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Stochastic programs can effectively describe the decision-making problem in an uncertain environment. Unfortunately,
such programs are often computationally demanding to solve. In addition, their solutions can be misleading when there
is ambiguity in the choice of a distribution for the random parameters. In this paper, we propose a model describing one’s
uncertainty in both the distribution’s form (discrete, Gaussian, exponential, etc.) and moments (mean and covariance).
We demonstrate that for a wide range of cost functions the associated distributionally robust stochastic program can be
solved efficiently. Furthermore, by deriving new confidenceregions for the mean and covariance of a random vector, we
provide probabilistic arguments for using our model in problems that rely heavily on historical data. This is confirmed
in a practical example of portfolio selection, where our framework leads to better performing policies on the “true”
distribution underlying the daily return of assets.
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1. Introduction
Stochastic programs can effectively describe the decision-making problem in an uncertain environment.
Unfortunately, the probability measures involved usuallyhave highly specialized form; thus, solving the
stochastic program can lead to real computational challenges. Even on a more practical level, only rarely
does one holds enough information about the problem to commit to a specific stochastic models. In an effort
to address these issues, a robust formulation for stochastic programs was proposed by Scarf in 1958 and has
gain a lot of interest since then (see Scarf (1958), Shapiro and Kleywegt (2002), Calafiore and El Ghaoui
(2006)). In this framework, one must define a set of probability measure that is assumed to include the true
stochastic model for the problem. For example, one can consider the set of all distributions that matches a
given support, mean and/or covariance. The objective of theproblem is then reformulated under worse case
analysis over the choice of a distribution in this set (hencethe Distributionally Robust Stochastic Program):

(DRSP) minimize
x∈X

(

max
fξ∈D

Eξ[h(x, ξ)]

)

,

whereξ is a vector of stochastic parameters,fξ is a distribution ofξ, D is the uncertainty set for this
distribution, andX is a convex feasible set for the decision variablex.

Although the DRSP optimization model has led to attractive solutions for specific problem forms, such
as single item news vendor, regret minimization, linear chance-constrained and portfolio optimization prob-
lems (see Scarf (1958), Yue et al. (2006), Calafiore and El Ghaoui (2006) and Popescu (2007) respectively
for details), the form still lacks encouraging computational properties for a general version of the cost
functionh(x, ξ). Furthermore, the currently available methods can lead to afalse sense of security as they
often falsely assume exact knowledge of mean and covariancestatistics for the stochastic parameters. For
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instance, in many data-driven problems, one needs to build empirical point-estimates of these moments
based on limited historical data. As the experiments presented in Section 5 will demonstrate, disregarding
the uncertainty in these estimates can lead to taking poor decisions.

In this work, we make the following assumptions about the DRSP model.

ASSUMPTION1. The setX is convex and equipped with an oracle that can confirm feasibility of x or
provide a separating hyperplane in polynomial time inn.

ASSUMPTION2. The functionh(x, ξ) : R
n × R

m → R can be represented in the formh(x, ξ) =
maxk∈{1,...,K} hk(x, ξ) such that, for allk, hk : R

n × R
m → R is convex inx and concave inξ. Hence,

althoughh(x, ξ) is convex inx, it is not required to be concave inξ. Furthermore, for eachk, given a pair
(x, ξ), it is assumed that one can in polynomial time:

1. Evaluate the value ofhk(x, ξ)
2. Find a sub-gradient ofhk(x, ξ) in x

3. Find a sub-gradient of−hk(x, ξ) in ξ.

ASSUMPTION3. One can define valuesγ1, γ2 ≥ 0 such that the distributionfξ is known to lie in the
following non-empty set of distributions:

D1(S, µ0,Σ0, γ1, γ2) =







fξ

∣

∣

∣

∣

∣

∣

P(ξ ∈ S) = 1
(E[ξ]−µ0)

TΣ−1
0 (E[ξ]−µ0)≤ γ1

E[(ξ−µ0)(ξ−µ0)
T]� γ2Σ0







,

where� is a linear matrix inequality,µ0 ∈ int(S), Σ0 ≻ 0, andS is a convex set inRm for which there
exist an oracle that can confirm feasibility or provide a separating hyperplane in polynomial time.

Although its apparent technicality, Assumption 2 is very general as it allowsh(x, ξ) to represent many cost
functions addressed by DRSPs in the past. Section 3.3 gives an overview of such examples. As for Assump-
tion 3, we claim that, since the proposed distributional setD1(S, µ0,Σ0, γ1, γ2) accounts for moment uncer-
tainty, it can often in practice model one’s uncertainty in the distribution ofξ more accurately than pre-
viously proposedD. We will later validate this claim by showing that Assumption 3 is implied with high
probability by the knowledge that the distributionfξ has support onS and that it is the distribution that
generated a set of independent samples{ξ1, ξ2, ..., ξM}.

After reviewing prior work and difficulties related to solving DRSP models in Section 2, we show in
Section 3 how, under the mentioned assumptions, the DRSP canbe solved in polynomial time for a large
range optimization problems. In fact, the structure ofD(S, µ0,Σ0, γ1, γ2) allows us to consider solving
instances of the DRSP that were previously shown to be intractable for the usual form ofD which assumes
exact knowledge of the moments (see Example 1 of Section 3.3 for more details). In Section 4, we also use
a frequentist approach to derive a new form of confidence region for the mean and covariance of a random
vector which naturally lead to usingD(S, µ0,Σ0, γ1, γ2). These results should convince the reader that the
distributional set that we present in this work is the right set to chose for distributional uncertainty in data-
driven problems (i.e., problems where knowledge ofξ is solely derived from historical data). We finally
apply our framework to a portfolio selection problem. In Section 5, we demonstrate that, beside presenting
computational advantages, in practice our model also performs best on the actual distribution that drives
daily returns of popular stocks when compared to previouslyproposed DRSP formulations.

2. Background
In a single stage stochastic program, one is interested in finding an assignment forx ∈R

n that will minimize
the expected value of a cost function given some underlying parameter uncertainty:

(SP) minimize
x∈X

Eξ[h(x, ξ)] .
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Here,ξ ∈ R
m contains the stochastic parameters for which the distribution fξ is assumed to be known. The

functionh(x, ξ) is convex inx and maps a pair(x, ξ) to a cost (or penalty) value. Although the SP Problem
is known to be convex inx and can even in some rare cases be reformulated as a deterministic program
(e.g., whenh(x, ξ) = ξTx), in order to solve the general formulation, one must often resort to Monte Carlo
approximations which can be computationally challenging (see Shapiro (2000)).

Another difficulty in practice arises from the need to committo a distributionfξ given only limited
information about the stochastic parameters. For instance, one might only have in hand a set of independent
samples{ξ1, ξ2, ..., ξM} generated fromfξ. In this case, it is still possible to formulate unbiased estimates
of the moments offξ:

E[ξ]≈ 1

M

M
∑

i=1

ξi E[(ξ−E[ξ])(ξ−E[ξ])T]≈ 1

M − 1

M
∑

k=1

(ξi − µ̂)(ξi − µ̂)T .

For this reason, there has been a strong interest in the derivation of upper bounds on expected cost given
information about meanµ, varianceΣ or supportS of the distributionfξ. This problem is often referred to
as the Moment Problem:

(MP) maximize
fξ∈D0(S,µ,Σ)

Eξ[h(x, ξ)] ,

whereD0(S, µ,Σ) is the set of all probability measures with a given mean and covariance and with support
onS. We refer the reader to Prékopa (1995) for more details on the general form of this problem. A popular
special case of this problem, which will be revisited in Section 3.3, occurs when the penalty function takes
the formh(x, ξ) = 11{ξ ∈ C}. Solving the MP in this case leads to the formulation of interesting multivariate
Chebyshev inequalities as shown in Marshall and Olkin (1960) and Bertsimas and Popescu (2005). Lately,
the MP model with other forms of distributional sets has alsobeen considered and put to practical use in
robustness analysis (seee.g., Barmish and Lagoa (1997)).

Although the MP model is interesting in its own right, it is often only a mean for taking optimal decisions.
Therefore, in this work we will mostly be interested in solving the DRSP model. This model was first pre-
sented by Scarf (1958) in the context of an inventory management problem and since then has been referred
to asminimax stochastic programming(e.g., Dupacová (1980), Shapiro and Kleywegt (2002)), optimiza-
tion with incompleteor limited distribution information(e.g., Ermoliev et al. (1985)) and more recently as
distributionally robustoptimization. Its main application have focused stochastic linear programming with
or without chance constraints as in Calafiore and El Ghaoui (2006) and in Chen et al. (2007). Although
optimization models of a more general form have already beenconsidered, for instance in Ermoliev et al.
(1985), the field still lacks tractable solution methods forthem.

In his original model, Scarf’s considered a one dimensionaldecision variablex representing how much
inventory one should hold, andξ represented a random demand with known mean and variance. The return
function had the formh(x, ξ) =−min{rx−cx , rξ−cx}, which actually satisfies Assumption 2. To solve
this model, H. Scarf exploited the fact that the worse case distribution of demand could be chosen to be one
with all its weight on two points. This idea was successfullyreused in other inventory management problem
model such as in Yue et al. (2006) and Zhu et al. (2006) where the objective consisted instead of minimizing
the worse case regret, in absolute or relative terms, which would result from having committed to a decision
once the true distribution is revealed.

More recently, a DRSP model was also proposed by Popescu (2007) to address portfolio optimization
problem. Here the return function takes a more interesting shape:h(x, ξ) =−u(ξTx) with u(·) including a
range of useful utility functions. Again, the presented solution assumed known first and second moments of
the stochastic parameters and relied on characterizing theworse case distribution of investment returns as a
point distribution. Unfortunately, these examples are part of only a few special cases were the DRSP with
known moments was shown to have a tractable solution. The main contribution of this paper is to provide
for a range of stochastic programming models a robust yet tractable framework which takes into account
distribution information that is limited with respect to both its form and moments.
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3. Robust Stochastic Programming with Moment uncertainty
It is often the case in practice that one has limited information about the distribution driving the stochastic
parameters which are involved in the decision-making process. For example, an investment manager can
not know exactly the joint distribution of return for any available securities. Or in a different context, man-
ufacturing decisions are rarely made knowing the distribution of future demand. We believe that in such
problems, it is also rarely the case that one holds exact information about the moments of the random vari-
ables that are involved. Although the assumption of known moments has already led to interesting solutions
for these problems, we will show that there is more to be gained, both on a theoretical and practical point
of view, by explicitly addressing limited moments information when solving stochastic programs.

In what follows, we represent the overall uncertainty in thedistributionfξ as proposed in Assumption 3.
Given a convex supportS for the distribution, we assume that the uncertainty in the first and second order
moments of the stochastic parametersξ can be described by uncertainty sets centered atµ0 ∈ int(S) and
positive definite matrixΣ0 ≻ 0:

(E[ξ]−µ0)
TΣ−1

0 (E[ξ]−µ0) ≤ γ1 (1a)
E[(ξ−µ0)(ξ−µ0)

T] � γ2Σ0 . (1b)

In this formulation, the parametersγ1 ≥ 0 andγ2 > 0 provide natural means of quantifying the size of one’s
confidence in his estimates of mean and covariance respectively. Constraint (1a) forces the mean ofξ to lie
in an ellipsoid of radiusγ1 centered at the estimateµ0. On the other hand, Constraint (1b) forces the second
order moment matrixE[(ξ−µ0)(ξ−µ0)

T] to lie in the intersection of two positive semi-definite cones:

0� E[((ξ−µ0)(ξ−µ0)
T]� γ2Σ0 .

In other words, it describes how likelyξ is to be closed toµ0 in terms of the correlations expressed inΣ0.
The distributional setD1(S, µ0,Σ0, γ1, γ2) is necessarily non-empty since it can be shown to always contain
the distribution that puts all of the weight at the pointµ0.

REMARK 1. While our proposed uncertainty model cannot be used to express arbitrarily large confidence
in the second order statistics ofξ, in sections 4 and 5, we will show how in practice there are natural ways
of assigningµ0, Σ0, γ1 andγ2 based on historical data and generate meaningful decisions. Of course, in
some situation it might be interesting to add the following constraint on the second order moment ofξ.

γ3Σ0 �E[(ξ−µ0)(ξ−µ0)
T] , (2)

where0 ≤ γ3 ≤ 1. Unfortunately, this leads to important computational difficulties for the general DRSP
form. Furthermore, in most applications of our model, we expect the worse case distribution to actually
achieve maximum variance, thus making Constraint (2) unnecessary. For example, the portfolio optimiza-
tion problem presented in Section 5 will have this characteristic because a less predictable market necessar-
ily leads to a non-negative reduction in expected utility given that the utility function is concave.

In what follows, we will study the MP and the DRSP models underthe distributional set formulated in
terms ofD1(S, µ0,Σ0, γ1, γ2) which will also be referred to in short-hand notation asD1(γ1, γ2).

3.1. The Moment Problem with Actual Moment Uncertainty

In this section, we address the Moment Problem with distributional setD1(γ1, γ2). By Assumption 2,
h(x, ξ) = maxk∈{1,...,K} hk(x, ξ) with eachhk(x, ξ) concave inξ for all x ∈X . We can now show a poly-
nomial method for finding the optimal value of this version ofthe Moment Problem.

DEFINITION 1. LetΨ(γ1, γ2) be the optimal value of the moment problem:

maximize
fξ ∈ D1(γ1,γ2)

Eξ[h(x, ξ)] .
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Given that one considersfξ to be an infinite dimensional vector indexed byξ ∈ S, such thatfξ(ξ) : S →R
+,

andµ∈R
m to be a free variable, the valueΨ(γ1, γ2) can be reformulated as the optimal value of the infinite

dimensional conic linear problem:

maximize
µ,fξ

E[h(x, ξ)]

subject to E[1] = 1 , E[ξ] = µ
E[(ξ−µ0)(ξ−µ0)

T]� γ2Σ0
[

Σ0 (µ−µ0)
(µ−µ0)

T γ1

]

� 0

fξ(ξ)≥ 0 , ∀ξ ∈ S .

Such a problem can be referred to as our primal MP. As it is often done with the moment problem, we
are about to shortcut the difficult in finding a worse case probability measure forξ by making use of duality
theory. One can show that the conditions thatµ0 ∈ int(S) andΣ0 ≻ 0 are sufficient conditions for strong
duality to hold in this problem. Intuitively, they ensure that the interior of the feasible set is non-empty in
the topology offξ. We refer the reader to Shapiro (2001) (more specifically Proposition 3.4) for a thorough
discussion on duality theory in the case of general conic linear problems and general moment problems. In
our case, strong duality implies thatΨ(γ1, γ2) is also the optimal value of the dual MP:

minimize
r ,q,Q,P,p,s

γ2(Σ0 •Q)−µT

0Qµ0 + r +(Σ0 •P)− 2µT

0p+ γ1s (3a)

subject to q+2Qµ0 +2p = 0 (3b)
ξTQξ+ ξTq+ r −hk(x, ξ)≥ 0 , ∀ ξ ∈ S, k ∈ {1, ...,K} (3c)
Q� 0 (3d)
[

P p

pT
s

]

� 0 , (3e)

where(A•B) refers to the Frobenius inner product between matrices,Q,P ∈R
m×m are symmetric matri-

ces, the vectorsq,p ∈ R
m, andr , s ∈ R. Note that in the dual problem, we are dealing with an infinite

number of constraints indexed byξ ∈ S. Fortunately, our assumption about the structure ofh(x, ξ) andS
leads to the dual problem having the property that cutting planes can be generated efficiently.

We first present a lemma describing the computational difficulties of verifying if a given assignment for
Q, q, r andx satisfy Constraint (3c).

LEMMA 1. Given any fixed assignment forx, Q, q, and r , such thatQ � 0, one can find for anyk ∈
{1,2, ...,K} in polynomial time an assignmentξ∗ that minimizes the following problem

minimize
ξ∈S

ξTQξ+ ξTq+ r −hk(x, ξ) . (4)

Proof: Because Problem (4) is convex inξ, the result is a straightforward consequence of an important
property of convex minimization problems. Theorem 8.1 in Schrader (1983) demonstrates polynomial
equivalence between the separation problem and the optimization problem for general convex problems.
More specifically, the author shows that convex problems canbe solved in polynomial time using the ellip-
soid method given that one can in time polynomial inm:

1. Given anyξ, verify feasibility.
2. Given any infeasibleξ, provide a hyperplane that separatesξ from the feasible setS.
3. Given any feasibleξ, evaluate the objective function and generate a sub-gradient in ξ.

In Problem (4), conditions (1) and (2) are satisfied by the assumption onS. Becausehk(x, ξ) satisfies
Assumption 2, one can also easily conclude that the objective function meets Condition (3). It follows natu-
rally that applying the ellipsoid method will converge to the optimal solution of Problem (4) in polynomial
time. �

We are now able to derive an important result about the complexity of solving the Moment Problem
equipped withD1(γ1, γ2).
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PROPOSITION1. The valueΨ(γ1, γ2) can be computed in time polynomial in the dimension ofξ.

Proof: We will compute the optimal value of this semi-infinite conic linear program by solving its equiv-
alent dual form. Applying the Schrader conditions presented in the proof of Lemma 1 on Problem (3) will
lead to showing that the problem can be solved efficiently using the ellipsoid method. Since the objective
is linear, Condition (3) is necessarily met. Without loss ofgenerality, it is sufficient to verify that con-
straints (3e), (3d), and (3c) meet conditions (1) and (2) since the equality Constraint (3b) can easily be
removed by the change of variablep = q/2 + Qµ0. Both constraints (3e) and (3d) are easily verified in
O(m3) andO((m+ 1)3) respectively using eigenvalue decomposition. Moreover, if necessary, for both
constraints a feasibility cut can be generated from the eigenvector corresponding to the lowest eigenvalue.
Finally, when considering thek-th element of Constraint (3c), since by Lemma 1,ξTQξ+ξTq+r−hk(x, ξ)
can be minimized overξ ∈ S in polynomial time, the feasibility of(Q̄, q̄, r̄ , P̄, p̄, s̄) for a fixedx depends
on the optimal value of Problem (4) being greater than0 which was shown to be solvable in polynomial
time. Since Constraint (3c) contains finite set of element, Condition 1 is satisfied. In the case that one of
them, say thek∗-th one, is found to be infeasible, the certificateξ∗ can be used to generate a feasibility cut:

(ξ∗ξ∗
T •Q) + ξ∗

T
q+ r ≥ hk∗(x, ξ∗)

We conclude that determining feasibility or finding a feasibility cut can be done in polynomial time. There-
fore,Ψ(γ1, γ2) can be computed in polynomial time too using the ellipsoid method. �

3.2. The Distributionally Robust Stochastic Program with Moment Uncertainty

We now address the more interesting DRSP model using our defined distributional set:

minimize
x

(

max
fξ ∈ D1(γ1,γ2)

Eξ[h(x, ξ)]

)

(5a)

subject to x∈X , (5b)

whereX , h(x, ξ) andD1(γ1, γ2) satisfy assumption 1, 2 and 3 respectively. We will show thatgiven these
assumptions, Problem (5) can actually be solved efficiently.

PROPOSITION2. The DRSP model equipped withD1(γ1, γ2), i.e., Problem(5), can be solved in time poly-
nomial in the dimensions ofx andξ.

Proof: The proof of this theorem follows similar lines as theproof for Proposition 1. We first reformulate
the inner moment problem in its dual form and use the fact thatmin-min operations can be performed
jointly:

minimize
x,Q,q,r ,P,p,s

γ2(Σ0 •Q)−µT

0Qµ0 + r +(Σ0 •P)− 2µT

0p+ γ1s (6a)

subject to q+2Qµ0 +2p = 0 (6b)
[

P p

pT
r

]

� 0 (6c)

Q� 0 (6d)
ξTQξ+ ξTq+ r −hk(x, ξ)≥ 0 , ∀ξ ∈R

m, k ∈ {1, ...,K} (6e)
x∈X , (6f)

As presented earlier, the ellipsoid method will converge inpolynomial time given that we can verify fea-
sibility or provide feasibility cuts in polynomial time. The arguments that were presented in the proof of
Proposition 1 still apply for constraints (6b), (6c) and (6d). However, the argument for Constraint (6e) needs
to be revisited sincex is now consider as an optimization variable. Overall feasibility of an assignment
(x̄, Q̄, q̄, r̄ , P̄, p̄, s̄) can again be verified in polynomial time because of Lemma 1 andof the fact thatK is
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finite. However, in the case that one of the indexed constraints, say thek∗-th one, is found to be infeasible,
one can again easily compute a feasibility cut using the certificateξ∗ and a sub-gradient ofhk∗(·, ξ∗):

(ξ∗ξ∗
T •Q) + ξ∗

T
q+ r −∇hk∗(x̄, ξ∗)

Tx≥ hk∗(x̄, ξ∗)−∇hk∗(x̄, ξ∗)
Tx̄ ,

where∇hk(x̄, ξ∗) is a subgradient ofhk(·, ξ∗) at x̄. Since by Assumption 2, such a gradient can be obtained
in polynomial time, we can conclude that Problem (6) can alsobe solved in polynomial time. �

3.3. Practical Examples

Because our framework only imposes weak conditions onh(x, ξ), it is possible to revisit some well-known
practical problems and reformulate them taking into account moment uncertainty.

EXAMPLE 1. Optimal Inequalities in Probability Theory.

Consider the problem of finding a tight upper bound onP(ξ ∈ C) for a random vectorξ with known
support, mean, and covariance matrix. By formulating this problem as a semi-infinite linear program:

maximize
fξ∈D0(S,µ,Σ)

P(ξ ∈ C) = E[11{ξ ∈ C} ,

many have studied the difficulties related to extensions of the popular Chebyshev inequalities (see Marshall
and Olkin (1960), Bertsimas and Popescu (2005)). More specifically, given thatC is a finite union of disjoint
convex sets, it is demonstrated that whenS = R

m, the bound can be found in polynomial time, while for
restricted support such asS = R

+ the problem is NP-hard. The hardness of the problem arises already in
finding a distribution that is feasible with respect toD0(R

+, µ,Σ).
Our framework recommends relaxing the restrictions on the covariance ofξ and instead consider the

distributional setD1(γ1, γ2). This set considers any distributions on a given convex support with first and
second moment lying in the uncertainty sets parameterized by γ1 andγ2. Already we can realize that the
distribution which puts all of its weight in the mean is always feasible with respect toD1(γ1, γ2). Fur-
thermore, whenC is represented asC =

⋃K

k=1 Ck, with Ck convex, our results actually lead to a new type
of Chebyshev inequality that can be evaluated in polynomialtime. First, one choosesh0(x, ξ) = 0 and

hk(x, ξ) =

{

1 , if ξ ∈ Ci

−∞ , otherwise
in order to construct a functionh(x, ξ) which satisfies Assumption 2. Then,

by the equivalence:

Eξ[h(x, ξ)] = Eξ[max
k

hk(x, ξ)] = Eξ[11{ξ ∈ C}] = P(ξ ∈ C)≤ max
fξ∈D1(γ1,γ2)

Eξ[h(x, ξ)] ,

it follows that for distributions inD1(γ1, γ2), a tight Chebyshev bound can be found in polynomial time.
Note that by using the formD1(S, µ,Σ,0,1) one can also provide useful approximations to the mentioned
NP-hard versions of the problem withD0.

EXAMPLE 2. Distributionally Robust Optimization with piecewise-linear convex costs.

Assume that one is interested in solving the following DRSP model for a general piece-wise linear convex
cost function ofx

minimize
x∈X

(

max
fξ∈D1(γ1,γ2)

Eξ[max
k

ξT

kx]

)

,

whereξk ∈ R
n are random vectors. By consideringξ to be a random matrix whosek-th column is the

random vectorξk and takinghk(x, ξ) = ξT

kx, which is linear (hence concave) inξ, the results presented
earlier allows one to conclude that the problem can be solvedefficiently. Note that since any convex cost
function can be approximated by a piecewise linear function, this argument could potentially be used on
a wide range of stochastic programs. In particular, Section5 will investigate further a case of portfolio
optimization.
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EXAMPLE 3. Distributionally robust conditional value-at-risk.

Conditional value-at-risk, also called mean excess loss, was introduced in the mathematical finance com-
munity as a new risk measure in decision-making. It is closely related to the more common value-at-risk
measure, which for a risk tolerance level ofϑ ∈ (0,1) evaluates the lowest amountτ such that with proba-
bility 1−ϑ, the loss does not exceedτ . CVaR instead evaluates the conditional expectation of loss above the
value-at-risk. In order to keep the focus of our discussion on the topic of DRSP models, we refer the reader
to Rockafellar and Uryasev (2000) for technical details on this subject. CVaR has gained a lot of interest in
the community because of its attractive numerical properties. For instance, Rockafellar and Uryasev (2000)
demonstrated that one could evaluate theϑ-CVaRξ[c(x, ξ)] of a cost (or lost) functionc(x, ξ) with random
parameters distributed according tofξ by solving a minimization problem of convex form:

ϑ-CVaRξ[c(x, ξ)] = min
λ∈R

λ+
1

ϑ
Eξ

[

(c(x, ξ)−λ)+
]

,

where(y)+ = max{y , 0}.
The risk measure known as CVaR still requires the decision maker to commit to a distributionfξ. This is

a step that can be difficult to take in practice. Using the results presented earlier in this section, we can easily
demonstrate how the CVaR measure can be considered in its distributionally robust form. Given that the
distribution is known to lie in a distributional setD1(γ1, γ2), the Distributionally Robustϑ-CVaR Problem
can be expressed as:

(DR ϑ-CVaR) minimize
x∈X

(

max
fξ∈D1(γ1,γ2)

ϑ-CVaRξ[c(x, ξ)]

)

.

By the equivalence statement presented above, this problemcan be solved in the form:

minimize
x∈X

(

max
fξ∈D1(γ1,γ2)

(

min
λ∈R

λ+
1

ϑ
Eξ

[

(c(x, ξ)−λ)+
]

))

.

Using duality theory, one can show that the functiong(fξ, λ) = λ+(1/ϑ)Eξ [max{c(x, ξ)−λ , 0}], which
is convex inλ and concave (actually linear) infξ, has the strong max-min property over the joint set
(fξ, λ) ∈ D1(γ1, γ2)×R. Hence, changing the order of themaxfξ

andminλ operators leads to an equivalent
formulation for the (DRϑ-CVaR) Problem.

minimize
x∈X ,λ∈R

(

max
fξ∈D1(γ1,γ2)

Eξ[h(x, λ, ξ)]

)

,

whereh(x, λ, ξ) = λ+ 1
ϑ
(c(x, ξ)−λ)+. Because of the argument that

h(x, λ, ξ) = λ+
1

ϑ
max{ 0 , c(x, ξ)−λ }

= max

{

λ ,

(

1− 1

ϑ

)

λ+
1

ϑ
max

k
ck(x, ξ)

}

= max

{

λ , max
k

(

1− 1

ϑ

)

λ+
1

ϑ
ck(x, ξ)

}

,

it is clear that ifc(x, ξ) meets the conditions presented in Assumption 2, then necessarily (1 − 1
ϑ
)λ +

1
ϑ
ck(x, ξ) meets the same three conditions for allk. And, in a rather trivial way so does the function

c0(x, λ, ξ) = λ. Because we can show that the functionh(x, λ, ξ) meets Assumption 2, Proposition 2 allows
us to conclude that finding an optimalx (and its associatedλ) with respect to the worse case conditional
value-at-risk obtained over the set of distributionsD1(γ1, γ2) can be done in polynomial time.
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4. Data-driven Stochastic Programming
The computational results presented in the previous section rely heavily on the structure of the described
distributional setD1(γ1, γ2). This set was built to take into account moment uncertainty in the stochastic
parameters. We now turn ourselves to showing that such structure can be naturally justified in the context of
data-driven optimization problems. More specifically, these are problems were knowledge of the stochastic
parameters is restricted to a set of samples{ξi}M

i=1 = {ξ1, ξ2, ..., ξM} drawn independently from the under-
lying distributionfξ. Under such conditions, a common approach is to assume that the true moments lie in a
neighborhood of there empirical estimates. In what follows, we will show how one can define a confidence
region for mean and covariance statistics such that it is assured with high probability to contain the given
statistics of the distribution that generated{ξi}M

i=1. This result will in turn be used to derive a distributional
set of the formD1(γ1, γ2) and to provide probabilistic guarantees that the solution found using the MP or
DRSP models is robust with respect to the true underlying distribution of the stochastic parametersξ.

In order to simplify the derivations, we start by reformulating without loss of generality the random
vector ξ in terms of a mixture of uncorrelated componentζ in order to simplify the derivations. More
specifically, given the random vectorξ ∈ R

m with meanµ and covarianceΣ, let us defineζ ∈ R
m to be

the normalized random vectorζ = Σ−1/2(ξ− µ) such thatE[ζ] = 0 andE[ζζT] = I. Also, let us make the
following assumption aboutζ:

ASSUMPTION4. There exists a ball of radiusR that contains the entire support of the unknown distribution
of ζ. Equivalently, there existR≥ 0 such that

P
(

(ξ−µ)T Σ−1(ξ−µ)≤R2
)

= 1 .

This assumption is made in order to use an inequality known asthe “independent bounded differences
inequality” and popularized by McDiarmid.

THEOREM 1. (McDiarmid (1998)) Let{ξi}M
i=1 be a set of independent random variablesξi taking values

in a setSi for eachi. Suppose that the real-valued functiong(ξ1, ξ2, ..., ξM ) defined onS1 ×S2 × ...×SM

satisfies

|g(ξ1, ξ2, ..., ξM )− g(ξ′1, ξ
′
2, ..., ξ

′
M )| ≤ cj (7)

whenever the vector sets{ξi}M
i=1 and{ξ′i}M

i=1 differ only in thej-th vector. Then for anyt≥ 0,

P (g(ξ1, ξ2, ..., ξM )−E[g(ξ1, ξ2, ..., ξM )]≤−t)≤ exp

(

−2t2
∑M

j=1 c
2
j

)

.

In practice, even when one does not have information aboutµ andΣ, we believe that one can often
still make an educated and conservative guess about the magnitude ofR. We will also revisit this issue in
Section 4.3 where we deriveR based on the bounded support ofξ. Note that ifξ’s support is unbounded,
one can also derive bounds of similar nature either by considering thatζ is bounded with high probability,
or otherwise by using Markov’s inequality as a foundation. However, because Markov’s inequality does not
require any support assumption, the bounds that are derivedwith it are more sensitive to the confidence
level that one needs to achieve.

4.1. Uncertainty Cone Centered at Empirical Mean

A first use of the McDiarmid theorem leads to defining a conic constraint relating the true mean and true
covariance of the random vectorξ to the empirical point estimatêµ=M−1

∑M

k=1 ξ. In Shawe-Taylor and
Cristianini (2003), the authors used McDiarmid’s theorem to demonstrate the following result.
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LEMMA 2. (Shawe-Taylor and Cristianini (2003)) Let{ζi}M
i=1 be a set ofM samples generated indepen-

dently at random fromζ. Then with probability at least(1− δ) over the choice of sets{ζi}M
i=1, we have

∥

∥

∥

∥

∥

1

M

M
∑

i=1

ζi

∥

∥

∥

∥

∥

2

≤ R2

M

(

2 +
√

2 ln(1/δ)
)2

.

We can use this result to derive a similar statement about therandom vectorξ.

COROLLARY 1. Given the true meanµ and covarianceΣ of ξ and given thatξ lies on the support(ξ −
µ)TΣ−1(ξ−µ)≤R2 with probability one, the point estimatêµ satisfies the following constraint with prob-
ability greater than1− δ:

(µ̂−µ)TΣ−1(µ̂−µ)≤ β(δ) , (8)

whereβ(δ) = (R2/M)(2 +
√

2 ln(1/δ))2.

Proof: The generalization to aξ with arbitrary mean and covariance matrix is quite straightforward:

P
(

(µ̂−µ)TΣ−1(µ̂−µ)≤ β(δ)
)

= P





∥

∥

∥

∥

∥

Σ−1/2

(

1

M

M
∑

i=1

ξi −µ

)∥

∥

∥

∥

∥

2

≤ β(δ)





= P





∥

∥

∥

∥

∥

1

M

M
∑

i=1

Σ−1/2(ξi −µ)

∥

∥

∥

∥

∥

2

≤ β(δ)





= P





∥

∥

∥

∥

∥

M
∑

i=1

ζi

∥

∥

∥

∥

∥

2

≤ β(δ)



≥ 1− δ . �

Given thatΣ is non-singular, the inequality of Equation (8) constrainsthe vectorµ and matrixΣ to a
convex set. This set can be represented by the following linear matrix inequality after applying the principles
of Schur’s complement:

[

Σ (µ̂−µ)
(µ̂−µ)T β(δ)

]

� 0 .

4.2. Uncertainty Cone Centered at Empirical Covariance

In order for Constraint (8) to describe a bounded set, one must be able to contain the uncertainty inΣ.
While confidence regions for the covariance matrix are typically defined on a term by term basis (see for
example Shawe-Taylor and Cristianini (2003)), we favor thestructure imposed by a constraint of the positive
semi-definite form

P

(

cminΣ̂�Σ� cmaxΣ̂
)

≥ 1− δ (9)

around the point estimate of covariance matrixΣ̂ =M−1
∑M

i=1(ξi − µ̂)(ξi − µ̂)T. Note that the difficulty of
this task relies heavily on the fact that one needs to derive aconfidence interval for the eigenvalues of the
stochastic matrixΣ−1/2Σ̂Σ−1/2 which is an important field of study in statistics. For the case that interests
us, whereM ≫ m with m fixed, prior work usually assumesξ is a normally distributed random vector
(see Anderson (1984), Edelman (1989)). Under the Gaussian assumption, the sample covariance matrix
follows the Wishart distribution, thus one can formulate the distribution of eigenvalues in a closed form
expression and derive such percentile bounds. In the case whereξ takes a non-normal form, the asymptotic
distribution of eigenvalues was studied by Waternaux (1976) and Fujikoshi (1980) among others. However,
to the best of our knowledge, our work is the first to formulatean uncertainty sets with the characteristics
presented in Equation (9) for finite sample sizeM .

In what follows, we present how to formulate the set of Equation (9) based on Assumption 4 about the
bounded support ofζ. We start by demonstrating how, for a zero mean and uncorrelated random vector such
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asζ, a confidence region of the form presented in Equation (9) canbe defined around̂I =M−1
∑

i ζiζ
T

i .
Next, we will assume that the mean ofξ is exactly known and will formulate it in terms of̂Σ(µ) =
M−1

∑M

i=1(ξi −µ)(ξi −µ)T. We conclude this section with our main result about a confidence region forµ
andΣ which relies solely onM and on support information about the random variables involved.

LEMMA 3. GivenM samples fromζ, {ζi}M
i=1, and an empirical estimate of the covarianceÎ, then with

probability greater than1− δ:
1

1 +α(δ/2)
Î� I� 1

1−α(δ/2)
Î , (10)

whereα(δ/2) = (R2/
√
M)

(

√

1−m/R4 +
√

ln(2/δ)
)

, given thatM >R4
(

√

1−m/R4 +
√

ln(2/δ)
)2

.

Proof: The proof of this theorem relies on applying Theorem 1twice to show that both 1
1+α(δ/2)

Î � I

andI � 1
1−α(δ/2)

Î occur with probability1− δ/2. Our statement then simply follows by the union bound.
However, for the sake of conciseness, this proof will focus on deriving the upper bound since the steps we
will follow can easily be adjusted for the lower bound derivation.

When applying Theorem 1 to show thatI � 1
1−α(δ/2)

Î occurs with probability1 − δ/2, the main step

consists of definingg(ζ1, ζ2, ..., ζM ) = min‖z‖=1 zTÎz and finding a lower bound forE[g(ζ1, ζ2, ..., ζM )]. It
will be useful to show that Constraint (7) is met whencj =R2/M for all j.

|g(ζ1, ζ2, ..., ζM )− g(ζ ′1, ζ
′
2, ..., ζ

′
M )|=

∣

∣

∣

∣

min
‖z‖=1

zTÎz− min
‖z‖=1

zTÎ′z

∣

∣

∣

∣

,

whereÎ′ = 1
M

∑M

i=1 ζ
′
iζ

′
i
T = Î+ 1

M
(ζ ′jζ

′
j
T − ζjζ

T

j ) since{ζi}M
i=1 and{ζ ′i}M

i=1 only differ in thej-th vector.
Now assume thatmin‖z‖=1 zTÎz≥min‖z‖=1 zTÎ′z. Then, for anyz∗ ∈ argmin‖z‖=1 zTÎ′z

|g(ζ1, ζ2, ..., ζM )− g(ζ ′1, ζ
′
2, ..., ζ

′
M ))| = min

‖z‖=1
zTÎz− z∗T

Î′z∗

≤ z∗T(Î− Î′)z∗

= z∗T 1

M
(ζjζ

T

j − ζ ′jζ
′T
j )z∗

=
1

M

(

(ζT

j z∗)2 − (ζ ′Tj z∗)2
)

≤ 1‖z∗‖2‖ζj‖2

M
≤ R2

M

In the case thatmin‖z‖=1 zTÎz ≤ min‖z‖=1 zTÎ′z the same argument applies usingz∗ ∈
argmin‖z‖=1 zTÎz.

As for E[g(ζ1, ζ2, ..., ζM )], the task is a bit harder. We can instead try to find an upper bound on the
maximum eigenvalue of(I− Î) since

E

[

max
‖z‖=1

zT(I− Î)z

]

= 1−E

[

min
‖z‖=1

zTÎz

]

. (11)

Using Jenson’s inequality and basic rules of linear algebra, one can show that
(

EÎ

[

max
‖z‖=1

zT(I− Î)z

])2

≤ EÎ

[

(

max
‖z‖=1

zT(I− Î)z

)2
]

≤ EÎ

[

m
∑

i=1

σ2
i (I− Î)

]

= EÎ

[

trace
(

(I− Î)2
)]

= E



trace





(

1

M

M
∑

k=1

I− ζiζ
T

i

)2








= trace

(

1

M 2

M
∑

k=1

E
[

I− 2ζiζ
T

i +(ζiζ
T

i )2
]

)

=
1

M

(

trace
(

E
[

(ζiζ
T

i )2
])

− trace (I)
)

=
E [‖ζi‖4]−m

M
≤ R4 −m

M
,
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where we used the fact thatζi are sampled independently thusE[(I− ζiζ
T

i )(I− ζjζ
T

j )] = E[I− ζiζ
T

i ]E[I−
ζjζ

T

j ] = 0. By replacing this lower bound in Equation (11), we can now say that E[g(ζ1, ζ2, ..., ζM )] ≥
1− (R2/

√
M)
√

1−m/R4. More importantly, Theorem 1 allows us to confirm the proposed upper bound
using the following argument. Since the statement

P

(

min
‖z‖=1

zTÎz−EÎ

[

min
‖z‖=1

zTÎz

]

≤−ǫ
)

≤ exp

( −2ǫ2
∑

k(R
4/M 2)

)

,

implies that

P

(

min
‖z‖=1

zTÎz−EÎ[ min
‖z‖=1

zTÎz]≥−R
2
√

ln(2/δ)√
M

)

≥ 1− δ/2 ,

and since relaxingEÎ[min‖z‖=1 zTÎz] to its lower bound can only include more random events, we neces-
sarily have that

P

(

min
‖z‖=1

zTÎz≥ 1− R2

√
M

(

√

1−m/R4 +
√

ln(2/δ)
)

)

≥ 1− δ/2 .

Thus, given thatM is large enough so that1−α(δ/2)> 0, we conclude that

P

(

I� 1

1−α(δ/2)
Î

)

≥ 1− δ/2 .

The task of showing that1/(1 +α(δ/2))Î� I also occurs with probability1− δ/2 is very similar. One
simply applies Theorem 1, now definingg(ζ1, ζ2, ..., ζM ) = −min‖z‖=1 zTÎz, and needs to demonstrate
thatE[g(ζ1, ζ2, ..., ζM )]>−1−α(δ/2). The rest follows easily. �

REMARK 2. In Anderson (1984), it is shown that under the assumption thatζ is Gaussian, the eigenvalues
of

√
M(Î− I) are distributed according to:

f(σ1, σ2, ..., σm) =
1

Z
exp(−1

2

m
∑

i=1

σ2
i )
∏

i<j

(σi −σj) ,

whereσ1 > σ2 > ... > σm andZ is a normalizing constant. Thus in the Gaussian case, one canguarantie
with probability greater than1− δ that:

− 1

1 + r√
M

Î≤ I≤ 1

1− r√
M

Î ,

wherer is the solution to the equationP(−r ≤ σ1 ≤ σm ≤ r) = 1 − δ with respect to the distribution
f(σ1, σ2, ..., σm). This fact leads us to believe that the bound that is presented in Lemma 3 is tight up to a
constant (i.e., the bound is necessarilyO(1/

√
M)).

We are now interested in extending Lemma 3 to general mean andcovariance random vectors. Given the
random event that Constraint (10) is satisfied, then:

I� 1

1−α(δ/2)
Î ⇒ Σ1/2IΣ1/2 � 1

1−α(δ/2)
Σ1/2ÎΣ1/2

⇒ Σ� 1

1−α(δ/2)

1

M

M
∑

i=1

Σ1/2ζiζ
T

i Σ1/2

⇒ Σ� 1

1−α(δ/2)

1

M

M
∑

i=1

(ξi −µ)(ξi −µ)T

⇒ Σ� 1

1−α(δ/2)
Σ̂(µ) ,
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and similarly,

1

1 +α(δ/2)
Î� I ⇒ 1

1 +α(δ/2)
Σ̂�Σ .

Since Constraint (10) is satisfied with probability greaterthan 1 − δ, the following corollary follows
easily.

COROLLARY 2. Given that the mean ofξ, µ, is known and used to formulate the empirical estimate of the
covariance,̂Σ(µ), then with probability greater then1− δ:

1

1 +α(δ/2)
Σ̂(µ)�Σ� 1

1−α(δ/2)
Σ̂(µ) ,

whereα(δ/2) = (R2/
√
M)

(

√

1−m/R4 +
√

ln(2/δ)
)

and given thatM is large enough.

This statement leads to the description of a convex set that contains mean vectors and covariance matrices
for which a given empirical estimate is obtained with high probability through the sampling process.

THEOREM 2. GivenM samples fromξ, {ξi}M
i=1, and an empirical estimate of the meanµ̂ and covariance

matrix Σ̂, then with probability greater than1− δ over the choice of{ξi}M
i=1 the following set of constraints

are met:

(µ̂−µ)Σ−1(µ̂−µ)≤ β(δ/2) (12a)

Σ� 1

1−α(δ/4)−β(δ/2)
Σ̂ (12b)

Σ� 1

1−α(δ/4)
Σ̂ , (12c)

whereα(δ/4) = (R2/
√
M)

(

√

1−m/R4 +
√

ln(4/δ)
)

, β(δ/2) = (R2/M)(2 +
√

2 ln(2/δ))2, and given
thatM is large enough.

Proof: By applying Corollary 1, 2 and Lemma 3, the union boundguarantees us with probability greater
than1− δ that the following constraints will be met:

(µ̂−µ)Σ−1(µ̂−µ)≤ β(δ/2)

Σ� 1

1−α(δ/4)
Σ̂(µ)

Σ� 1

1 +α(δ/4)
Σ̂(µ) .

Notice that our result is not proven yet since, although the first constraint is exactly Constraint (12a), the
second and third constraints actually refer to covariance estimates that uses the true mean of the distribution
instead of an empirical estimate. The following steps will convince us that these conditions are sufficient
for constraints (12b) and (12c) to hold.

(1−α(δ/4))Σ � Σ̂(µ) =
1

M

M
∑

i=1

(ξi −µ)(ξi −µ)T

=
1

M

M
∑

i=1

(ξi − µ̂+ µ̂−µ)(ξi − µ̂+ µ̂−µ)T

=
1

M

M
∑

i=1

(ξi − µ̂)(ξi − µ̂)T +(ξi − µ̂)(µ̂−µ)T +

(µ̂−µ)(ξi − µ̂)T +(µ̂−µ)(µ̂−µ)T
)

= Σ̂+ (µ̂−µ)(µ̂−µ)T

� Σ̂+β(δ/2)Σ ,
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where the last semi-definite inequality of the derivation can be explained using the fact that for anyx∈R
m,

xT(µ̂−µ)(µ̂−µ)Tx = (xT(µ̂−µ))2 = (xTΣ1/2 Σ−1/2(µ̂−µ))2

≤ ‖xTΣ1/2‖2‖Σ−1/2(µ̂−µ)‖2 ≤ β(δ/2)xTΣx .

Thus we can conclude that Constraint (12b) is met. The same steps can be used to show that Constraint (12c)
also holds for a set of events of probability1− δ.

(1−α(δ/4))Σ � Σ̂(µ) =
1

M

M
∑

i=1

(ξi −µ)(ξi −µ)T

= Σ̂+ (µ̂−µ)(µ̂−µ)T

� Σ̂

�

4.3. Bounding the Support of ζ using Empirical Data

The above derivations assumed that one is able to describe a ball containing the support of the rather fictive
random vectorζ. In fact, this assumption can be replaced by an assumption onthe support of the more
tangible random vectorξ as is presented in the following corollary.

COROLLARY 3. Given that the supportSξ of the distribution ofξ is known, let

R̂= sup
ξ∈Sξ

‖Σ̂−1/2(ξ− µ̂)‖2

be an approximation ofR using the available empirical data. Forδ1 = δ2 = 1−
√

1− δ, given that

M > max











(R̂2 +2)2
(

2 +
√

2 ln(4/δ1)
)2

,

(

8 +
√

32 ln(4/δ)
)2

(
√

R̂+4− R̂
)4











, (13)

then Theorem 2 applies with̄α(δ2/4) = (R̄2/
√
M)

(

√

1−m/R̄4 +
√

ln(4/δ2)
)

, β̄(δ2/2) = (R̄2/M)(2+
√

2 ln(2/δ2))
2, whereR̄ is evaluated from the empirical data itself:

R̄=
R̂

(

1− (R̂2 +2)
2+
√

2 ln(4/δ)
√

M

)1/2
.

Proof: Since we assumed thatΣ was non-singular, the support ofξ being bounded by a ball of radius
Rξ implies thatζ is also bounded. Thus, there exists anR such thatP(‖ζ‖ ≤ R) = 1. Given thatζ has a
bounded support, Theorem 4 guarantees us that with probability greater than1−δ1, constraints (12a), (12b)
and (12c) are met. Thus

R = sup
ζ∈Sζ

‖ζ‖2 = sup
ξ∈Sξ

‖Σ−1/2(ξ−µ)‖2 = sup
ξ∈Sξ

‖Σ−1/2(ξ−µ+ µ̂− µ̂)‖2

≤ sup
ξ∈Sξ

‖Σ−1/2(ξ− µ̂)‖2 + ‖Σ−1/2(µ̂−µ)‖2

≤ sup
ξ∈Sξ

√

1 +α(δ1/4)‖Σ̂−1/2(ξ− µ̂)‖2 +
√

β(δ1/2)

≤
√

1 +α(δ1/4)R̂+
√

β(δ1/2)
≤ R̂

√
1 + cR2 + cR ,
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wherec= (2 +
√

2 ln(4/δ1))/
√
M .

A careful analysis of the functionψ(R, R̂) = R̂
√

1 + cR2 +cR leads to the observation that ifM satisfies
Constraint (13) then the fact thatR≤ ψ(R, R̂) necessarily implies thatR≤ R̄. We can therefore conclude
thatP(R≤ R̄)≥ 1− δ1.

Given the event thatR≤ R̄ occurs, since

α(δ2/4) = (R2/
√
M)

(

√

1−m/R4 +
√

2 ln(4/δ2)
)

≤ (R̄2/
√
M)

(

√

1−m/R̄4 +
√

2 ln(4/δ2)

)

= ᾱ(δ2/4)

and since

β(δ2/2) = (R2/M)(2 +
√

2 ln(2/δ2))
2 ≤ (R̄2/M)(2 +

√

2 ln(2/δ2))
2 = β̄(δ2/2) ,

we can conclude with a second application of Theorem 2 that with probability greater than1 − δ2 the
following statements are satisfied:

(µ̂−µ)Σ−1(µ̂−µ)≤ β(δ2/2)≤ β̄(δ2/2) ,

Σ� 1

1−α(δ/4)−β(δ/2)
Σ̂� 1

1− ᾱ(δ2/4)− β̄(δ2/2)
Σ̂ ,

Σ� 1

1−α(δ/4)
Σ̂� 1

1− ᾱ(δ/4)
Σ̂ .

It follows that Theorem 2 applies with̄α(δ2/4) andβ̄(δ2/4) because the probability that the event,E , that
constraints (12a), (12b) and (12c) equipped withᾱ(δ2/4) andβ̄(δ2/4) are met is necessarily greater than
1− δ.

P(E)≥ P(E|R≤ R̄)P(R≤ R̄)≥ (1− δ1)(1− δ2) = 1− δ . �

4.4. Data-driven MP and DRSP Optimization

In most real world situations where one needs to deal with uncertainty in the parameters, it might not be
clear how to define an uncertainty set for the mean and covariance matrix of the random parametersξ. It
is more likely, that one only has in hand a set of independent samples,{ξi}M

i=1, drawn from the underlying
distribution and wants to solve a moment problem in order to find interesting upper bounds on a moment
of the distribution,Eξ[h(ξ)]. Or similarly, using the set of independent samples, solve aDRSP model in
a way that guarantees with high probability that the solution is robust with respect to the true underlying
distribution that generated the samples. In this section, we propose using the set of samples to construct a set
of distributions that has high probability of containing the distribution that actually generated the samples
of ξ.

We will first use our last result to define, based on the random samples{ξi}M
i=1, such a a set of distribution

which is known to contain the distribution ofξ with high probability, given thatM is sufficiently large.

DEFINITION 2. LetD2(S,{ξi}M
i=1, δ) be the set of distributions ofξ such that

P(ξ ∈ S) = 1 (14a)

(µ̂−E[ξ])Σ̂−1(µ̂−E[ξ])≤ β̄(δ2/2)

1− ᾱ(δ2/4)− β̄(δ2/2)
(14b)

E[(ξ− µ̂)(ξ− µ̂)T]� 1 + β̄(δ2/2)

1− ᾱ(δ2/4)− β̄(δ2/2)
Σ̂ , (14c)

where µ̂ and Σ̂ are the empirical estimates of the meanµ̂ = M−1
∑M

i=1 ξi and covarianceΣ̂ =

M−1
∑M

i=1(ξi − µ̂)(ξi − µ̂)T of ξ, andᾱ(δ2/4) =O(1/
√
M) andβ̄(δ2/2) =O(1/M) are constants defined

in Corollary 3.
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COROLLARY 4. Given thatM satisfies Constraint(13) and that{ξi}M
i=1 are independent identically dis-

tributed samples from a distribution which is known to have support onS, then with probability greater
than1− δ over the choice of{ξi}M

i=1 the distribution ofξ lies in the setD2(S,{ξi}M
i=1, δ).

Proof: This result can be derived from Corollary 3. One can show that given any estimateŝµ andΣ̂ that
satisfy both constraints (12a) and (12b) equipped withᾱ(δ/4) and β̄(δ2/2), these estimates should also
satisfy constraints (14b) and (14c). First,

(1− ᾱ(δ2/4)− β̄(δ2/2))(µ̂−µ)Σ̂−1(µ̂−µ)≤ (µ̂−µ)Σ−1(µ̂−µ)≤ β̄(δ2/2) ,

where we used the fact that Constraint (12a) implies thatxTΣ−1x ≥ (1− ᾱ(δ2/4)− β̄(δ2/2))xTΣ̂−1x for
anyx∈ R

m. Similarly, the estimateŝµ andΣ̂ can be shown to satisfy Constraint (14c):

1

1− ᾱ(δ2/4)− β̄(δ2/2)
Σ̂ � Σ = E[ξξT]−µµT

� E[(ξ−µ)(ξ−µ)T]− β̄(δ2/2)

1− ᾱ(δ2/4)− β̄(δ2/2)
Σ̂ ,

since for allx∈R
m,

xTµµTx = (xT(µ− µ̂+ µ̂))2 = (xT(µ− µ̂))2 +2xT(µ− µ̂)µ̂Tx+(xTµ̂)2

= trace(xTΣ1/2Σ−1/2(µ− µ̂)(µ− µ̂)TΣ−1/2Σ1/2x) + 2xTµµ̂Tx− (xTµ̂)2

≤ (µ− µ̂)TΣ−1(µ− µ̂)xTΣx+2xTµµ̂Tx− (xTµ̂)2

≤ xT

(

β̄(δ2/2)

1− ᾱ(δ2/4)− β̄(δ2/2)
Σ̂+µµ̂T + µ̂µT − µ̂µ̂T

)

x

= xT

(

β̄(δ2/2)

1− ᾱ(δ2/4)− β̄(δ2/2)
Σ̂+ E[ξξT]−E[(ξ−µ)(ξ−µ)T]

)

x ,

By Corollary 3, the random variableŝµ andΣ̂ are guaranteed to satisfy constraints (12a) and (12b) with
probability greater than1− δ, therefore they must also satisfy constraints (14b) and (14c) with probability
greater than1− δ. �

We can now extend the results presented in sections 3 to a data-driven framework where moments of the
distribution are estimated from data.

DEFINITION 3. LetΦ(x;S,{ξi}M
i=1, δ) be the optimal value of the MP model associated to the inner prob-

lem of Problem (5):

maximize
fξ∈D1(S,µ̂,Σ̂,γ1,γ2)

Eξ[h(x, ξ)] ,

using the assignments:

γ1 =
β̄(δ2/2)

1− ᾱ(δ2/4)− β̄(δ2/2)
, γ2 =

1 + β̄(δ2/2)

1− ᾱ(δ2/4)− β̄(δ2/2)
. (15)

Based on the computational argument of Proposition 2 and theprobabilistic guarantees provided by Corol-
lary 4, we present an important result for data-driven problems.

THEOREM 3. Let δ be a risk factor and{ξi}M
i=1 be a set ofM independently and identically distributed

instances of the random parametersξ, which distribution is known to have support on a bounded setS.
One can solve in polynomial time the DRSP equipped with the distributional setD1(S, µ̂, Σ̂, γ1, γ2), where
γ1 andγ2 are defined as in Equation(15). Then, given thatM satisfies Constraint(13), one is guaranteed
that the resulting optimal solutionx∗ is such that

P{ξ}M
i=1

(Eξ[h(x∗, ξ)]≤Φ(x∗;S,{ξi}M
i=1, δ))≥ 1− δ ,

whereP(·) is evaluated with respect to the random generation of the boundΦ(x∗;S,{ξi}M
i=1, δ), while the

expectation is taken with respect to the underlying distribution ofξ.
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Since we believe the MP model to be interesting in its own right, we find important to mention a sim-
ple consequence of the above result for data-driven moment problems when considering the special case
h(x, ξ) = h(ξ).

COROLLARY 5. Let δ be a risk factor and{ξi}M
i=1 be a set ofM independently and identically distributed

instances of the random parametersξ, which distribution is known to have support on a bounded setS.
One can compute in polynomial time the MP equipped with the distributional setD1(S, µ̂, Σ̂, γ1, γ2) where
γ1, γ2 are defined as in Equation 15. Then, given thatM satisfies Constraint(13), one is assured that the
optimal value previously defined asΨ(γ1, γ2) is such that

P{ξi}M
i=1

(Eξ[h(ξ)]≤Ψ(γ1, γ2))≥ 1− δ ,

whereP(·) is evaluated with respect to the random generation of the bound Ψ(γ1, γ2) using the random
samples{ξi}M

i=1, while the expectation is taken over the exact underlying distribution forξ.

5. Application to Robust Portfolio Optimization
We now turn ourselves to applying our framework to an instance of portfolio optimization. In such a prob-
lem, one is interested in maximizing his expected utility for the potential one step return of an investment
portfolio. Given thatn investment options are available, return can be defined as the linear functionξTx,
whereξ ∈ R

n is a random vector of return for the different options. In therobust approach to this problem,
one defines a distributional setD that is known to contain the distributionfξ and choose the portfolio which
is optimal according to the following DRSP model:

maximize
x

min
fξ ∈ D

Eξ[u(ξ
Tx)] (16a)

subject to
n
∑

i=1

xi = 1 , x≥ 0 . (16b)

In Popescu (2007), the author recently addressed this problem in the case whereE[ξ] andE[ξξT] are
known exactly and one considersD to be the set of all distribution with such first and second moments.
With these assumptions, she presents a parametric quadratic programming algorithm that is efficient for a
large family of utility functionu(·). This approach is interesting as it provides a mean of takinginto account
uncertainty in the form of the return distribution. Unfortunately, our experiments will show that in practice
it is highly sensitive to the noise in the empirical estimation of these moments. Secondly, the algorithm also
relies on solving a one dimensional non-convex mathematical program. Thus, Popescu does not provide an
algorithm which is guaranteed to converge to an optimal solution in polynomial time. Although the approach
that we are about to propose addresses a smaller family of utility functions, it will take into account moment
uncertainty and will lead to the formulation of a semi-definite program which can be solved efficiently using
interior point methods.

5.1. Portfolio Optimization with Moment Uncertainty

In order to apply our framework we need to assume that the utility function is piecewise linear con-
cave such thatu(y) = mink∈{1,2,...,K} aky + bk. This is not too constraining since in portfolio optimiza-
tion the interesting utility functions are usually concaveand such functions always have a finite (inK)
piecewise linear approximation. We will use historical knowledge of investment returns{ξ1, ξ2, ..., ξM}
to define a distributional uncertainty set forfξ. This can be done either through Definition 2 or directly
through the setD1(γ1, γ2) for suitably chosen values ofγ1 andγ2. For simplicity, in what follows we
useD1(Sξ, µ̂, Σ̂, γ1, γ2). The parameterŝµ andΣ̂ are assigned as the empirical estimates of the meanµ̂=
M−1

∑M

i=1 ξi and covariancêΣ =M−1
∑M

i=1(ξi − µ̂)(ξi − µ̂)T of ξ respectively. On the other hand,S can
either beRn or an ellipsoidal set{ξ|(ξ− ξ0)

TΘ(ξ− ξ0)≤ 1} known to contain the support ofξ.1

Building on the results presented in Section 3, one can make the following statement about the tractability
of distributionally robust portfolio problems.
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THEOREM 4. Given thatu(·) is piecewise linear, finding an optimal solutionx∈R
n to the distributionally

robust portfolio Problem(16) equipped with the set of distributionsD1(Sξ, µ̂, Σ̂, γ1, γ2) can be done in
O(n6.5).

Proof: We first reformulate the objective of Problem (16) in its minimization form :

minimize
x∈X

(

max
fξ ∈ D1(Sξ,µ̂,Σ̂,γ1,γ2)

Eξ[max
k

−akξ
Tx− bk]

)

.

After confirming thath(x, ξ) = maxk −akξ
Tx− bk satisfies the conditions in Assumption 2, a straightfor-

ward application of Proposition 2 already confirms that Problem (16) can be solved in polynomial time. In
order to get a more precise computational bound, one needs totake a closer look at the dual formulation of
Problem (16):

minimize
x,Q,q,r ,P,p,s

γ2(Σ0 •Q)−µT

0Qµ0 + r +(Σ0 •P)− 2µT

0p+ γ1s (17a)

subject to

[

P p

pT
s

]

≥ 0 , p =−q/2−Qµ̂ , (17b)

ξTQξ+ ξTq+ r ≥−akξ
Tx− bk , ∀ξ ∈ Sξ, k ∈ {1,2, ...,K} (17c)

n
∑

i=1

xi = 1 , xi ≥ 0 , ∀i . (17d)

Given thatSξ = R
n, one can use Schur’s complement to replace Constraint (17c)by an equivalent linear

matrix inequality.

minimize
x,Q,q,r ,P,p,s

γ2(Σ̂ •Q)− µ̂TQµ̂+ r +(Σ̂ •P)− 2µ̂Tp+ γ1s

subject to

[

P p

pT
s

]

≥ 0 , p =−q/2−Qµ̂
[

Q q/2 + akx/2
qT/2 + akx

T/2 r + bk

]

≥ 0 , ∀k
n
∑

i=1

xi = 1 , xi ≥ 0 , ∀i .

While if Sξ is an ellipsoid, the S-lemma can be used to replace Constraint (17c)
[

ξ
1

]T [

Θ −Θξ0
−ξT

0 Θ ξT

0 Θξ0 − 1

][

ξ
1

]

≤ 0→
[

ξ
1

]T [

Q q/2 + akx/2
qT/2 + akx

T/2 r + bk

][

ξ
1

]

≥ 0 ,

with an equivalent constraint:
[

Q q/2 + akx/2
qT/2 + akx

T/2 r + bk

]

≥−τk

[

Θ −Θξ0
−ξT

0 Θ ξT

0 Θξ0 − 1

]

, τk ≥ 0 ,

whereτk, k ∈ {1, ...,K}, are extra slack variables. The problem can therefore also be reformulated as a
semi-definite program:

minimize
x,Q,q,r ,P,p,s,τ

γ2(Σ̂ •Q)− µ̂TQµ̂+ r +(Σ̂ •P)− 2µ̂Tp+ γ1s

subject to

[

P p

pT
s

]

≥ 0 , p =−q/2−Qµ̂
[

Q q/2 + akx/2
qT/2 + akx

T/2 r + bk

]

≥−τk

[

Θ −Θξ0
−ξT

0 Θ ξT

0 Θξ0 − 1

]

, ∀k
τk ≥ 0 ∀k
Q≥ 0

n
∑

i=1

xi = 1 , xi ≥ 0 , ∀i .
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In both cases, the optimization problem that needs to be solved is a semi-definite program. It is well
known that an interior point algorithm can be used to solve anSDP of the form

minimize
x∈Rñ

cTx

subject to Ai(x)� 0 ∀i= 1,2, ..., K̃

in O

(

(

∑K̃

i m̃i

)0.5 (

ñ2
∑K̃

i m̃
2
i + ñ

∑K̃

i m̃
3
i

)

)

, wherem̃i stands for the dimension of the positive semi-

definite cone (i.e., Ai(x) ∈ R
m̃i×m̃i) (see Nesterov and Nemirovski (1994)). In both SDP that interests us

here, one can show thatñ≤ n2 +4n+2+K and that the problem can be solved inO(K3.5n6.5) operations,
with K being the number of pieces in the utility functionu(·). We conclude that the portfolio optimization
problem can be solved inO(n6.5). �

REMARK 3. The computational complexity presented here is based on general theory for solving semi-
definite programs. Based on an implementation that uses SeDuMi (Sturm (1999)), we actually observed
empirically that complexity grows in the order ofO(n5) for dense problems. In practice, one may also be
able to exploit structure in problems where subsets of assets are known to behave independently from each
other.

5.2. A Case where the Worse Distribution has Largest Covariance Matrix

When presenting our distributionally robust framework, wegenerally argued in Remark 1 that lower bounds
on covariance were uninteresting. We are now interested in presenting a more rigorous argument for this
modeling decision. Actually, in the case of a portfolio optimization problem with piecewise concave utility
function, we can show that the lower bound on the covariance matrix is irrelevant. The proof of the following
proposition also provides valuable insight on the structure of portfolio optimization problems.

PROPOSITION3. The robust portfolio optimization problem with piecewise linear concave utility and infi-
nite support constraint on the distribution is an instance of distributionally robust optimization where the
covariance constraint is tight for the worse case distribution.

Proof: Consider the inner problem of our robust portfolio optimization with unconstrained support for the
distribution:

max
fξ ∈ D1(Rm,µ̂,Σ̂,0,γ2)

Eξ[max
k

−akξ
Tx− bk] . (18)

For simplicity of our derivations, we consider that there isno uncertainty in the mean of the distribution
(i.e., γ1 = 0). The dual of this problem can be formulated as:

minimize
Q,q,r

(Σ̂ •Q) + µ̂TQµ̂+ µ̂Tq+ r

subject to

[

Q q/2 + akx/2
qT/2 + akx

T/2 r + bk

]

≥ 0 , ∀k .

Q≥ 0

Applying duality theory a second time leads to formulating aslightly different version of the primal problem
which by strong duality achieves the same optimum.

maximize
{(Λk,λk ,νk)}K

k=1

K
∑

k=1

akx
Tλk + νkbk (19a)

subject to
K
∑

k=1

Λk � γ2Σ̂+ µ̂µ̂T (19b)



Delage and Ye: Distributionally Robust Optimization under Moment Uncertainty
20 Operations Research 00(0), pp. 000–000,c© 0000 INFORMS

K
∑

k=1

λk = µ̂ ,
K
∑

k=1

νk = 1 (19c)
[

Λk λk

λT

k νk

]

� 0 ∀ k ∈ {1,2, ...,K} . (19d)

We can show that there always exists an optimal solution suchthat Constraint (19b) is satisfied with equality.
Given an optimal assignmentX∗ = {(Λ∗

k, λ
∗
k, ν

∗
k)}K

k=1 such that∆ = γ2Σ̂ + µ̂µ̂T −∑K

k=1 Λ∗
k � 0, con-

sider an alternate solutionX ′ = {(Λ′
k, λ

′
k, ν

′
k)}K

k=1 which is exactly the same as the original solutionX∗

except forΛ′
1 = Λ∗

1 +∆. Obviously the two solutions achieve the same objective values since the variables
{(λk, νk)}K

k=1 were not modified. If we can show thatX ′ is also feasible then it is necessarily optimal. The
only feasibility constraint that seriously needs to be verified is the following:

[

Λ′
1 λ

′
1

λ′T
1 ν ′1

]

=

[

Λ∗
1 λ∗

1

λ∗
1

T ν∗1

]

+

[

∆ 0
0 0

]

� 0 ,

and is necessarily satisfied since by definitionX∗ is feasible and that by construction∆ is positive semi-
definite. It is therefore the case that there exists a solutionX∗ that is optimal with respect to Problem (19)
and satisfies Constraint (19b) with equality. Furthermore,one is assured that the sum

∑K

k=1 akx
Tλ∗

k + ν∗kbk
is equal to the optimal value of Problem (18).

After assuming without loss of generality that allνk > 0, let us now constructK random vectors
(ζ1, ζ2, ..., ζK) that satisfy the following conditions:

E[ζk] =
1

νk

λ∗
k , E[ζkζ

T

k ] =
1

νk

Λ∗
k .

Note that sinceX∗ satisfies Constraint (19d), we are assured that:

E[ζkζ
T

k ]−E[ζk]E[ζk]
T =

[

I

−E[ζk]
T

]T [

E[ζkζ
T

k ] E[ζk]
E[ζk]

T 1

][

I

−E[ζk]
T

]

=

[

I

−E[ζk]
T

]T
[

1
νk

Λ∗
k

1
νk
λ∗

k
1
νk
λ∗

k
T 1

]

[

I

−E[ζk]
T

]

=
1

ν∗k

[

I

−E[ζk]
T

]T [

Λ∗
k λ∗

k

λ∗
k

T ν∗k

][

I

−E[ζk]
T

]

� 0 .

Hence, the random vectors(ζ1, ζ2, ..., ζK) exists. For instance, ifE[(ζk −E[ζk])(ζk −E[ζk])
T]≻ 0, thenζk

can take the form of a multivariate Gaussian distribution with such mean and covariance. Otherwise, one
can construct a lower dimensional random vector; for instance, if E[(ζk −E[ζk])(ζk −E[ζk])

T] = 0 then the
random vector should be a deterministic point atE[ζk].

Let k̃ be an independent multinomial with parameters(ν1, ν2, ..., νK), such thatP(k̃= i) = νi, and use it
to construct the random vectorξ = ζk̃. SinceX∗ satisfies constraints (19b) and (19c) tightly, one can show
that the distribution function ofξ∗ lies inD(Rm, µ̂, Σ̂,0, γ2) and has largest covariance.

E[ξ∗] =
K
∑

k=1

E[ζk|k̃= k]P(k̃= l) =
K
∑

k=1

1

νk

λkνk = µ̂

E[ξ∗ξ∗T] =
K
∑

k=1

E[ζkζ
T

k |k̃ = k]P(k̃= l) =
K
∑

k=1

1

νk

Λkνk = γ2Σ̂+ µ̂µ̂T

Moreover, when used as a candidate worse case distribution in Problem (18) it actually achieves the maxi-
mum since we can show it must be greater or equal to it.

E

[

max
l

−alx
Tξ∗ − bl

]

=
K
∑

k=1

E

[

max
l

−alx
Tζk̃ − bl

∣

∣

∣
k̃= k

]

P(k̃= k)
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≥
K
∑

k=1

E[−akx
Tζk − bk]P(k̃= k)

=
K
∑

k=1

−akx
Tλk − bkνk

= max
fξ ∈ D1(Rm,µ̂,Σ̂,0,γ2)

Eξ[max
k

−akx
Tξ− bk]

We conclude that we just constructed a worse case distribution that does have largest covariance.�

REMARK 4. An interesting consequence of Proposition 3 is that in theframework considered in Popescu
(2007), if the utility function is piecewise concave, one can find the optimal portfolio in polynomial time
using our semi-definite programming formulation with the distributional setD1(R

m, µ̂, Σ̂,0,1). We believe
our semi-definite program formulation to be more tractable than the original algorithm. However, it is true
that our framework does not provide a polynomial time algorithm for the larger range of utility functions
considered in Popescu’s work.

5.3. Experiments

We evaluate our portfolio optimization method on stock market investments. We use a historical dataset
of 30 assets over a horizon of 15 years (1992-2007), obtainedfrom the Yahoo! Finance.2 Each experiment
consists of randomly choosing 4 assets, and building a dynamic portfolio with these assets through the years
2001-2007. At any given day of the experiment, the algorithms are limited to 30 days of the most recent
history to assign the portfolio. All methods assume that in this period the samples are independent and
identically distributed. Note that 30 samples of data is notmuch to generate good empirical estimates of
the mean and covariance of returns; however, the use of a larger history causes the i.i.d. assumption to be
somewhat unrealistic.

In implementing our method, the distributional set is formulated asD1(R
4, µ̂, Σ̂,1.35,8.32), whereµ̂

and Σ̂ are the empirical estimates of the mean and covariance ofξ respectively. The values forγ1 and
γ2 are chosen based on a simple statistical analysis of moment estimation during the years 1997-2001.3

We compare our approach to the one proposed by Popescu (2007), where the mean and covariance of the
distributionfξ is assumed to be equal to the empirical estimates over the 30 days history. The method is also
compared to a naive approximation of the stochastic programin which the selected portfolio is the one that
maximizes the average utility over the last 30 days samples.We believe that the statistics obtained over the
set of 300 experiments demonstrate how much there is to gain in terms of performance and risk reduction
by considering an optimization model that accounts for bothdistribution and moment uncertainty.

Method Single Day 2001-2004 2004-2007
Avg. utility 1-perc. Avg. yearly return 10-perc.Avg. yearly return 10-perc.

DRPO model 1.000 0.983 0.944 0.846 1.1017 1.025
Popescu’s DRPO model 1.000 0.975 0.700 0.334 1.047 0.9364

SP model 1.000 0.973 0.908 0.694 1.045 0.923

First, from the analysis of the daily returns generated by each method, one observes that they achieve
comparable average daily utility. However, the DRSP model stands out as being more reliable. For instance,
the lower 1%-percentile of the utility distribution is 0.8%higher then the two competing methods. Also, this
difference in reliability becomes more obvious when considering the respective long term performances.
Figure 1 presents the average evolution of wealth on a six years period when managing a portfolio of 4 assets
on a daily basis with either of the three methods. The performances over the years 2001-2004 are presented
separately from the performances over the years 2004-2007 in order to measure how they are affected by
different level of economic growth. The figures also indicate periodically the 10% and 90% percentile of the
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Figure 1 Comparison of wealth evolution in 300 experiments conducted over the years 2001-2007 using three different portfolio
optimization models. For each model, the figures indicate periodically the 10% and 90% percentile of the wealth
distribution in the set of experiments.

wealth distribution over the set of 300 experiments. The statistics of the long term experiments demonstrate
empirically that our method significantly outperforms the two more naive ones in terms of average return
and risks during both the years of economic growth and the years of decline. More specifically, the DRPO
model outperformed the Popescu’s model in terms of total return cumulated over the period 2001-2007 in
79.2% of our experiments (total set of 300 experiments). Also, it performed on average at least 1.67 times
better than any competing models. Note that these experiments are purely illustrative of the strengths and
weaknesses of the different models. For instance, the returns obtained in each experiment does not take
into account transaction fees. The data is also biased by thefact that the assets involved in our experiments
were known to be major assets in their category in January 2007. On the other hand, the return were also
negatively biased by the fact that in each experiment the models were managing a portfolio of only four
correlated assets. Overall we believe that these biases were affecting all methods in a similar manner.

Notes
1One should also verify that̂µ∈ int(S) and that̂Σ≻ 0 in order to meet the technical conditions required through the application

of duality theory.
2The list of assets that is used in our experiments was inspired by Goldfarb and Iyengar (2003). More specifically, the 30

assets are: AAR Corp., Boeing Corp., Lockheed Martin, United Technologies, Intel Corp., Hitachi, Texas Instruments, Dell Com-
puter Corp., Palm Inc., Hewlett Packard, IBM Corp., Sun Microsystems, Bristol-Myers-Squibb, Applera Corp.-Celera Group, Eli
Lilly and Co., Merck and Co., Avery Denison Corp., Du Pont, Dow Chemical, Eastman Chemical Co., AT&T, Nokia, Motorola,
Ariba, Commerce One Inc., Microsoft, Oracle, Akamai, CiscoSystems, Northern Telecom, Duke Energy Company, Exelon Corp.,
Pinnacle West, FMC Corp., General Electric, ’Honeywell, Ingersoll Rand.

3More specifically, given that one chooses 4 stocks randomly and samples a random period of 60 days between 1997 and 2001,
the values forγ1 andγ2 are chosen such that when using the first 30 days of the period to centerD(γ1, γ2), the distributional set
contains, with 99% probability, distributions with moments equal to the moments estimated from the last 30 days of the period.
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