r—hi(x,§) >0, VEES, ke{l,...K} (3c)
Q-0 (3d)

Pp
e (3e)

where(A e B) refers to the Frobenius inner product between matriQe®, € R”"*" are symmetric matri-
ces, the vectorg, p € R™, andr, s € R. Note that in the dual problem, we are dealing with an infinite
number of constraints indexed lgye S. Fortunately, our assumption about the structuré(ef,{) andS
leads to the dual problem having the property that cuttiag@s$ can be generated efficiently.

We first present a lemma describing the computational diffesiof verifying if a given assignment for
Q, q, » andx satisfy Constraint (3c).

LEMMA 1. Given any fixed assignment far Q, q, and r, such thatQ > 0, one can find for any: €
{1,2,..., K'} in polynomial time an assignmefit that minimizes the following problem

mirfliergize ETQE+ETq+ 1 — hi(x,€) . (4)

Proof: Because Problem (4) is convexénthe result is a straightforward consequence of an impbrtan
property of convex minimization problems. Theorem 8.1 ihi@der (1983) demonstrates polynomial
equivalence between the separation problem and the optimizproblem for general convex problems.
More specifically, the author shows that convex problemsheasolved in polynomial time using the ellip-
soid method given that one can in time polynomiahin

1. Given any, verify feasibility.

2. Given any infeasiblé¢, provide a hyperplane that separagdeom the feasible sef.

3. Given any feasiblé¢, evaluate the objective function and generate a sub-graitie.
In Problem (4), conditions (1) and (2) are satisfied by thesagdion onS. Becauseh,(x,§) satisfies
Assumption 2, one can also easily conclude that the obgfitivction meets Condition (3). It follows natu-
rally that applying the ellipsoid method will converge t@thptimal solution of Problem (4) in polynomial
time. O

We are now able to derive an important result about the coxiplef solving the Moment Problem
equipped withD; (1, 72).
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PROPOSITION1. The value¥(v,,~,) can be computed in time polynomial in the dimensio of

Proof: We will compute the optimal value of this semi-infentonic linear program by solving its equiv-
alent dual form. Applying the Schrader conditions presgimehe proof of Lemma 1 on Problem (3) will
lead to showing that the problem can be solved efficientlpgisie ellipsoid method. Since the objective
is linear, Condition (3) is necessarily met. Without lossgeherality, it is sufficient to verify that con-
straints (3e), (3d), and (3c) meet conditions (1) and (2esithe equality Constraint (3b) can easily be
removed by the change of variahe= q/2 + Quo. Both constraints (3e) and (3d) are easily verified in
O(m?) andO((m + 1)) respectively using eigenvalue decomposition. Moreo¥erecessary, for both
constraints a feasibility cut can be generated from thenigietor corresponding to the lowest eigenvalue.
Finally, when considering thieth element of Constraint (3c), since by Lemma"Q¢ +£Tq+ 7 — hy(x, €)
can be minimized ovef € S in polynomial time, the feasibility ofQ, q, 7, P, p, 3) for a fixedx depends
on the optimal value of Problem (4) being greater thamhich was shown to be solvable in polynomial
time. Since Constraint (3¢) contains finite set of elemenndition 1 is satisfied. In the case that one of
them, say thé&*-th one, is found to be infeasible, the certificatecan be used to generate a feasibility cut:

(66T 0 Q) +&q+r> by (x,E,)

We conclude that determining feasibility or finding a fed#ibcut can be done in polynomial time. There-
fore, ¥(~,,72) can be computed in polynomial time too using the ellipsoidhod. [

3.2. The Distributionally Robust Stochastic Program with Moment Uncertainty
We now address the more interesting DRSP model using ouredidiistributional set:

minimize< max Edh(x,ﬁ)]) (5a)

x fe € D1(v1:72)
subject to xe€ X | (5b)

whereX’, h(x,&) andD, (1, 7.) satisfy assumption 1, 2 and 3 respectively. We will show giagn these
assumptions, Problem (5) can actually be solved efficiently

PrRoOPOSITION2. The DRSP model equipped with (v,,2), i.e., Problem(5), can be solved in time poly-
nomial in the dimensions ef andé.

Proof: The proof of this theorem follows similar lines as tireof for Proposition 1. We first reformulate
the inner moment problem in its dual form and use the fact thiatmin operations can be performed
jointly:

Héinirrgze Y2(Z0 0 Q) — 115 Quuo + 7+ (X o P) — 210 p + 718 (6a)
X, ,q,7,,p,s

subject to q+2Quo +2p =0 (6b)
Pp

p’ r Tt 0 (6¢)

=0 (6d)

EQE+ETq+7r—hy(x,6) >0, VEeR™ ke {l, .., K} (6e)

xekX | (6f)

As presented earlier, the ellipsoid method will convergeatynomial time given that we can verify fea-
sibility or provide feasibility cuts in polynomial time. Eharguments that were presented in the proof of
Proposition 1 still apply for constraints (6b), (6¢) and)@dowever, the argument for Constraint (6e) needs
to be revisited since is how consider as an optimization variable. Overall feilisitof an assignment
(%,Q,q,7,P,p,5) can again be verified in polynomial time because of Lemma 1oéitite fact thatk is
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finite. However, in the case that one of the indexed condtrasay the:*-th one, is found to be infeasible,
one can again easily compute a feasibility cut using théfioate £, and a sub-gradient df,« (-, €. ):

(6T 0Q)+E.Tq+ 7 — Vi (X,6) x> hy (X,£,) — Vi (%,6.) "%,

whereVh,(x,&,) is a subgradient o, (-, £, ) atx. Since by Assumption 2, such a gradient can be obtained
in polynomial time, we can conclude that Problem (6) can bkssolved in polynomial time. [

3.3. Practical Examples

Because our framework only imposes weak conditiona(©g¢), it is possible to revisit some well-known
practical problems and reformulate them taking into actawwment uncertainty.

ExaMPLE 1. Optimal Inequalities in Probability Theory.

Consider the problem of finding a tight upper boundR{g € C) for a random vectog¢ with known
support, mean, and covariance matrix. By formulating thidsofgm as a semi-infinite linear program:

R e e = Biee
many have studied the difficulties related to extensione@popular Chebyshev inequalities (see Marshall
and Olkin (1960), Bertsimas and Popescu (2005)). More §ipalty, given thatC is a finite union of disjoint
convex sets, it is demonstrated that wifes- R™, the bound can be found in polynomial time, while for
restricted support such &= R™* the problem is NP-hard. The hardness of the problem ariseadyl in
finding a distribution that is feasible with respec®g(R™, i1, X2).

Our framework recommends relaxing the restrictions on theagance of¢ and instead consider the
distributional setD, (1, v2). This set considers any distributions on a given convex sdppith first and
second moment lying in the uncertainty sets parameteriged land~,. Already we can realize that the
distribution which puts all of its weight in the mean is alsaigasible with respect t®,(v,,7.). Fur-
thermore, whert is represented a8 = Uszl Cr, with C,, convex, our results actually lead to a new type
of Chebyshev inequality that can be evaluated in polynotmag. First, one choosées)(x,¢) = 0 and

hk(x,f)—{l Jifeec,

.__in order to construct a functiofa(x, £) which satisfies Assumption 2. Then,
—oo , otherwise

by the equivalence:

Ec[h(x,€)] = Ee[max hy(x, )] =Ee[I{E € C} =P((eC) < max Ee[h(x,§)],
Je€D1(m72)
it follows that for distributions inD; (v;,7-), a tight Chebyshev bound can be found in polynomial time.
Note that by using the forr®, (S, 11, 3,0, 1) one can also provide useful approximations to the mentioned
NP-hard versions of the problem witb,.

ExampLE 2. Distributionally Robust Optimization with piecewise-linear convex costs.

Assume that one is interested in solving the following DRSflehfor a general piece-wise linear convex

cost function ofk
minimize max  E¢max x| | ,
xeX <f5€731(V1772) 5[ k S ]>

where¢;, € R" are random vectors. By consideriggo be a random matrix whoseth column is the
random vectok, and takingh(x,&) = £l x, which is linear (hence concave) § the results presented
earlier allows one to conclude that the problem can be satfféciently. Note that since any convex cost
function can be approximated by a piecewise linear functiois argument could potentially be used on
a wide range of stochastic programs. In particular, Sediamill investigate further a case of portfolio
optimization.
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ExamMPLE 3. Distributionally robust conditional value-at-risk.

Conditional value-at-risk, also called mean excess loas,imtroduced in the mathematical finance com-
munity as a new risk measure in decision-making. It is clpselated to the more common value-at-risk
measure, which for a risk tolerance levehd€ (0, 1) evaluates the lowest amounsuch that with proba-
bility 1—4, the loss does not exceedCVaR instead evaluates the conditional expectation sfdt®ve the
value-at-risk. In order to keep the focus of our discussiothe topic of DRSP models, we refer the reader
to Rockafellar and Uryasev (2000) for technical detailshos subject. CVaR has gained a lot of interest in
the community because of its attractive numerical proggrtror instance, Rockafellar and Uryasev (2000)
demonstrated that one could evaluatedh@VaR: [c(x, )] of a cost (or lost) functior(x, &) with random
parameters distributed accordingftoby solving a minimization problem of convex form:

9-CVaR [e(x,€)] = min A+ S [(c(0x,€) = V)]

where(y)™ =max{y , 0}.

The risk measure known as CVaR still requires the decisidkema commit to a distributiorf,. This is
a step that can be difficult to take in practice. Using thelteguesented earlier in this section, we can easily
demonstrate how the CVaR measure can be considered inftithuli®nally robust form. Given that the
distribution is known to lie in a distributional sé&, (+y,,-), the Distributionally Robus#-CVaR Problem
can be expressed as:

(DR ¢¥-CVaR) minimize ( max 19-CVaF\’5[c(x,£)]>

xeX fe€D1(71:72)

By the equivalence statement presented above, this praidarbe solved in the form:

1
. . . . A _E _ A +
mu}r(ner)r(uze <f56g}?3i,vz) (Iiléﬂlg + g [(C(Xaf) ) }))
Using duality theory, one can show that the functi@fic, \) = A + (1/9)E, [max{c(x,£) — A, 0}], which

is convex inA and concave (actually linear) ifi, has the strong max-min property over the joint set
(fe,A) € Di(71,72) xR. Hence, changing the order of thewx;, andmin, operators leads to an equivalent
formulation for the (DRJ-CVaR) Problem.

minimize < max Eg[h(xyAvg)]> )

XEX,AER fe€D1(v1,72)

whereh(x, X, &) = A+ 5(c(x,£) — A) . Because of the argument that

PN = A+ max{ 0, e(x8) -}

1 1
= maxg A, <1—5>)\+5mgxck(x,f) }

1 1
= max{ A, max <1—5>)\+56k(x,§) } ,

it is clear that ifc(x,£) meets the conditions presented in Assumption 2, then nadlgsgl — )\ +
sci(x,€) meets the same three conditions for fallAnd, in a rather trivial way so does the function
co(x, A, &) = A. Because we can show that the functiqx, \, £) meets Assumption 2, Proposition 2 allows
us to conclude that finding an optimal(and its associatea) with respect to the worse case conditional

value-at-risk obtained over the set of distributidng -y, ,y2) can be done in polynomial time.
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4. Data-driven Stochastic Programming

The computational results presented in the previous seotly heavily on the structure of the described
distributional setD; (;,72). This set was built to take into account moment uncertaimtthé stochastic
parameters. We now turn ourselves to showing that suchtgteucan be naturally justified in the context of
data-driven optimization problems. More specifically share problems were knowledge of the stochastic
parameters is restricted to a set of samgles$’, = {&1, &, ..., &} drawn independently from the under-
lying distribution f.. Under such conditions, a common approach is to assuméthatie moments lie in a
neighborhood of there empirical estimates. In what follows will show how one can define a confidence
region for mean and covariance statistics such that it igradswith high probability to contain the given
statistics of the distribution that generatgd}?,. This result will in turn be used to derive a distributional
set of the formD, (v1,+.) and to provide probabilistic guarantees that the solutiamé using the MP or
DRSP models is robust with respect to the true underlyingibligion of the stochastic parametérs

In order to simplify the derivations, we start by reformudgt without loss of generality the random
vector¢ in terms of a mixture of uncorrelated componégnin order to simplify the derivations. More
specifically, given the random vectére R™ with meany and covariancé&, let us defingl € R™ to be
the normalized random vectqr= ¥~1/2(¢ — 1) such thafE[¢] = 0 andE[(¢T] = 1. Also, let us make the
following assumption about

ASSUMPTION4. There exists a ball of radiuB that contains the entire support of the unknown distributio
of . Equivalently, there exigk > 0 such that

P((¢-p)'S (E—p)<R)=1.
This assumption is made in order to use an inequality knowth@sindependent bounded differences
inequality” and popularized by McDiarmid.

THEOREM 1. (McDiarmid (1998)) Let{¢;} M, be a set of independent random variabfgsaking values
in a setS; for eachi. Suppose that the real-valued functigft , &, ..., {yr) defined onS; x S, X ... X Syy
satisfies

|g(£1>£27--'>£1\4)_9(517€é¢“'a£§\/[)|écj (7)

whenever the vector sef§; }/, and{¢/}, differ only in thej-th vector. Then for any> 0,

2
P (9(1, 2, E01) — El9(E1. EavnE0)] < 1) Sexp< - )
Zj:l ¢

In practice, even when one does not have information apcand X, we believe that one can often
still make an educated and conservative guess about theitmndgof 2. We will also revisit this issue in
Section 4.3 where we derive based on the bounded supportoNote that if¢’s support is unbounded,
one can also derive bounds of similar nature either by cenisig that( is bounded with high probability,
or otherwise by using Markov's inequality as a foundatioowdver, because Markov’s inequality does not
require any support assumption, the bounds that are dewitadt are more sensitive to the confidence
level that one needs to achieve.

4.1. Uncertainty Cone Centered at Empirical Mean

A first use of the McDiarmid theorem leads to defining a conicst@int relating the true mean and true
covariance of the random vectéito the empirical point estimate = M ! Z,ﬁil ¢. In Shawe-Taylor and
Cristianini (2003), the authors used McDiarmid’s theorerdémonstrate the following result.



Delage and Ye: Distributionally Robust Optimization under Moment Uneeénty
10 Operations Research 00(0), pp. 000-a8DP000 INFORMS

LEMMA 2. (Shawe-Taylor and Cristianini (2003)) L¢t;}, be a set of\/ samples generated indepen-
dently at random frong. Then with probability at leastl — §) over the choice of setg; },, we have
2

%i@ < RMQ(H\/W)Q :

We can use this result to derive a similar statement abouttidom vectokt.

COROLLARY 1. Given the true meap and covariance: of £ and given that lies on the supporté —
w) "X (€ — ) < R? with probability one, the point estimafesatisfies the following constraint with prob-
ability greater thanl — ¢:

(=)= (=) <) , (8)
where3(6) = (R?/M)(2+ +/21n(1/6))?.
Proof: The generalization togwith arbitrary mean and covariance matrix is quite strdmard:

2

P((f—p)" S (i—p) < B(6) = P 21/2(%_2@—/0 < B(0)
=2 (| m | <60

2

<) |=1-6. O

M
=P ¢
i=1

Given thatX is non-singular, the inequality of Equation (8) constraims vectory, and matrixX to a
convex set. This set can be represented by the followingfimatrix inequality after applying the principles
of Schur’s complement:

(—p)" B(6)

4.2. Uncertainty Cone Centered at Empirical Covariance

In order for Constraint (8) to describe a bounded set, ong meigble to contain the uncertainty
While confidence regions for the covariance matrix are @gibjadefined on a term by term basis (see for
example Shawe-Taylor and Cristianini (2003)), we favorsiinecture imposed by a constraint of the positive
semi-definite form

P (Cmini <X = Cmaxi]) >1-6 (9)

around the point estimate of covariance mattix- M/ —* Z?il(& —1)(& — )7 Note that the difficulty of
this task relies heavily on the fact that one needs to derivenéidence interval for the eigenvalues of the
stochastic matrix2—1/23%-1/2 which is an important field of study in statistics. For theecsat interests
us, whereM > m with m fixed, prior work usually assumesis a normally distributed random vector
(see Anderson (1984), Edelman (1989)). Under the Gausssumgption, the sample covariance matrix
follows the Wishart distribution, thus one can formulate thistribution of eigenvalues in a closed form
expression and derive such percentile bounds. In the case@takes a non-normal form, the asymptotic
distribution of eigenvalues was studied by Waternaux (1 @né Fujikoshi (1980) among others. However,
to the best of our knowledge, our work is the first to formulateuncertainty sets with the characteristics
presented in Equation (9) for finite sample side

In what follows, we present how to formulate the set of Equraf®) based on Assumption 4 about the
bounded support af. We start by demonstrating how, for a zero mean and unctecetandom vector such
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as¢, a confidence region of the form presented in Equation (9)beadefined aroundi = A/~ > G
Next, we will assume that the mean &fis exactly known and will formulate it in terms f(u) =
M1 Zi]\il(@- —u)(& —p)T. We conclude this section with our main result about a confideegion fon
andX which relies solely or/ and on support information about the random variables v@ahl

LEMMA 3. Given M samples front, {¢;},, and an empirical estimate of the covariarit,ghen with
probability greater tharl — 6:

1 < 1 N
Fae 2 1)t
wherea(5/2) = (R?/vV/M) <\/1 —m/R*+ \/ln(z/é)),giventhaﬂ\éf > R* (\/1 —m/R*+ \/ln(z/é))g.

Proof: The proof of this theorem relies on applying Theoretwite to show that bothlii =<1

andI < ﬁl occur with probabilityl — §/2. Our statement then simply follows by the union bound.
However, for the sake of conciseness, this proof will focagleriving the upper bound since the steps we
will follow can easily be adjusted for the lower bound detioa.

When applying Theorem 1 to show thai - 5/2)1 occurs with probabilityl — 4/2, the main step

consists of defining((i, ¢z, ..., (i) = miny =1 2z Iz and finding a lower bound fd&[g((1, (o, ..., Car)]- It
will be useful to show that Constraint (7) is met wher= R? /M for all ;.

(10)

|g(<17<2>"'a<M)_g(giagév ><I\{)|_ min z IZ_ min ZTIZ ;

llzll=1 llz]|=1

wherel' = L S /(T =1+ M(( ¢" = ¢;¢)) since{¢} M, and{¢/}}, only differ in thejj-th vector.
Now assume thathin,, -, z Iz>m1n|| =1 z'1'z. Then, for anyz* € argmin ;) —; 2z 1z

‘g(ChCQa "'7C]W) _g(<17C27"'7CM))’ - HH|1|1n1 4 IZ Z*TI/Z*
< z*T(I I')z*
= (Q( ¢z

= (((T ") - ((’T ")?)

Mg
- M - M
In the case thatminj,—, z'Iz < ming_; z'I'z the same argument applies using ¢
arg min |, 7' 1z.
As for E[g((y, (o, ..., Car)], the task is a bit harder. We can instead try to find an uppendban the
maximum eigenvalue dff — I) since

E [mllax z' (I —i)z] =1-E |:Hﬁin zTiz] . (11)
z||=1 z||=1

Using Jenson’s inequality and basic rules of linear algedima can show that

2 2
Es: | max ZTI—iZj|> < E; (maxz I- I > < E; o (I— I
( ! [zn—l =D T \zi=1 ( Z

= E |trace ((]\14 ;I—QG)

M
= trace (% ZE [I — QQQZT + ((zCJ)Q])

k=1
1

7 ¢

= E; [trace <(I —i)Qﬂ

E[lGl]-m _ B —m

trace (E [(QQT)Q]) —trace (I)) = M = M ’
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where we used the fact thgtare sampled independently thBET — ¢;¢)(I— ¢;¢/)] =E[I - ¢/ |E[T -
¢;¢;] = 0. By replacing this lower bound in Equation (11), we can now 8@t E[g(¢y, (s, ..., Car)] >
1 — (R?/v/M)+/1—m/R*. More importantly, Theorem 1 allows us to confirm the progosgper bound
using the following argument. Since the statement

5 - —2¢?
P( min z'Iz—E; | min zTIz} < — > <e <7> ,
(w—l I{w—l =)= > (R M?)

. . 2y/In(2
P (min z'1z — Ej[min z'Iz] > —M> >1-4/2,
llz]|=1 llzll=1 v M

and since relaxin@; [min ,—, z'Iz] to its lower bound can only include more random events, wesiec
sarily have that

implies that

P<min zTiz21—% <\/1—m/R4+\/ln(2/5)>> >1-6/2 .

llzll=1
Thus, given thai\/ is large enough so that— «(§/2) > 0, we conclude that

P(ijizkigi>zl—5m.

The task of showing thait/(1 + a(5/2))I < T also occurs with probability — /2 is very similar. One
simply applies Theorem 1, now defining¢:, (s, ..., () = —miny,—; z'lz, and needs to demonstrate
thatE[g((i, (o, .., Car)] > —1 — «(d/2). The rest follows easily. O

REMARK 2. In Anderson (1984), it is shown that under the assumpliat(tis Gaussian, the eigenvalues
of v M (I—1) are distributed according to:

1 1«
f(o-bo-% "'aam) = E exp(_§ ZZ_;O-ZQ) g(al - O-j) )

whereo; > oy, > ... > 0, and Z is a normalizing constant. Thus in the Gaussian case, onguaantie
with probability greater thah — ¢ that:

I<Ii<

1

1+~ - —=
wherer is the solution to the equatioh(—r < o, < 0, < r) =1 — ¢ with respect to the distribution
f(o1,09,...,0,). This fact leads us to believe that the bound that is predénttemma 3 is tight up to a
constanti(e., the bound is necessarify(1/vM)).

We are now interested in extending Lemma 3 to general meanaadiance random vectors. Given the
random event that Constraint (10) is satisfied, then:

1 1 .
I<— —I=33I8? < —— 912 In!/?
~1-a(6/2) ~1-a(s/2)

M

1 1
n<_ - - 21/2 ; TEI/Q
- —1—a(5/2)M; Gt

= 3= ﬁm% ;(ﬁi—ﬂ)(&—ﬂf
1
= T@/Z) (1)

>

=
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and similarly,
1 . 1 N
— I <I= — <X .
1+a(6/2) —  1+a(6/2) —

Since Constraint (10) is satisfied with probability greatean 1 — §, the following corollary follows
easily.

COROLLARY 2. Given that the mean df ., is known and used to formulate the empirical estimate of the
covarianceX(u), then with probability greater theh — ¢:
1 - 1 -
— () L
a2 W3S ey =)
wherea(§/2) = (R?/vV/M) <\/1 —m/R*+ \/1n(2/5)) and given that\/ is large enough.

This statement leads to the description of a convex set tiahins mean vectors and covariance matrices
for which a given empirical estimate is obtained with highkmbility through the sampling process.

THEOREM 2. GivenM samples frong, {&1M,, and an empirical estimate of the mearmand covariance
matrix 3, then with probability greater thah — § over the choice of&; 1M, the following set of constraints
are met:

(= 1S (3= ) < 606/ (122)
= 7 <<5/2>E (20)
R IR (12¢)

wherea(s/4) = (R? /M) (¢1 —m/Ri+ \/ln(4/(5)) L B(8/2) = (R?/M)(2 + /2In(2/3))?, and given

that M is large enough.

Proof: By applying Corollary 1, 2 and Lemma 3, the union bogndrantees us with probability greater
thanl — ¢ that the following constraints will be met:

(ﬂ—u)E‘l(ﬂ—ul) <6(6/2)
>=1 _1a(5/4)2(“)
Ty G

Notice that our result is not proven yet since, although tret fionstraint is exactly Constraint (12a), the

second and third constraints actually refer to covariastienates that uses the true mean of the distribution
instead of an empirical estimate. The following steps wilheince us that these conditions are sufficient
for constraints (12b) and (12c¢) to hold.

(1=a(8/9)% = S(p) =37 > (& - m&—p)"

:%i_l(&—ﬂ%—ﬂ—u)(&—ﬂﬂLﬂ—M)T
—%Z_'l<a—ﬂ><@—mu<s i) +

) (=) (& =)+ (p—m)(a—mp")
=Y+ (—p)(i—p)"
= X+3(6/2)% ,



Delage and Ye: Distributionally Robust Optimization under Moment Uneeénty
14 Operations Research 00(0), pp. 000-a8DP000 INFORMS

where the last semi-definite inequality of the derivation ba explained using the fact that for any R™,

x(a—p)(i—p)'x = (x"(f—p)* = (x"82 2 (1 —p))?
< XTSRS (- )P < B(6/2)xTEx

Thus we can conclude that Constraint (12b) is met. The sape stin be used to show that Constraint (12c)

also holds for a set of events of probability- §.

1 M

2(#) =M Z(& — ) (& —p)"

=1

>+ (fo— ) (o — )"

(1—-a(6/4))%

IA

Yl
™ 0

O

4.3. Bounding the Support of ¢ using Empirical Data

The above derivations assumed that one is able to descrifé@htaining the support of the rather fictive
random vector. In fact, this assumption can be replaced by an assumptidheosupport of the more
tangible random vectar as is presented in the following corollary.

CoROLLARY 3. Given that the suppoi§; of the distribution of is known, let

R=sup [272(6 — )]
£€Se

be an approximation oR using the available empirical data. Fof = J, =1 — /1 — 4, given that

8-+ /32m(3/9))
(\/R+4—R)4

then Theorem 2 applies with(d,/4) = (R?/v/M) (\/1 —m/R*+ \/ln(4/(52)) , B(65/2) = (R?/M) (2 +
21n(2/4,))?, whereR is evaluated from the empirical data itself:

M > max{ (R?+2)? (2+\/W)2 (

: (13)

R

R= 1/2
<1 (R 2)2+\/21n(4/5)>

VM

Proof: Since we assumed thatwas non-singular, the support 6fbeing bounded by a ball of radius
R implies that¢ is also bounded. Thus, there existsarsuch thatP(||¢|| < R) = 1. Given that{ has a
bounded support, Theorem 4 guarantees us that with pritgajsééater tharl — §,, constraints (12a), (12b)
and (12c) are met. Thus

R—Csup ||<||2—£sup||E 2(¢— u)\lz—supllE V2 E—p+p— ).

5
<§up\\2 2= )l + 172 (0 — ) Iz

< sup /1+a(6,/4)[|272(E = @)+ V/B(61/2)
£ESe

< V1+a(d/4)R++/5(01/2)

< RV1+cR?*+cR ,
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wherec = (2 ++/2In(4/6,)) /v M.

A careful analysis of the function( R, R) = Rv/T + cR2 4 cR leads to the observation thatif satisfies
Constraint (13) then the fact th& < ¢ (R, R) necessarily implies thak < R. We can therefore conclude
thatP(R< R) >1— 6.

Given the event thak < R occurs, since

a(8,/4) = (R2/v/M) (ﬂ —m/RY + /21n( 4/52)>
< (R2/VI) (y/l—m/R4+ m) 6(60/4)

and since

B(82/2) = (R*/M)(2++/2In(2/65))* < (R*/M)(2+ /2In(2/5,))* = B3(3,/2) ,

we can conclude with a second application of Theorem 2 thtt probability greater than — 4, the
following statements are satisfied:

(f— )2 (i — X 1) < B(62/2

231 = (/1 —ﬁ<6/2>1i
N A T/ C 1= a0/

It follows that Theorem 2 applies with(d,/4) and3(d,/4) because the probability that the evefitthat
constraints (12a), (12b) and (12c) equipped witl,/4) and3(d,/4) are met is necessarily greater than
1-46.

<B(62/2) ,
1 .

o) Ba2)

)Z

IA\_/

P(E)>PE|IR<RP(R<R)>(1—6)(1—0)=1-6 . O

4.4, Data-driven MP and DRSP Optimization

In most real world situations where one needs to deal wittetiamty in the parameters, it might not be
clear how to define an uncertainty set for the mean and covaimatrix of the random parametersit
is more likely, that one only has in hand a set of independamipdes {£;}2,, drawn from the underlying
distribution and wants to solve a moment problem in orderrtd finteresting upper bounds on a moment
of the distribution,E¢[1(£)]. Or similarly, using the set of independent samples, solidR&P model in
a way that guarantees with high probability that the sotutgrobust with respect to the true underlying
distribution that generated the samples. In this secti@prmpose using the set of samples to construct a set
of distributions that has high probability of containingttistribution that actually generated the samples
of &.

We will first use our last result to define, based on the randampées{¢; },, such a a set of distribution
which is known to contain the distribution ¢fwith high probability, given thad/ is sufficiently large.

DEFINITION 2. LetD,(S,{&}1,,0) be the set of distributions @fsuch that

P(¢cS)=1 6,/2) (14a)

~ N1/ ~ o ﬂ 52 2

(n—E[E)X (i E[E])él_g(52/4)_3(52/2) (14b)
1+ 5(02/2) .

Bl (€~ 1)) X T 5575

where i and 3. are the empirical estimates of the mean= M~'>"" ¢ and covariance’ =
M-S (& — i) (& — )T of €, anda(d,/4) = O(1/v/M) and3(5,/2) = O(1/M) are constants defined
in Corollary 3.

(14c)



Delage and Ye: Distributionally Robust Optimization under Moment Uneeénty
16 Operations Research 00(0), pp. 000-a8DP000 INFORMS

COROLLARY 4. Given that)M satisfies Constrainl3) and that{¢,;}}, are independent identically dis-
tributed samples from a distribution which is known to haupport onS then with probability greater
than1 — § over the choice of¢; }, the distribution of lies in the seD, (S, {¢,},,9).

Proof: This result can be derived from Corollary 3. One caswsthat given any estimatgsandy. that
satisfy both constraints (12a) and (12b) equipped with/4) and 3(d,/2), these estimates should also
satisfy constraints (14b) and (14c). First,

(1—a(62/4) = B(62/2)) (i~ )£ (B — ) < (A — ) S (i — ) < B(62/2)
where we used the fact that Constraint (12a) impliestiat—'x > (1 — a(d,/4) — (52/2))x"E~'x for
anyx € R™. Similarly, the estimateg and>: can be shown to satisfy Constraint (14c):
1

— a(62/4) — B(82/2)

=% =E[E] -

5(52/2)_ $
—a(0y/4) — (62/2)

E[(&—p)(E—p)'] -

since for allx € R™,

xuux—i(: W=t )= (x"(p—)* +2x" (=)o

Tx 4 (x" )
race(x' S22 (1 — 1) (1 — M)TE 1/22/ X) +2x

A~

Tp'x — (x"p)?

A Y s
SXT( el Gy _‘m>
_XT<1—a<52/4>—B(@/z)mwﬂ E[(¢ — ) ¢ >1>

By Corollary 3, the random variablgsand: are guaranteed to satisfy constraints (12a) and (12b) with
probability greater tham — J, therefore they must also satisfy constraints (14b) and)(dth probability
greaterthan —o. 0O

We can now extend the results presented in sections 3 to aldegm framework where moments of the
distribution are estimated from data.

DEFINITION 3. Let®(x;S,{&}Y,,0) be the optimal value of the MP model associated to the inra-pr
lem of Problem (5):

maximize  E[h(x,&)],
fe€D1(S,,271,72)

using the assignments:
oy = 5(52/2)_ o = 1‘*‘5(52/?)
L1 a(6:/4) - B(62/2) T 1-al6:/4) - 56:/2)

Based on the computational argument of Proposition 2 angdribigabilistic guarantees provided by Corol-
lary 4, we present an important result for data-driven prots.

(15)

THEOREM 3. Let ¢ be a risk factor and(¢;}, be a set ofd independently and identically distributed
instances of the random paramete&rswhich distribution is known to have support on a boundedSset
One can solve in polynomial time the DRSP equipped with tteilditional setD, (S, /z, 2,%,%), where
~1 and~y, are defined as in Equatiofi5). Then, given thal/ satisfies Constraintl3), one is guaranteed
that the resulting optimal solutior* is such that

]P){f}f‘il(EA (x*, 0] < d(x: S, {&IM,,6))>1-6,

whereP(-) is evaluated with respect to the random generation of thendd(x*; S, {&;},, ), while the
expectation is taken with respect to the underlying distidn of¢.
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Since we believe the MP model to be interesting in its owntrigle find important to mention a sim-
ple consequence of the above result for data-driven monrebtgms when considering the special case
h(x,€) = h(&).

COROLLARY 5. Letd be arisk factor and&; }, be a set of\/ independently and identically distributed
instances of the random paramete&rswhich distribution is known to have support on a boundedSset
One can compute in polynomial time the MP equipped with teidutional setD, (S, /i, 2,71,72) where
~1, Y- are defined as in Equation 15. Then, given thatsatisfies Constraintl3), one is assured that the
optimal value previously defined 85~,,~-) is such that

Pren (Belh(€)] < W(m,70)) > 1-4,

whereP(-) is evaluated with respect to the random generation of thentoki(~,,~,) using the random
sampleq ¢}, while the expectation is taken over the exact underlyisgidution for¢.

5. Application to Robust Portfolio Optimization

We now turn ourselves to applying our framework to an instasfgportfolio optimization. In such a prob-
lem, one is interested in maximizing his expected utility thoe potential one step return of an investment
portfolio. Given thatn investment options are available, return can be definedeakintkar functions "x,
where¢ € R™ is a random vector of return for the different options. In tbleust approach to this problem,
one defines a distributional sPtthat is known to contain the distributigfa and choose the portfolio which
is optimal according to the following DRSP model:

maximize min E¢[u(£ x)] (16a)
X jg €D X
subject to in =1, x>0. (16b)

i=1

In Popescu (2007), the author recently addressed thisqrobi the case wherg[¢] andE[¢¢T] are
known exactly and one considefsto be the set of all distribution with such first and second reots.
With these assumptions, she presents a parametric quagdragiramming algorithm that is efficient for a
large family of utility functionu(+). This approach is interesting as it provides a mean of takitogaccount
uncertainty in the form of the return distribution. Unfaruely, our experiments will show that in practice
it is highly sensitive to the noise in the empirical estiroatof these moments. Secondly, the algorithm also
relies on solving a one dimensional non-convex mathematiogram. Thus, Popescu does not provide an
algorithm which is guaranteed to converge to an optimaltgmiun polynomial time. Although the approach
that we are about to propose addresses a smaller familyliof fiinctions, it will take into account moment
uncertainty and will lead to the formulation of a semi-daémprogram which can be solved efficiently using
interior point methods.

5.1. Portfolio Optimization with Moment Uncertainty

In order to apply our framework we need to assume that théyufilnction is piecewise linear con-
cave such that(y) = mingeq1 0, 3 axy + by. This is not too constraining since in portfolio optimiza-
tion the interesting utility functions are usually concaml such functions always have a finite )
piecewise linear approximation. We will use historical Whedge of investment return&;, &, ..., &}
to define a distributional uncertainty set ffir. This can be done either through Definition 2 or directly
through the seD, (v,,72) for suitably chosen values of, and~,. For simplicity, in what follows we
useD1 (Sg,/,L, ) ,Y1,72)- The parameterB andy are assigned as the empirical estimates of the mean
121 L& and covarianc® = M 'S (&, — ) (& — 1) " of ¢ respectively. On the other hansl,can

either beR™ or an ellipsoidal sef¢|(¢ — &,)TO (¢ — &) < 1} known to contain the support gf*

Building on the results presented in Section 3, one can nek®tlowing statement about the tractability
of distributionally robust portfolio problems.
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THEOREM 4. Given thatu(-) is piecewise linear, finding an optimal solutiare R” to the distributionally
robust portfolio Problem(16) equipped with the set of distributior3, (S, /i, X,71,7.) can be done in
O(nS9).

Proof: We first reformulate the objective of Problem (16)tgwhinimization form :

xeX € D1(Se,,2:71,72)

minimize < max E¢ [m]?x —apé'x — bk]>
fe

After confirming thath(x, ) = max, —a,&"x — b, satisfies the conditions in Assumption 2, a straightfor-
ward application of Proposition 2 already confirms that Rrob(16) can be solved in polynomial time. In

order to get a more precise computational bound, one neddkd@ closer look at the dual formulation of
Problem (16):

xnélnlmlze Y2 (X0 @ Q) — 11y Qi + 7+ (Lo o P) — 2u)p+ 718 (17a)
subject to [;)T E} >0, p=—q/2—-Q/, (17b)
£'Q¢ +&Tq+r> —ap ' x— by, VEE€S, ke {1,2,..,K} (17¢)
doxi=1, x>0V, (17d)

Given thatS, = R", one can use Schur’s complement to replace Constraint fi7ah equivalent linear
matrix inequality.

minimize (S0 Q) —4'Q+r + (SeP) — 24 p+ s

x,Q,q,m,P,p,s
subject to ;)TI;] >0, p=—q/2—Qi

Q q/2+ a,x/2
q'/2+ax"/2  r+b,

inzl , x; >0, Vi .

i=1

While if S; is an ellipsoid, the S-lemma can be used to replace Conts(iain)

e —e6 17¢] . ¢]" Q a/2+ax/2][€] -
1 e g -1 (1]~ 1 q'/2+ax"/2  r+by 1=
with an equivalent constraint:
Q q/2+ apx/2 C] —-O¢
[qT/2+akxT/2 s ]Z‘Tk[—gg@ 5395031] » 20,

wherer, k € {1,..., K}, are extra slack variables. The problem can therefore aseformulated as a
semi-definite program:

|0,

gnmmlze ")/2(2 eQ)—'Qp+r+ (i eP)—2i"p+s

subject to ;E} >0, p=—q/2—Qi
Q a/2+ apx/2 > _r (S} —-0¢, i
qT/2+akXT/2 T+ by, g —g@ 53950—1 '
Q>0
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In both cases, the optimization problem that needs to beeddbsa semi-definite program. It is well
known that an interior point algorithm can be used to solvEBR of the form
minimize ¢'x
x€eR™ N

subject to A;(x) =0 Vi=1,2,..., K

o 0.5 -~ N
in O (ZK mz) (fﬂ SEm4a S mf) , Wherem; stands for the dimension of the positive semi-

definite conei(e., A;(x) € R™i*™) (see Nesterov and Nemirovski (1994)). In both SDP thatésts us
here, one can show that< n* +4n + 2+ K and that the problem can be solved K ?-°n5?) operations,
with K being the number of pieces in the utility functieft). We conclude that the portfolio optimization
problem can be solved i@(n%%). O

REMARK 3. The computational complexity presented here is basedearrgl theory for solving semi-
definite programs. Based on an implementation that uses I8e(@iurm (1999)), we actually observed
empirically that complexity grows in the order 6X(n”) for dense problems. In practice, one may also be
able to exploit structure in problems where subsets of asgetknown to behave independently from each
other.

5.2. A Case where the Worse Distribution has Largest Covariance Matrix

When presenting our distributionally robust framework,geaerally argued in Remark 1 that lower bounds
on covariance were uninteresting. We are now interestedeisemting a more rigorous argument for this
modeling decision. Actually, in the case of a portfolio opiiation problem with piecewise concave utility
function, we can show that the lower bound on the covariaratexiis irrelevant. The proof of the following
proposition also provides valuable insight on the strietifrportfolio optimization problems.

PropPoOsSITION3. The robust portfolio optimization problem with piecewisear concave utility and infi-
nite support constraint on the distribution is an instandalistributionally robust optimization where the
covariance constraint is tight for the worse case distribnt

Proof: Consider the inner problem of our robust portfolidgimization with unconstrained support for the
distribution:
max E¢[max —apé'x —by] . (18)
fe € DI(R™,0.,5,0,72) k
For simplicity of our derivations, we consider that thera@suncertainty in the mean of the distribution
(i.e.,v1 = 0). The dual of this problem can be formulated as:

migimize (LeQ)+a"Qu+i"q+7r
»q, T

. Q q/2+ apx/2
subject to LQT/2+GkXT/2 "+ by >0, Vk .
>0

Applying duality theory a second time leads to formulatirgiightly different version of the primal problem
which by strong duality achieves the same optimum.

K
. T
maximize apX' A + Vb (19a)
{(Ak'r)‘kﬂyk)}i(:l kz_;
K
subject to Z Ay 2 X+ it (19b)

k=1
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M)~
~

K
S h=i
k=1
Ak )‘k
)\'kl' Vi
We can show that there always exists an optimal solution attConstraint (19b) is satisfied with equality.
Given an optimal assignmet* = {(A;, A, v7) 1, such thatA = .3 + aa’ — S5, Af = 0, con-
sider an alternate solutioR’ = {(A}, \,,v;) }H<, which is exactly the same as the original soluti&n
except forA] = A7 + A. Obviously the two solutions achieve the same objectiveesbince the variables

{(M&,vi) HE, were not modified. If we can show that is also feasible then it is necessarily optimal. The
only feasibility constraint that seriously needs to befiedliis the following:

AN AT A0

= -
[XJ 1/{] [X{T vi|Tloo|=Y
and is necessarily satisfied since by definitiéh is feasible and that by constructidx is positive semi-
definite. It is therefore the case that there exists a solutid that is optimal with respect to Problem (19)
and satisfies Constraint (19b) with equality. Furthermonre is assured that the s@,ﬁil apX"\; + v by,
is equal to the optimal value of Problem (18).

After assuming without loss of generality that &| > 0, let us now construciX random vectors
(¢1,y o, -, Cr) that satisfy the following conditions:

(19c¢)

k=1

}zo Vke{l,2,. K} . (19d)

1 1
E[¢] = V—k)\z , E[GGi] = V—kAZ :
Note that sinceX* satisfies Constraint (19d), we are assured that:
T T
it~ BIGIEGT = | g | | o5 | _eparr]

o 7 VlkAZ oAk I
~Leler] |57 [elor

1
Vi
T

:viz[—E[Ick]T} HT H [—Ei‘kr] =0

Hence, the random vectofs,, (s, ..., (x ) exists. For instance, IE[(¢, — E[¢:]) (¢x — E[C:])T] = 0, then(,
can take the form of a multivariate Gaussian distributiothveuch mean and covariance. Otherwise, one
can construct a lower dimensional random vector; for instaif E[(¢;, — E[¢1]) (¢ — E[¢x]) 7] = 0 then the
random vector should be a deterministic poinE&y,.|. .

Let k be an independent multinomial with parameters vs, ..., vx ), such tha?(k = i) = 1;, and use it
to construct the random vectde= (;. SinceX * satisfies constraints (19b) and (19c) tightly, one can show
that the distribution function of* lies inD(R™, fz, ) ,0,7,) and has largest covariance.

K
E[¢'] =) E[G|k=KP Z N =
k=1
K
Efere] = ZECkckrk kIP(k = Z kAkuk %S+ AT
k= k=1

Moreover, when used as a candidate worse case distribatiBroblem (18) it actually achieves the maxi-
mum since we can show it must be greater or equal to it.

E [mlax —ax' & — bl} = ZK:E [mlax —ax' (g — bl‘l;: = k:} P(k=k)
k=1
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E[—akxT(k - bk]]P(]% == k?)

]~

>

el
Il

1

—akxT)\k — bkl/k

I
]~

=
Il

1
= max E¢[max —a,x"€ — by
fe € D1(R™,,53,0,72) k

We conclude that we just constructed a worse case diswibthiat does have largest covariance.]

REMARK 4. An interesting consequence of Proposition 3 is that infridwmework considered in Popescu
(2007), if the utility function is piecewise concave, oné ¢md the optimal portfolio in polynomial time
using our semi-definite programming formulation with thstdbutional seD; (R™, i, 3,0, 1). We believe
our semi-definite program formulation to be more tractab#ntthe original algorithm. However, it is true
that our framework does not provide a polynomial time altponi for the larger range of utility functions

considered in Popescu’s work.

5.3. Experiments

We evaluate our portfolio optimization method on stock neaikvestments. We use a historical dataset
of 30 assets over a horizon of 15 years (1992-2007), obtdinetthe Yahoo! Financé Each experiment
consists of randomly choosing 4 assets, and building a digyaantfolio with these assets through the years
2001-2007. At any given day of the experiment, the algorittare limited to 30 days of the most recent
history to assign the portfolio. All methods assume thathils period the samples are independent and
identically distributed. Note that 30 samples of data ismath to generate good empirical estimates of
the mean and covariance of returns; however, the use of erlarstory causes the i.i.d. assumption to be
somewhat unrealistic.

In implementing our method, the distributional set is folated ale(IR‘*,ﬂ,i, 1.35,8.32), where
and ¥ are the empirical estimates of the mean and covariancerespectively. The values foy; and
v, are chosen based on a simple statistical analysis of morséntagion during the years 1997-2091.
We compare our approach to the one proposed by Popescu (2005t the mean and covariance of the
distribution f, is assumed to be equal to the empirical estimates over they&Ohistory. The method is also
compared to a naive approximation of the stochastic prognastich the selected portfolio is the one that
maximizes the average utility over the last 30 days samleselieve that the statistics obtained over the
set of 300 experiments demonstrate how much there is to ga@rms of performance and risk reduction
by considering an optimization model that accounts for latigkribution and moment uncertainty.

Method Single Day 2001-2004 2004-2007
Avg. utility 1-perc.| Avg. yearly return 10-perg.Avg. yearly return 10-perg.
DRPO model 1.000 0.983 0.944 0.846 1.1017 1.025
Popescu’s DRPO model 1.000 0.975 0.700 0.334 1.047 0.9364
SP model 1.000 0.973 0.908 0.694 1.045 0.923

First, from the analysis of the daily returns generated lhenethod, one observes that they achieve
comparable average daily utility. However, the DRSP mot#ids out as being more reliable. For instance,
the lower 1%-percentile of the utility distribution is 0.8%gher then the two competing methods. Also, this
difference in reliability becomes more obvious when coesity the respective long term performances.
Figure 1 presents the average evolution of wealth on a sbsyaiod when managing a portfolio of 4 assets
on a daily basis with either of the three methods. The perdnices over the years 2001-2004 are presented
separately from the performances over the years 2004-200iler to measure how they are affected by
different level of economic growth. The figures also indécaeriodically the 10% and 90% percentile of the
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Figure 1  Comparison of wealth evolution in 300 experiments condiioter the years 2001-2007 using three different portfolio
optimization models. For each model, the figures indicatéoogially the 10% and 90% percentile of the wealth
distribution in the set of experiments.

wealth distribution over the set of 300 experiments. Thesites of the long term experiments demonstrate
empirically that our method significantly outperforms thtmore naive ones in terms of average return
and risks during both the years of economic growth and thesy&adecline. More specifically, the DRPO
model outperformed the Popescu’s model in terms of totakmetumulated over the period 2001-2007 in
79.2% of our experiments (total set of 300 experiments)o Atsperformed on average at least 1.67 times
better than any competing models. Note that these expetsnaea purely illustrative of the strengths and
weaknesses of the different models. For instance, then®tintained in each experiment does not take
into account transaction fees. The data is also biased fathéhat the assets involved in our experiments
were known to be major assets in their category in January.206 the other hand, the return were also
negatively biased by the fact that in each experiment theefsoslere managing a portfolio of only four
correlated assets. Overall we believe that these biasesaffecting all methods in a similar manner.

Notes

*One should also verify thgt € int(S) and that > 0 in order to meet the technical conditions required throtgreipplication
of duality theory.

2The list of assets that is used in our experiments was irgfiyeGoldfarb and lyengar (2003). More specifically, the 30
assets are: AAR Corp., Boeing Corp., Lockheed Martin, UWhitechnologies, Intel Corp., Hitachi, Texas Instrumentsl| Bom-
puter Corp., Palm Inc., Hewlett Packard, IBM Corp., Sun Mgystems, Bristol-Myers-Squibb, Applera Corp.-Celerau®t Eli
Lilly and Co., Merck and Co., Avery Denison Corp., Du Pontwb@hemical, Eastman Chemical Co., AT&T, Nokia, Motorola,
Ariba, Commerce One Inc., Microsoft, Oracle, Akamai, CiSgstems, Northern Telecom, Duke Energy Company, Exelop.Cor
Pinnacle West, FMC Corp., General Electric, 'Honeywelgdrsoll Rand.

3More specifically, given that one chooses 4 stocks randondysamples a random period of 60 days between 1997 and 2001,
the values fory; and~. are chosen such that when using the first 30 days of the periceinterD(+1,~2), the distributional set
contains, with 99% probability, distributions with momgiqual to the moments estimated from the last 30 days of tiwdpe
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