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In this paper, we propose `p-norm regularized models to seek near-optimal sparse portfolios. These sparse

solutions reduce the complexity of portfolio implementation and management. Theoretical results are estab-

lished to guarantee the sparsity of the second-order KKT points of the `p-norm regularized models. Unlike

the existing sparse portfolio strategies such as the convex `1-norm regularized strategy, our proposed strate-

gies have the full flexibility to choose any level of portfolio sparsity. Based on the analysis of the optimization

models, we introduce a new concept “Portfolio Risk Substitution Variance (PRSV)”—the variance of the

cost-neutral stock trades, and develop a corresponding portfolio theory which relates the sparsity of our

portfolio strategy with the PSRV and the portfolio Sharpe Ratio. We also design an interior point algorithm

to obtain an approximate second-order KKT solution of the `p-norm models in polynomial time with a fixed

error tolerance, and then test our `p-norm models on CRSP(1992-2013) and also S&P 500 (2008-2012) data.

The empirical results illustrate that our `p-norm regularized models can generate portfolios of any desired

sparsity with portfolio variance, portfolio return and Sharpe Ratio comparable to those of the cardinality

constrained Markowitz model. Furthermore, we also combine our sparsity `p-norm portfolio model with

the `2-norm regularizers; we find that the combined model is able to produce extremely high performing

portfolios that exceed the 1/N strategy, `1-norm regularized portfolio and `2-norm regularized portfolio.

Key words : Sparse portfolio management, Markowitz Model,, `p-norm regularization, PRSV, Sharpe

Ratio.
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1. Introduction

The origin of modern portfolio theory can be traced back to the early 1950’s, beginning with

Markowitz’s work (Markowitz 1952) on mean-variance formulation. Given a basket of securities,

the Markowitz model seeks to find the optimal asset allocation of the portfolio by minimizing the

estimated variance with an expected return above a specified level.

Although the Markowitz mean-variance model captures the most two essential aspects in portfo-

lio management—risk and return, it is not trivial to implement the model directly in the real world.

One of the most critical challenge is the overfitting problem. Overfitting arises from the inability to

perfectly estimate the mean and covariance of real-world objects. In fact, due to high dimensional-

ity and non-normal distribution of the unknown variable, these estimates are especially inaccurate

for stock data. Indeed, Merton (1980) shows that most of the difficulty lies on the mean estimate.

Furthermore, DeMiguel et al. (2009) show that in order to estimate the expected return of portfolio

of 25 stocks with satisfactorily low error, one would need on the order of 3000 months of data,

which is both extremely difficult to acquire and too long for the model to obey the time-invariance

assumptions. The Markowitz model does nothing to prevent the overfitting that comes from mis-

estimation, and thus performs poorly across most out-of-sample metrics. For example, DeMiguel

et al. (2009b) evaluate the out-of-sample performance of the mean-variance model and find that

none of algorithms to compute the solution of the Markowitz model consistently outperforms the

naive 1/N (equal amounts of every stock) portfolio.

To alleviate the overfitting, several variants of the Markowitz model have been proposed in the

literature. In light of the difficulty of estimating investment mean and variance, many scholars

study the mean-variance portfolio selection in the context of robustness; —see for example, Ben-

Tal and Nemirovski (1999), Goldfarb and Iyengar (2003) and DeMiguel and Nogales (2009). More

information on the robust portfolio selection can be found in the monograph Fabozzi et al. (2007b).

Alternatively, Green and Hollifield (1992) and Chan et al. (1999) propose to use the factor models

to estimate the covariance matrix of the return, which reduces the number of parameters to be

estimated and makes the Markowitz model much more well-posed. Another approach is to impose

some prior beliefs of the investors on the true yet unknown return distributions, and then to con-

struct the corresponding posterior optimal portfolios (called Bayesian portfolios in the literature);

see, Frost and Savarino (1986), Jorion (1986), Black and Litterman (1992) and references therein.

Finally, a popular approach closely related to our work is to add regularizers or additional con-

straints to the Markowitz model in order to stabilize it. The modifications can be interpreted as

adding prior beliefs on the portfolio weights. In Jagannathan and Ma (2003), the authors impose a

shortsale constraint to the mean-variance formulation despite the fact that leading theory speaks
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against this constraint. Surprisingly, the “wrong” constraint helps the model to find solution with

better out-of-sample performance. More recently, Brodie et al. (2009) and Rosenbaum and Tsy-

bakov (2010) succeed in applying the `1-norm technique to the Markowitz model to obtain sparse

portfolios with higher Sharpe Ratio than the naive 1/N rule. By adding a norm ball constraint to

the portfolio-weight vector (equivalent to adding a convex norm regularization to the objective),

DeMiguel et al. (2009) provide a general framework for determining the optimal portfolio. The

empirical results of the constrained portfolios demonstrate that the norm ball constrained port-

folios typically achieve lower out-of-sample variance and higher out-of-sample Sharpe Ratio than

the proposed strategies in Jagannathan and Ma (2003), the naive 1/N portfolio and many others

in the literature. Similar ideas of adding norm constraints to stabilize the optimization model has

been investigated extensively both in theory and in practice in the statistics literature; see Ridge

regression (Hoerl and Kennard 1970) and LASSO (Tibshirani 1996) for statistical properties on

this technique.

Meanwhile, the optimal portfolio of Markowitz’s classical model —especially without a shortsale

constraint—often holds a huge number of assets and some assets admit extremely small weights.

Such a solution, however, is not attainable in most situations of the real market. Due to physical,

political, psychological and economical constraints, investors would be willing to sacrifice a small

degree of portfolio performance for a more manageable sparse portfolio (see Shefrin and Statman

(2000), Boyle et al. (2012), Guidolin and Rinaldi (2013) and references therein). An illustrative

example comes from the most successful investor of the 20th century, Warren Buffet, who advo-

cates investing in a few familiar stocks, which is also supported by the early work of Keynes (see

Moggridge (1983)).

A popular way to construct the sparse portfolio is via the cardinality constrained portfolio selec-

tion (CCPS) model (Bertsimas and Shioda (2009), Cesarone et al. (2009), Maringer and Kellerer

(2003)) , i.e., a model that considers all portfolios of a a specified number of assets and selects an

efficient portfolio. Unfortunately, the inherent combinatorial property makes the cardinality con-

strained problem NP-hard generally and hence computationally intractable. To deal with the hard

cardinality constraint, many interesting methods such as Bienstock (1996), Chang et al. (2000)

have been proposed to solve the CCPS alternatively. Very recently, by relaxing the objective func-

tion as some separable functions, Gao and Li (2013) obtain a cardinality constrained relaxation of

CCPS with closed-form solution. The new relaxation combined with a branch-and-bound algorithm

(Bnb) yields a highly efficient solver, which outperforms CPLEX significantly.

The main objective of our paper is to propose a novel and non-CCPS portfolio strategy with

complete flexibility in choosing sparsity while still maintaining satisfactory out-of-sample perfor-

mance; through the portfolio strategy, we investigate a three-dimensional portfolio theory which
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integrates sparsity into the classical mean-variance portfolio theory. To achieve this objective, we

discuss a new regularization of Markowitz’s portfolio construction both with and without the short-

sale constraint. Indeed, we turn to the `p-norm (0< p< 1) regularization which recently attracts a

growing interest from the optimization community due to its important role in inducing sparsity.

Theoretical and empirical results indicate that the `p-norm regularization (Chartrand (2007), Xu

et al. (2009), Ji et al. (2013), Saab et al. (2008)) could have better stability and sparsity than the

traditional `1-norm regularization under certain conditions. More recently, Fastrich et al. (2012)

employ the `p-norm constrained model to identify sparse portfolios replicating a given benchmark

in the index-tracking problem. Due to the nonconvexity of the problem, the authors of Fastrich

et al. (2012) provide a hybrid heuristic to solve the optimization model approximately but with-

out theoretical guarantee. Therefore, we cannot expect any theoretical properties of the resulted

portfolio. Our work differs from Fastrich et al. (2012) in that our goal is to study the theoretical

and computational performance of the `p-norm regularized portfolio optimization and establish

a mean-variance-sparsity portfolio theory in the framework of Markowitz model, while Fastrich

et al. (2012) is an empirical application of `p-norm constraint models in the area of index tracking

without any theoretical analysis.

The contributions of our paper include: (i) we introduce `p-norm regularized models to seek

near-optimal sparse portfolios. Unlike the existing sparse portfolio strategies such as the convex

`1-norm regularized strategy, our proposed strategies have the full flexibility to choose portfolio

sparsity of any level. (ii) Based on the analysis of the `p-norm model, we define a new concept

‘ ‘Portfolio Risk Substitution Variance”—the variance of cost-neutral stock trades, and develop a

corresponding portfolio theory which relates the sparsity of the portfolio with the PSRV. Through

the study of the PRSV, we define the relative sparsity cost index, which allows one to identify the

stock to be removed from the given portfolio in order to increase portfolio sparsity while incurring

minimum utility cost; (iii) we establish a three-dimensional mean-variance-sparsity portfolio theory

that relates sparsity to the PRSV and the Shapre ratio and give an “efficient frontier” outlining the

optimal tradeoff between sparsity and expected return and variance; (iv) we do a comprehensive

study of the `p-norm involved regularized portfolio strategies including the pure `p-norm regularized

portfolio strategy, and the `2 − `p-norm regularized strategy. Empirical results illustrate that our

proposed portfolio strategies (especially the `2− `p-norm regularized model) to produce 50%–98%

more sparse portfolios with competitive out-of-sample performance compared with the Markowitz

model and the `1-norm model; (v) we design a polynomial time interior point algorithm to compute

the second-order KKT solutions of our `p-norm models which makes our strategy implementable

in practice in a relative fast time.
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The remainder of this paper is organized as follows. In Section 2, we review some relevant portfolio

models in the literature and present our `p-norm regularized formulations for sparse portfolio

selection with/without shortsale constraints. A Bayesian explanation of the `p-norm regularization

is also given in this section. In Section 3, we develop the `p-norm regularization portfolio theory

with financial interpretation, and design a fast interior point algorithm to compute the KKT points

of our regularized models in polynomial time. In Section 4, based on the portfolio theory, we obtain

a Markowitz and PRSV heuristic to obtain our `p-norm portfolios with transaction costs explicitly

considered. We construct some toy examples to show the intuition of our portfolio theory. Section 5

is devoted to the computational results of the regularized models and comparison between different

models, which show our portfolio strategies have high sparsity but still maintain out-of-sample

performance. Section 6 concludes our work and provides a possible application of our research. All

proofs of the propositions can be found in the Appendix I and the details of our interior point

algorithm are described in the Appendix II.

2. The Related Models

2.1. Models

Given a portfolio consisting of n stocks. The Markowitz mean-variance portfolio is the solution of

the following constrained optimization problem:

min
1

2
xTQx

s.t. eTx= 1,

mTx≥m0,

(1)

where Q ∈ <n×n is the estimated covariance matrix of the portfolio, m ∈ <n is the estimated

return vector, m0 ∈ < is a specific return level, and e is the vector of all ones with a matching

dimension. Note that, if the non-shortsale constraint x≥ 0 is added to (1), the resulting model is

the formulation of the shorting-prohibited Markowitz model. Since m0 might not be a clear setting

in practice, we limit our focus into the following portfolio optimization model closely related to the

Markowitz model:

min
1

2
xTQx−φmTx

s.t. eTx= 1,

(x≥ 0),

(2)

where the opposite of the objective is called the utility score of the portfolio x which measures

the investors’ satisfaction with the investment, and the scale 1/φ is the risk-aversion coefficient to

measure the tradeoff between the risk and return of the portfolio; investors who are risk averse

would set a smaller value of φ. When φ= 0, the model (2) reduces to the minimum-variance portfolio
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model which often has better out-of-sample performance than the mean-variance portfolio, see

Jagannathan and Ma (2003) for an example.

For the minimum-variance portfolio model, Brodie et al. (2009) discuss the following `1-norm

regularization:

min
1

2
xTQx+λ‖x‖1

s.t. eTx= 1,

mTx=m0.

(3)

Here the `1-norm of a vector x∈<n is defined by ‖x‖1 :=
∑n

i=1 |xi| and λ is a positive penalty param-

eter. Sparse portfolios can be obtained by solving (3) with increasing values of λ. The `1-norm,

however, cannot be effective in conjunction with the shortsale constraint, and thus it cannot induce

sparsity beyond the sparsity of the no-shorting Markowitz portfolio. This fact can be explained as

follows: let x+ and −x− denote the positive and negative entries of x, respectively. Then, in order

to satisfy the budget constraint, we must have:

eTx+ = eTx−+ 1.

Since ‖x‖1 = eTx+ +eTx−, we also have that ‖x‖1 = 2eTx−+1. Thus, adding ‖x‖1 into the objective

penalizes shorting activity—the sum of the absolute negative entries in x—and thus has less effect

as a penalty on sparsity.

Such a gap motivates us to study the following concave `p-norm (0 < p < 1) regularization of

the no-shorting mean-variance model:

min
1

2
xTQx−φmTx+λ‖x‖pp

s.t. eTx= 1,

x≥ 0,

(4)

where the `p-norm of x ∈ <n is defined as ‖x‖p = p

√∑n

j=1 |xj|p. And then when x ≥ 0, ‖x‖pp =∑n

j=1 x
p
j . Here, we allow a tunable parameter λ in the model to control the sparsity of the portfolios.

This `p model formulation also offers us the flexibility to study the mean-variance-sparsity portfolio

theory.

Another idea to achieve the sparse portfolio is via solving the following cardinality constrained

portfolio selection (CCPS) problem:

min
1

2
xTQx−φmTx

s.t. eTx= 1,

‖x‖0 ≤K,
x≥ 0,

(5)
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where ‖x‖0 represents the number of the nonzero entries of x and K is the chosen limit of stocks

to be managed in the portfolio. Since both the `p-norm regularizer and the cardinality constraint

‖x‖0 ≤K play the same role in sparse portfolio selection, the `p-norm regularized problem (4) can

be regarded as a continuous heuristic of the CCPS problem in the sense of inducing sparsity.

We also study the portfolio selection problem with the shortsale constraint removed. As an

analogue to the model (4), we consider the following `p-norm model:

min
1

2
xTQx−φmTx+λ‖x‖pp

s.t. eTx= 1.
(6)

Moreover, DeMiguel et al. (2009) construct the optimal portfolio with high Sharpe Ratio via solving

the following the minimum-variance problem subject to a norm ball constraint, i.e.,

min
1

2
xTQx

s.t. eTx= 1,

‖x‖ ≤ δ,

(7)

where δ is a given threshold. Moreover, the `2-norm constrained portfolio will, in general, remain

relatively close to the portfolio 1/N and achieve a higher Sharpe Ratio than `1-norm constrained

portfolios. Following this work and specifying the general norm as the `2-norm, we consider the

`2-norm ball constrained the `p-norm regularized Markowitz model:

min 1
2
xTQx−φmTx+λ‖x‖pp

s.t. eTx= 1,

‖x‖2 ≤ δ,
(8)

or the following `2− `p-norm double regularization Markowitz model:

min 1
2
xTQx−φmTx+λ‖x‖pp +µ‖x‖22

s.t. eTx= 1,
(9)

which can be seen as a Lagrangian form of (8). By splitting the vector x := x+ − x−, (9) can be

equivalently written as

min 1
2
(x+−x−)TQ(x+−x−)− cT (x+−x−) +λ‖x+‖pp +λ‖x−‖pp +µ‖x+−x−‖22

s.t. eTx+− eTx− = 1,

x+ ≥ 0, x− ≥ 0.

(10)

It can be shown later that the regularization model (10) always produce a complementary pair

x+ and x−: that is, x+
j x
−
j = 0 for all j. In this paper, we shall see whether the combined model

(10) with proper choices of λ and µ will yield a portfolio strategy with moderate-high sparsity but

having a high Sharpe Ratio.
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2.2. Bayesian Interpretation of the `p-norm Regularization

In DeMiguel et al. (2009), the authors provide a Bayesian interpretation of the `1- and `2 (more

generally, A)-norm-constrained minimum-variance portfolios. Concretely, the `1-norm constrained

portfolio is the posterior evaluation of portfolio weights for an investor with a prior belief that the

portfolio weights are identically distributed as a multi-dimensional Laplacian distribution while the

prior belief on the distribution of the `2-norm constrained portfolio weights represents a multivariate

norm distribution. Following exactly the same idea, we present the following propositions without

proof, which state that our `p-norm regularized portfolios with φ = 0 (corresponding to the `p-

norm regularized minimum-variance model) are also the posterior estimators of portfolio weights

conforming to some exponential family distributions.

Proposition 1. Assume that asset returns are normally distributed. Moreover, assume that

the investor believes a priori that each of the shorting-allowed Markowitz portfolios by (2), xi, is

independently and identically distributed as a special distribution in the exponential family with

probability density function:

π(xi) = c(v)e−v|xi|
p

Furthermore, assume that the investor believes a priori that the variance of Markowitz portfolio

return, denoted by σ2 has an independent prior distribution π(σ2). Then there exists a parameter

λ such that the weights of the `p-norm regularized portfolio via (6) with φ= 0 are the mode of the

posterior distribution of the Markowitz portfolio weights.

Proposition 2. Assume that asset returns are normally distributed. Moreover, assume that

the investor believes a prior that each of the shorting-allowed Markowitz portfolios by (2), xi, is

independently and identically distributed as a special distribution in the exponential family with

probability density function:

π(xi) =

{
c(v)e−vx

p
i , xi ≥ 0;

0, otherwise.

Furthermore, assume that the investor believes a priori that the variance of Markowitz portfolio

return, denoted by σ2 has an independent prior distribution π(σ2). Then there exists a parameter

λ such that the weights of the `p-norm regularized portfolio via (6) with φ= 0 are the mode of the

posterior distribution of the Markowitz portfolio weights.

There is also a Bayesian interpretation of the general `p-norm regularizations (4) and (6): the

`p-norm (0 < p < 1) regularizer can, roughly, be viewed as an exponential family prior belief on

the optimal portfolio weights. The objective function can be seen as maximizing the negative

utility score. The `p-norm penalizes the coefficients (especially around 0) more so than the `1-norm

regularizer (See the graph of |x| and
√
|x| in Figure 1 ), and thus these models are expected to

generate sparser portfolios than the convex `1-norm regularized (or, ball constrained) portfolios.
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Figure 1 Portfolio Sparsity

3. `p-norm Regularized Portfolio Theory

In this section, we develop theoretical results on the sparsity of the `p-norm regularized models

and also provide financial interpretation of the theory. Our approach to establish the theoretical

results is motivated by the results (Chen et al 2010) in signal processing. For simplicity, hereafter

we will fix p= 1/2.

3.1. Bounds of Nonzero Elements of KKT Points

First, we develop bounds on the non-zero entries of any KKT solution of the `p-norm regularized

Markowitz model with the shortsale constraint x≥ 0.

Theorem 1. Let x̄ be any second-order KKT solution of (4), that is, a first-order KKT solution

that also satisfies the second-order necessary condition, P̄ be the support of x̄, c̄ and Q̄ be the

corresponding return sub-vector and covariances sub-matrix. Furthermore, let K = |P̄ | and

Li = Q̄ii−
2

K
(Q̄e)i +

1

K2
(eT Q̄e), i∈ P̄ ,

which are the diagonal entries of the projection of Q̄ onto the null space of vector e:(
I − 1

K
eeT
)
Q̄

(
I − 1

K
eeT
)
.

Then it holds that

(i)

(K − 1)K3/2 ≤
4
∑

i∈P̄ Li

λ
=

4

λ

[
tr(Q̄)− 1

K
eT Q̄e

]
.

(ii) If Li = 0 for some i∈ P̄ , then K = 1 so that x̄i = 1; otherwise,

x̄i ≥
(
λ(K − 1)2

4LiK2

)2/3

and hence

Li ≥
λ(K − 1)2

4K2
.



Author: Chen et al., Sparse Portfolio Selection via Quasi-Norm Regularization
10 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

(iii)

‖(I − 1

k
eeT )(Q̄x̄− c̄)‖ ≤

√
K

(
λ2 maxi∈P LiK

2

2(K − 1)2

)1/3

.

Note that if
∑

i∈P̄ Li = 0, the first statement of our theorem implies that K = 1. This can be

explained as follows.
∑

i∈P̄ Li = 0 implies the projected Q̄ matrix(
I − 1

K
eeT
)
Q̄

(
I − 1

K
eeT
)

= 0.

Then, Q̄= αeeT for some α≥ 0, in which case the portfolio variance x̄T Q̄x̄= α and it is a constant.

Thus, the optimal solution of the regularized problem would allocate 100% into the stock with

the highest ci or highest return factor. Our theorem also implies that K is decreasing with the

parameter λ. The quantity of
∑

i∈P̄ Li represents the total diversification coefficient of the set of

stocks i∈ P̄ : smaller quantities will result in smaller P̄ – the set of selected stocks in the portfolio

by the `p-norm regularized Markowitz model.

The second statement provides an even stronger notion: if any Li = 0, i ∈ P̄ , then K = 1. Basi-

cally, it says that investing only into the ith stock suffices, since no diversification can help in this

case. Note that Li can be interpreted as other stocks’ correlation to stock i. If Li = 0, then other

stocks present no diversification to the ith stock.

The third statement provides a theoretical property on the marginal negative portfolio utility.

Note that K is nearly proportional to λ−2/5. Thus, the marginal negative portfolio utility increases

with λ.

Next, we establish portfolio theories for the short-prohibited `p-norm regularized model (6) and

the `2− `p double regularized model (9). The following theorem characterize the bound of nonzero

elements of any second-order KKT points of the `p-norm model without shortsale constraint (µ= 0)

and the double regularized model (µ> 0).

Theorem 2. Let x̄ = (x̄+, x̄−) be any second-order KKT solution of (10), P̄+ and P̄− be the

support of x̄+ and x̄−, and P̄ = P̄+ ∪ P̄−. Furthermore, let c̄ and Q̄ be the return sub-vector and

covariance sub-matrices corresponding to P̄ , K = |P̄ |, and

Li = Q̄ii + 2µ− 2

K
(Q̄e)i +

1

(K)2
(eT Q̄e), i∈ P̄ .

Then it holds that

(i)

P̄+ ∩ P̄− = ∅.

(ii) If ‖x̄‖2 ≤ δ, then

(K − 1)K3/4 ≤
4δ3/2

∑
i∈P̄ Li

λ
=

4δ3/2

λ

[
tr(Q̄)− 1

K
eT Q̄e

]
.
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(ii) If Li = 0 for some i∈ P̄ , then K = 1 so that x̄i = 1 and i∈ P̄+; otherwise,

x̄ji ≥
(
λ(K − 1)2

4LiK2

)2/3

, i∈ P̄ .

If x̄≤ δ, then

Li ≥
λ(K − 1)2

4K2δ
3
4

, i∈ P̄ .

(iii)

‖(I − 1

k
eeT )(Q̄x̄− c̄)‖ ≤

√
K

(
λ2 maxi∈P LiK

2

2(K − 1)2

)1/3

.

The theories developed above indicate the importance of computing a second-order KKT solu-

tion, rather than just a first-order KKT solution, of the `p-norm regularized portfolio management

problem (4). In this paper, we present an interior point algorithm to compute an approximate

second KKT point in polynomial time with a fixed error tolerance; see details in the Appendix 1.

The overall idea of using the interior-point algorithm is to start from a fully supported portfolio x

that is, xi > 0 of every stock i in consideration) and iteratively remove the stocks estimated to be

least needed for an optimal solution.

3.2. The Portfolio Risk Substitution Variance - Li

In the theory supporting our model (see Section 3.1), there arose several interesting facts and

characteristics to note about the “Portfolio Risk Substitution Variance” — {Li} over the support

set of a portfolio selected by the `p-norm regularized Markowitz models.

Given any stock portfolio, with the non-zero portion denoted as x, having support P of size K

one can rewrite the quantity Li in Theorem 1, as follows:

Li = (ei− e0)T Q̄(ei− e0) = Var [ηT (ei− e0)], (11)

ei ∈ RK is the vector of all zeros except 1 at the ith position and e0 = 1
K
e ∈ Rk. Here ei and e0

are the respective distributions obtained by investing 100% in stock i and 1
K

in each stock of the

portfolio x, and η represents the random return vector. Note that Li, i= 1, ...,K, is independent

of the entry values of x.

The difference vector (ei− e0) can be viewed as the “cost-neutral portfolio action” that sells an

equal amount of everything in the current portfolio and uses all those funds to buy exactly one

stock, stock i, within the current portfolio. Thus, Li estimates the variance of this action. Let us

now consider the feasible and optimal solutions of the Markowitz Model

min 1
2
xTQx−φmTx

s.t. eTx= 1,

x≥ 0.

(12)
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For any portfolio—the non-zero portion denoted as x—one can plot the objective function of

moving in a feasible exchange direction ei− e0:

f [x+ ε(ei− e0)] =
1

2
[x+ ε(ei− e0)]TQ[x+ ε(ei− e0)]−φmT [x+ ε(ei− e0)] (13)

= f(x) + εCov [xTη, (ei− e0)Tη]− εφ(m̄i− m̄0) +
1

2
ε2Li,

where f = 1
2
xTQx−φmTx. We now consider which stock would increase the negative utility least

when we remove it from that portfolio x. Suppose we remove stock i in the direction ei− e0, then

we have a new portfolio support P/{i} with distribution [x]i = x− Kxi
K−1

(ei − e0). Equation (13)

would give us the

Marginal Costs of Sparsity (14)

MCSi =− K

K − 1
xi[Cov(xTη, (ei− e0)Tη)−φ(m̄i− m̄0)] +

1

2

( K

K − 1

)2
x2
iLi.

These marginal costs are only upper-bounds on the true costs of sparsity. They do not consider any

further improvement that could be made by re-balancing, and thus over-estimate costs.

When our current portfolio x is a near-KKT point or local minimizer, we know from the first-

order conditions that the first part [Cov (xTη, (ei − e0)Tη)− φ(m̄i − m̄0)] must be near zero and

thus the second order term will be a good approximation for the Marginal Cost by itself. Hence,

at a near (locally) optimal portfolio x, the best candidate for removal can be found by searching

for the smallest values of xi
√
Li.

Relative Sparsity Cost Index (15)

RSCi = xi
√
Li

Where the smallest non-zero RSC index is the cheapest (on the margin) to eliminate from x, and is

likely to be the cheapest (absolutely) to remove. Thus the quantity Li can be viewed as measures

of elasticity: they indicate how sensitive the objective value is to small cost-neutral changes in x;

small Li values therefore indicate which stocks could be removed from the portfolio with lowest

cost.

3.3. The Portfolio Substitution Sharpe Ratio

However, risk is not the only factor in the portfolio selection, we also care about the return that

the portfolio can achieve. Therefore, we proceed to our discussion by considering the Sharpe Ratios

of the new portfolios with one stock removed from the portfolio x. Suppose we remove stock i and

assign the weight xi to the other stocks with equal amount, we then have a new portfolio support

P/{i} with

[x]i = x− Kxi
K − 1

(ei− e0) (16)
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The Sharpe Ratio of [x]i with respect to the benchmark asset x is given by

Si =
E(ηT [x]i− ηTx)√
Var(ηT [x]i− ηTx)

.

By substituting (16) into the above equality, we further have

Si =
m̄0− m̄i√

Li
, (17)

where m̄i is the expected return of stock i, m̄0 is the average expected return of the portfolio x

and Li is the Portfolio Risk Substitution Variance of stock i. As the mean return divided by the

standard deviation of taking the cost-neutral action {ei− e0}, Si can be regarded as the Portfolio

Substitution Sharpe Ratio of the ith stock, with higher Si values indicating the stocks i with

relatively higher performance.

Since all Si’s are computed with respect to the asset x, the portfolio with the largest Si provides

the best return for the same risk. In order to seek the best performance of portfolio in terms of

mean deviation ratio, one would like to remove the stock having the lowest Portfolio Substitution

Sharpe Ratio. According to (17), we know the natural candidates of stocks to be removed from

the portfolio x are the stocks with their expected returns less than the average return and small

PRSVs. This is also consistent with our discussion in Section 3.2.

4. Heuristic and Toy Examples

4.1. Near-Optimal Portfolios with Transaction Costs

We have shown that for any choice of `p-norm coefficient λ, the resulting portfolio x, with K = ‖x‖0
satisfies the second-order KKT condition of the regularized model. Moreover, in section 5, we see

clearly that these portfolios perform near the cardinality-constrained portfolios empirically. These

facts and the theory behind the Portfolio Risk Substitution Variance give us a basis to develop a

near-optimality heuristic for our portfolio strategy even with the transaction costs. The heuristic

servers as a complement to the interior point algorithm in pursuing the `p-norm portfolios, as it

offers a simpler and faster way of approximating the desired sparse optimal portfolio especially in

the case that only few stocks need to be removed.

To model the transaction costs, we use the transaction cost formula introduced in Fastrich et al.

(2012), where two kinds of transaction costs — fixed and linear transaction costs are explicitly

considered. The importance of the two costs varies for different type of investors: for large investors,

fixed cost (which is associated with the frequency of buy and sell actions) can be neglected and

the linear transaction cost induced by transaction volume is the main concern; while for small



Author: Chen et al., Sparse Portfolio Selection via Quasi-Norm Regularization
14 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

investors, the situation is nearly opposite. In (18), the third and forth term in the objective function

represent fixed cost and linear transaction cost respectively :

min
1

2
xTQx−φmTx+

∑
j

tjI(xj 6=0) + ljxj︸ ︷︷ ︸
Transaction Cost

(18)

s.t. eTx= 1, x≥ 0,

where t and l are some non-negative vectors.

4.2. Markowitz and PRSV Heuristic

Consider a nonzero portfolio x with K elements. Suppose we decide to remove stock i and distribute

xi equally to the other stocks in this portfolio. Then the total cost of this action- TS(x)i for xi 6= 0

is given approximately by

TS(x)i ≈
1

2

( K

K − 1

)2

x2
iLi− ti + (li−

1

K − 1

∑
j 6=i

lj)xi,

where the first term is the marginal cost of sparsity and the second term is the incremental trans-

action cost by this action. With this preparation, we provide the following heuristic, which relies

on computing the Markowitz model and PRSV:

Step 1: Start with the full set of stocks X;

Step 2: Compute the unregularized Markowitz portfolio x;

Step 3: Calculate Li for each stock of current portfolio (based on this basis);

Step 4: For some fixed number n, remove from X the n stocks that minimize the TS(x)i;

Step 5: Repeat Step 2-4 until the stopping criterion is satisfied.

A typical stopping criterion in Step 5 is to ask TS(x)i > δ for all i, where δ is a threshold defined

by the user. The condition means taking any cost neutral action will increase the objective function

more than the threshold. Thus we may not pursue portfolios with more sparsity. To increase the

speed of the heuristic, one could choose n to equal the number of stocks that do not satisfy the

needed criteria TS(x)i > δ. We see from Theorem 1 that the quantities Li are the sum of three

averages (cell, row, and entire matrix) on the covariance matrix Q. Inasmuch as this matrix has

small row and matrix differences, the values of the Li will change little as the basis is reduced.

4.3. Toy Examples

4.3.1. Toy Examples A In this subsection, we illustrate the previous sensitivity analysis by

some dummy examples without transaction cost. In this case, the total cost of eliminating a stock

is merely the loss in expected performance: the marginal sparsity cost. Thus we shall remove the

stocks with small RSC.
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Consider the first example in Table 1, where the portfolios include three stocks with identical

variances yet different expected returns. The lower returning stocks admit a smaller percentage in

the optimal portfolio due to the large reward for the expected return (φ= 0.5). Since the RSC of

stock 1 is the smallest, according to our sensitive analysis, the investor would remove the first stock

from the basis to form a sparse portfolio. We predict this stock would be the first to leave the basis

in an `p norm penalized optimization, with the increasing of the coefficient λ. Direct calculation

also shows that this is the stock of the lowest cost to remove.

Table 1 Toy example 1

Mean Variance x∗(φ= 0.5) Li OK to drop RSC1.00001
1.00002
1.00003

 0.0002 0.0001 0.0001
0.0001 0.0002 0.0001
0.0001 0.0001 0.0002

 0.2833
0.3333
0.3833

 0.00007
0.00007
0.00007

 Y esNo
No

 0.000019
0.000023
0.000026



As a second example, consider Table 2, where we have a set of stocks that include two with high

variance and covariance with most other stocks, yet highly negative correlation with each other.

These two stocks alone would make an excellent portfolio of size two. Here, we see that the smallest

investments in the Markowitz portfolio are not necessarily the stocks to remove. To achieve the

best portfolio of size 1, we include only stock 1 in the portfolio. For the portfolio of size 2, the best

choice is a combination of stocks 3 and 4. The best portfolio of size 3 is the portfolio containing

all the stocks but excluding stock 1. The Relative Sparsity Costs seem to hint at many of those

choices.

Table 2 Toy example 2

mean Variance x∗(φ= 0.5) Li OK to drop RSC1.0
1.0
1.0
1.0


0.0008 0.0007 0.0006 0.0006

0.0007 0.0026 0.0006 0.0000
0.0006 0.0006 0.0096 −0.0068
0.0006 0.0000 −0.0068 0.0073


0.2913

0.1166
0.2714
0.3207


0.000181

0.001381
0.008331
0.007481


Y esNo
No
No


0.00392

0.00433
0.02477
0.02773



4.3.2. Toy Examples B Next, we proceed to our empirical study on the Markowitz heuristic

by an example using real-world data. Consider optimizing some balance of variance, mean and

transaction costs, using the set of 8 stocks as shown below:

min
1

2
xTQx− 1

2
mTx+

1

10000
eTx+

1

10000
eT I(x>0) (19)

Here, we use the Markowitz and PRSV heuristic developed in Section 4.2 to quickly find a near-

optimal solution.
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Table 3 Toy Example 3

Mean Variance Li xi TS(x)i

0.0038

0.0039

0.0037

0.0025

0.0040

0.0038

0.0038

0.0038





0.007 0.001 0.001 0.000 0.001 0.001 0.000 0.001

0.001 0.009 0.001 0.000 0.002 0.003 0.000 0.000

0.001 0.001 0.006 0.000 0.001 0.001 0.000 0.000

0.000 0.000 0.000 0.003 0.001 0.001 0.000 0.000

0.001 0.002 0.001 0.001 0.007 0.001 0.000 0.002

0.001 0.003 0.001 0.001 0.001 0.008 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.020 −0.01

0.001 0.000 0.000 0.000 0.002 0.000 −0.01 0.017





0.0077

0.0095

0.0069

0.0042

0.0094

0.0085

0.0209

0.0179





0.1386

0.1374

0.0993

0.0000

0.1912

0.1031

0.1657

0.1648





0.0007

0.0221

−0.0537

0

0.1339

−0.0385

0.2905

0.2308


× 10−3

Table 4 Toy Example 4

Mean Variance Li x TS(x)i
0.0038

0.0039

0.0040

0.0038

0.0038




0.007 0.001 0.001 0.000 0.001

0.001 0.009 0.002 0.000 0.000

0.001 0.002 0.007 0.000 0.002

0.000 0.000 0.000 0.020 −0.01

0.001 0.000 0.002 −0.01 0.017




0.0082

0.0100

0.0098

0.0212

0.0182




0.1918

0.2029

0.2195

0.1939

0.1920




0.1357

0.2216

0.2689

0.5227

0.4242

× 10−3

Table 3 and Table 4 list the Markowitz portfolios without transaction costs, PRSVs and the total

costs TS(x)i in the first and second rounds of the Markowitz and PRSV heuristic, respectively.

Clearly from Table 3, we observe that stock 3, 4, and 6 take non-positive values on the TS(x)i

and thus should be removed from the portfolio in the first round of the heuristic by setting δ = 0

in the heuristic. The resulted portfolio is a near optimal solution with objective −8.7e−4 near the

optimal solution objective −9.0e−4. From table 4, we see TS(x)i > 0 for all i, and thus we stop

removing stocks any further. Also, we see that the last two stocks perhaps could make a near-

optimal portfolio of size two, as they both have a high TS(x)i (indeed they do: −4.3e−4 versus

−4.2e−4).

5. Computational Results

5.1. Data, Parameters and Models

To examine the out-of-sample performance of `p-norm regularized models, we use historical daily

returns of several exchange-traded assets to test—the list of the data used is described in Table

5.1 The first dataset we use is similar to the dataset used in Jagannathan and Ma (2003). In each

April from 1992 to 2013, we randomly select 500 stocks from all stocks in CRSP database. We also

use another datasets to test the robustness of our results, the one we use is daily stock price data

of S&P 500 index which spans from 31/12/2007 to 31/12/2012.2.

1 We choose this short time-interval due to the need for a large number of intervals and the common belief that the
distribution of stock prices fundamentally change shape over decades.

2 We do not include any company unless it is traded on the market at least 90% of the trading days during the data
period, nor do any company not listed on the market for the entire timescale
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Table 5 List of Datasets.

No. Dataset Number of stock Time Period Estimation Window Prediction Window

1 500 CRSP 500 04/1992-04/2013 651 days 5 days

2 S& P 461 12/2007-12/2012 500 days 21 days

Note that to solve the `p-norm Markowitz models, proper φ values should be chosen. Here the

inverse of φ is the risk-aversion parameter, the smaller φ values indicating the more risk averse

investors. In our empirical study, we try different risk aversion parameters, such as φ = 0, φ = 0.05,

φ = 0.2, φ = 0.5 and so on, which makes the risk aversion parameters range from 2 to infinite. Due

to the constraint of the paper length, we only report part of results but we restrict our insights to

those only valid for all experiments performed.

The rolling-window method is used to evaluate the out-of-sample performance. Different length

of the estimation window and rolling window is chosen to test the robustness of our results. We

use 20 rolling-windows for 500 CRSP datasets, with 651 days for estimation, 5 days for prediction

and weekly rebalancing; 36 rolling-windows for S&P datasets, with 500 days for estimation, 21

days for prediction, monthly rebalancing. We use the portfolio mean, variance and Sharpe Ratio

to evaluate the out-of-sample performance, where the Sharpe Ratio here is computed by the same

method as in DeMiguel et al. (2009).

5.2. No-shorting Constraint Case

In DeMiguel et al. (2009b), the authors apply the `1-norm technique to seek sparse portfolios.

The `1-norm, however, plays no role in the Markowitz model with no-shorting constraints. Since

no-shorting environments and investors exist extensively in the real market, we turn to the `p-norm

regularization to seek portfolios with desired sparsity in this situation. As we will see later, our

`p-norm regularized model (4) with no-shorting constraints produces extremely sparse portfolios

as compared to the already sparse Markowitz no-shorting portfolios.

The `p-norm regularized model is compared with two benchmarks in the framework of Markowitz

model with shortsale constraints. The first one is the Markowitz model without regularization

(λ=0) and the second is the cardinality constrained portfolio selection (CCPS) model. The global

optimal cardinality-constrained portfolios are found by solving the following integer formulation of

problem (5):

min
1

2
xTQx−φmTx

s.t. eTx= 1,

0≤ x≤ d,
eTd≤K,
d∈ {0,1}n.
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Table 6 Mean, Variance and Sparsity of no-shorting `p-norm regularized Model for 500 CRSP Dataset

φ= 0 φ= 0.05 φ= 0.2

Mean Variance Sparsity Mean Variance Sparsity Mean Variance Sparsity

0 1.97e-4 2.78e-6 148.22 2.52e-3 7.70e-5 34.19 3.62e-3 3.11e-4 11.29

5.0e-8 1.84e-4 2.83e-6 66.90 2.53e-3 7.71e-5 28.82 3.62e-3 3.11e-4 10.82

1.5e-7 1.71e-4 3.04e-6 45.66 2.53e-3 7.74e-5 24.81 3.62e-3 3.11e-4 10.10

2.0e-7 1.65e-4 3.18e-6 39.59 2.53e-3 7.76e-5 23.43 3.62e-3 3.11e-4 9.89

3.5e-7 1.48e-4 3.64e-6 28.03 2.53e-3 7.81e-5 21.19 3.62e-3 3.11e-4 9.47

Table 6 reports the in-sample performance of the portfolio mean, variance and sparsity of the

Markowitz portfolios with the specified φ ranging from 0 to 0.2. The numbers of the investing

stocks in the regularized portfolios range from 9 to 148 stocks, which are about 2%-30% of the

full set. The in-sample expected return of portfolios vary for different φ. Basically, the mean and

variance increase with the increasing of φ, this phenomenon is consistent with the investor’s higher

risk tolerance with larger φ; we also find that when φ< 0.05, increasing λ will worse the in-sample

performance, but when φ ≥ 0.05, increasing λ will not sacrifice the in-sample performance any

longer.

Moreover, we observe clearly that, for most cases especially when λ and φ are not large , the `p-

norm regularized portfolios have means and variances comparable with the Markowitiz portfolios

yet invest in fewer stocks. Thus the `p-norm regularized portfolios with proper λs outperform the

Markowize portfolios, in the sense that they have higher overall return minus overall cost.

We also compare the results of `p-norm regularized model and CCPS model by testing the data

of S& P, and find that the `p-norm model performs almost as well as theoretically possible (Table

10). Detailed results are reported in Appendix III.

5.2.1. Out-of-Sample Performance Brodie et al. (2009) show that sparse portfolios are

often more robust and thus outperform the larger portfolios in terms of out-of-sample performance.

In their analysis, the no-shorting constraint (x≥ 0) is taken as the most extreme sparsity inducing

measure. We continue this investigation by taking the no-shorting constraint as the least extreme

measure and adding the `p-norm regularizer onto the objective function. It is interesting to ask

whether the sparsest portfolios will continue to outperform.

Table 7 reports the results of out-of-sample performance for the no-shorting case using CRSP

dataset. In the case that λ is small, we can get return comparable to the shortsale constrained

minimum-variance model (λ= 0 and φ= 0) yet with higher sparsity. For example when λ= 5e− 8

and φ = 0.05, the Sharpe Ratio is 0.19 which is similar to the shortsale constrained minimum-

variance model (can be verified by t test), yet only has 1/3 as many stocks. If we consider the

transaction cost, these moderate portfolios will perform better.
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Table 7 Sharpe Ratio and Sparsity of no-shorting `p-norm regularized Model for 500 CRSP Dataset

φ= 0 φ= 0.05 φ= 0.2 φ= 0.5

λ Spa SRatio Spa SRatio Spa SRatio Spa SRatio

0 148.22 0.24 34.19 0.19 11.29 0.14 5.64 0.13

tdiff – – (−8.58)∗∗∗ (-0.75) (−10.85)∗∗∗ (-1.19) (−11.42)∗∗∗ (-1.26)

5.00e-8 66.90 0.20 28.82 0.19 10.82 0.14 5.56 0.13

tdiff (−5.00)∗∗∗ (-1.45) (−9.13)∗∗∗ (-0.75) (−10.90)∗∗∗ (-1.19) (−11.43)∗∗∗ (-1.26)

1.50e-7 45.66 0.21 24.81 0.18 10.10 0.14 5.38 0.13

tdiff (−6.90)∗∗∗ (−2.12)∗∗ (−9.55)∗∗∗ (-0.75) (−10.97)∗∗∗ (-1.19) (−11.45)∗∗∗ (-1.26)

2.00e-7 39.59 0.20 23.43 0.18 9.89 0.14 5.36 0.13

tdiff (−7.51)∗∗∗ (−1.98)∗ (−9.70)∗∗∗ (-0.75) (−10.99)∗∗∗ (-1.19) (−11.45)∗∗∗ (-1.26)

3.50e-7 28.03 0.17 21.19 0.18 9.47 0.14 5.24 0.13

tdiff (−8.70)∗∗∗ (−2.58)∗∗ (−9.93)∗∗∗ (-0.74) (−11.04)∗∗∗ (-1.19) (−11.46)∗∗∗ (-1.26)

It is not surprising to see that the largest values of λ produce extremely sparse poorly performing

portfolios. Yet, for some values of φ, we can find that the `p-norm regularized model with moderate

λ also produces very sparse portfolios—although the Sharpe Ratio is smaller for lager φ. This

result is consistent with the concept that passive investment styles outperform active ones. Also

we can see that, consistent with the previous studies, the minimum-variance model (with φ= 0)

outperforms the mean-variance model.

Moreover, a statistical t-test is run to measure the level of significance of the difference between

our `p-norm regularized model and the minimum-variance model. The statistically significant differ-

ence with confidence level 10%, 5% and 1% is marked with one, two and three asterisks, respectively.

Clearly from Table 7, we observe that, for all cases, the difference in sparsity is statistically signif-

icant with the confidence level 1% while the Sharpe Ratio difference is not statistically significant

with the same confidence level. Even setting the confidence level as 5%, only a few cases (φ= 0 and

λ= 1.5e− 7, 2.0e− 7, 3.5e− 7) have significant differences in Sharpe Ratio. This clearly presents

the evidence that our `p-norm models can produce portfolios with the Sharpe Ratio comparable

to that of the minimum-variance model with shortsale constraint, but with much better sparsity.

5.3. Shorting-Allowed Extension

Next we relax our constraint to allow the short-selling of stocks, and study the out-of-sample

performance of the `p-norm regularized model and combined `2− `p double regularized model.

5.3.1. `p-norm Models V.S. `1-norm Models In this subsection, we investigate and com-

pare the empirical performances of the `p-norm and `1-norm regularized portfolios when the param-

eter φ = 0. 3 Figure 2 shows that, both the `1-norm regularizer and the `p-norm regularizer are

3 We also run the experiments when φ 6= 0; the regularized portfolios in this case often have much lower Sharpe Ratio
than the minimum-variance regularized portfolios. Thus we limit our attentions the regularized portfolio with φ= 0
for the shorting-allowed models in order to produce highly performing portfolios in the real market.
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Figure 2 Portfolio Sparsity of shorting-allowed `p norm and `1 norm Model for 500 CRSP Dataset

capable of inducing sparsity in the shorting-allowed Markowitz model. Note that the parameter λ

can be regarded as a server to control the portfolio sparsity. With the increasing of λ, our `p-norm

regularized model (6) reduces the number of investing stocks drastically while the the number of

stocks in the `1-norm regularized portfolio decreases in a much more smooth manner. For example,

only 27 stocks are involved in the Markowitz regularized portfolio for λ= 5e− 7, and thus there is

a 95% reduction of the portfolio size. But for the `1-norm regularized model, the resulting portfolio

contain more than 300 stocks which is only 40% reduction of the portfolio size.

Similar to the shorting-prohibited case, there is a clear tradeoff between the portfolio sparsity and

performance out-of-sample. The Sharpe Ratio attains its maximum when λ is not large, and then

decreases as the parameter λ goes up. When λ≥ 2e−6, the resulting portfolios are extremely sparse

yet also have extremely poor Sharpe Ratios. However, with λ proper chosen say λ≤ 1e−6, the `p-

norm regularized models produce portfolios with out-of-sample performance competitive with the

Markowitz portfolios and the `1-norm regularized portfolios but with much better sparsity. This is

clear from the statistical t-test 4 on the portfolio sparsity and Sharpe Ratio: when λ≤ 1e− 6, the

difference in the Sharpe Ratios of `1-norm regularized portfolio and `p-norm regularized portfolio is

not statistically significant even with a confidence level of 10%, but the difference between sparsity

is significant at the 1% level. It is clear from the results that when λ is small, our `p-norm model

can achieve performance similar to the `1-norm model but with much more sparsity, and therefore

our `p-norm model is expected to perform better than the `1-norm when the transaction costs

are considered. Moreover, by comparing the performance of `p-norm and `1-norm model with 1/N

model, we find the difference is also not significant when λ is small.

5.4. `2− `p-norm Double Regularized Model

As mentioned in DeMiguel et al. (2009), the `2-norm constraint can be viewed as placing a prior

belief that the optimal strategy is the 1/N strategy, thus it is reasonable to expect the results

4 In order to keep the Table clear, we do not report the result of t-test in the Table as we did in no-shorting case, but
choose to report the results in the paragraph.
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Table 8 Sharpe Ratio and Sparsity of shorting-allowed `p and `1 Model for 500 CRSP Dataset

`p(φ= 0) `1

λ Spa SRatio Spa SRatio

0 499.24 0.18 – –

5e-8 165.79 0.16 459.22 0.19

1e-7 105.89 0.16 427.76 0.19

5e-7 26.67 0.18 311.94 0.22

1e-6 14.08 0.15 253.39 0.22

2e-6 6.69 0.09 193.65 0.23

2.5e-6 5.55 0.03 177.32 0.23

to be close to the 1/N strategy. In the world markets today, it is common sense that the passive

investment style can achieve better results than the active style. Yet, for most individual investors

who aim at seeking portfolios with a comparable performance to the 1/N strategy, it is not possible

to invest in a portfolio with such a huge number of stocks. Given that individual investors often

dominate the less mature markets of the world, we are motivated to determine whether a sparse

portfolio can embody the 1/N strategy in theory and also remain competitive in out-of-sample

performance. For this purpose, it is natural to consider the `p-norm regularization of the `2-norm

constrained Markowitz model:

min 1
2
xTQx−φmTx+λ‖x‖pp

s.t. eTx= 1,

‖x‖22 ≤ δ2,

Here we focus on those portfolios with φ= 0 5, which has Lagrangian form (9), to see if we can

obtain a portfolio that balances sparsity and uniform prior.

The out-of-sample results of the `2 − `p-norm regularized models are shown in Table 9, with

different choices of λ and δ, and φ = 0. From Table 9, we see that in the case δ = 0.075 and

λ= 1e− 6, the `2 − `p double regularization can produce the highest performing portfolio with a

Sharpe Ratio much higher than the 1/N strategy (with a Sharpe Ratio 0.276) and a similar Sharpe

Ratio to the `2-norm regularized portfolio 6 Changing δ but maintaining a small λ will worsen the

Sharpe Ratio slightly, but the resulting portfolios still perform better than the 1/N strategy. This

means the strategy to invest in all stocks does not always perform best out-of-sample, and it is

5 We also run the experiments when φ 6= 0, but in this case it is very often that the double regularized portfolios have
lower Sharpe Ratios than the 1/N portfolios. To produce highly performing portfolios, we focus on the case φ= 0 for
the `2− `p double regularized models.

6 We do a t test on the difference between our `2 − `p portfolios and the minimum-variance portfolios and also the
1/N portfolio. For most cases, the difference of sparsity and Sharpe Ratio is statistically significant at 1% level. Also,
in order to keep the table clear, we do not report the result of t-test in the table.
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Table 9 Sparsity and Sharpe Ratio of the `2− `p-Norm for 500 CRSP Dataset

δ = 0.05 δ = 0.075 δ = 0.1

λ Spar SRatio Spar SRatio Spar SRatio

φ= 0 1.0e-7 488.8 0.324 370.9 0.382 267.9 0.327

5.e-7 463.4 0.322 242.5 0.396 128.3 0.325

1.0e-6 444.5 0.323 193.5 0.401 88.7 0.293

2.0e-6 414.9 0.325 148.2 0.383 59.0 0.252

4.5e-6 359.3 0.338 100.2 0.357 34.6 0.197

possible to obtain a portfolio (such as our `2 − `p-norm double regularized portfolio) with better

performance but with sparse composition.

Clearly, the portfolios becomes more sparse with the increasing of λ and fixed δ. This trend

shows a tradeoff between `p-norm regularization and `2-norm regularization. For any given δ, the

small λ setting often produces high performing portfolios, suggesting that the presence of a strong

uniform prior on all stocks helps mitigate overfitting due to poor variance/covariance estimates.

The out-of-sample performance is increasing in λ when λ is not too large. These moderately sparse,

highly `2-norm constricted portfolios perform excellently (nearly all have Sharpe Ratio near or

above 0.35). Thus the `2 and `p norms appear to exhibit synergy in reducing overfitting.

6. Discussions and Conclusions

6.1. `p-norm regularized Dynamic Portfolios

A closely related application to our model is the dynamic portfolio selection. Instead of seeking a

sparse portfolio, we are looking for a sparse adjustment to an already existing portfolio. Consider

the following cardinality constrained optimization model:

min 1
2
xTQx− cTx

s.t. eTx= 1,

x≥ 0,

‖x− a‖0 ≤K.

(20)

Here the a-vector is a feasible portfolio (eTa = 1 and a ≥ 0), representing the current state of

our dynamic portfolio. Similar to the Markowitz model, the dynamic portfolio has found many

applications. One is the situation where implementing the portfolio takes a significant amount

of time (perhaps we must execute our orders sequentially with long delays in-between) and we

wish our first orders to constitute an near-optimal portfolio. Another is the situation where our

estimates Q and c= φm are themselves varying over time, enough to warrant a re-balancing, yet

we still have limits on trading—either due to transaction costs or structural limitations.
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This model has a non-differentiable point in the middle of the feasible region (x= a), but can

be reformulated (by substitution: y = x− a) to achieve a model very similar to the non-dynamic

sparse portfolio model:
min 1

2
yTQy+QaTy− cTy

s.t. eTy= 0
y≥−a
‖y‖0 ≤K,

(21)

We note that the objective function is still a quadratic function, and that the constraints are also

of the same shape. Instead of solving the original model (21), we consider the following p norm

regularized dynamic Markowitz model.

min 1
2
yTQy+ (aTQ− cT )y+λ‖y‖pp

s.t. eTy= 0,

y≥−a.

(22)

By letting y = y+− y− and using the concavity of ‖ · ‖pp, we know the regularized model (22) can

be equivalently written as

min 1
2
(y+− y−)TQ(y+− y−) + (aTQ− cT )(y+− y−) +λ‖y+‖pp +λ‖y−‖pp

s.t. eTy+− eTy− = 0,

y+− y− ≥−a,
y+ ≥ 0, y− ≥ 0,

(23)

which can be further simplified to the following model

min 1
2
(y+− y−)TQ(y+− y−) + (aTQ− cT )(y+− y−) +λ‖y+‖pp +λ‖y−‖pp

s.t. eTy+− eTy− = 0,

y+ ≥ 0, 0≤ y− ≤ a,
(24)

Similar as the non-dynamic `p- norm portfolio model, this resulting `p-norm model can also be

solved by the second order interior point method.

6.2. Conclusions

In this paper, we propose `p-norm regularized models with/without shortsale constraints to seek

near-optimal sparse portfolios to reduce the complexity of portfolio implementation and manage-

ment. Theoretical results are established to guarantee the sparsity of the novel portfolio strategy.

Computational evidence also clearly shows that the `p-norm regularized portfolio is able to choose

sparsity with completely flexibility while still maintaining satisfactory out-of-sample performance—

comparable to that of the cardinality-constrained portfolios.

The `2-norm can be viewed as a prior on the estimated covariances; we find that a large `2-penalty

can greatly improve performance. It also could improve tractability by bounding the feasible region.

And `2-norm and the `p-norm have positive cross-effects on performance—the combined model

consistently portfolios outperformed all others.



Author: Chen et al., Sparse Portfolio Selection via Quasi-Norm Regularization
24 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Generally, when we do not pursue the most sparse portfolio, then the cost of sparsity is low—

especially when the original portfolio of stocks is diverse. Our research provides a tool to evaluate

the tradeoffs between sparsity and out-of-sample performance. In this framework, sparsity can

be studied in relation to Sharpe-Ratio and financial theory, where both practical bounds and

qualitative insights can be made.

7. Appendix

7.1. Appendix I: Proofs of the Propositions

Proof of Theorem 1. Since the second-order necessary condition of (4) holds at the point x̄, the

sub-Hessian matrix of the objective function corresponding to the indices P̄

Q̄− λ
4
X̄−3/2 � 0

on the null space of e. This means the projected Hessian matrix(
I − 1

K
eeT
)(

Q̄− λ
4
X̄−3/2

)(
I − 1

K
eeT
)

is positive semidefinite. By direct calculation, we know that the ith diagonal entry of the projected

Hessian matrix is given by

Li−
λ

4

(
(x̄i)

−3/2

(
1− 2

K

)
+

∑
j∈P̄ (x̄j)

−3/2

K2

)
≥ 0, (25)

and also the trace of projected Hessian matrix∑
i∈P̄

Li−
λ

4

K − 1

K

∑
i∈P̄

(x̄i)
−3/2 ≥ 0.

The quantity
∑

i∈P̄ (x̄i)
−3/2, with

∑
i∈P̄ x̄i = 1, achieves its minimum at x̄i = 1/K for all i∈ P̄ with

the minimum value K ·K3/2. Thus,

λ

4
(K − 1)K3/2 ≤

∑
i∈P̄

Li,

or

(K − 1)K3/2 ≤
4
∑

i∈P̄ Li

λ
,

which complete the proof of the first claim. Moreover, from (25) we have

λ

4

(
(x̄i)

−3/2

(
1− 2

K

)
+

∑
j∈P̄ (x̄j)

−3/2

K2

)
≤Li.

Or
λ

4

(
(x̄i)

−3/2

(
1− 1

K

)2

+

∑
j∈P̄ ,j 6=i(x̄j)

−3/2

K2

)
≤Li,
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which implies
λ

4
(x̄i)

−3/2

(
1− 1

K

)2

≤Li. (26)

Hence, if Li = 0, we must have K = 1 so that x̄i is the only non-zero entry in x̄ and x̄i = 1.

Otherwise, from (26), we have the desired second statement in the theorem. To prove the third

assertion, we write the first order KKT condition of (4): ¯(Qx̄− c̄+
λ

2
√
x̄
−λ1e= 0,

eT x̄= 1,

. (27)

where λ1 is the Lagrangian multiplier corresponding to the equality constraint. It therefore holds

that

‖(I − 1

k
eeT )(Q̄x̄− c̄)‖= ‖(I − 1

k
eeT )(

λ

2
√
x̄
−λ1e)‖ (28)

= ‖(I − 1

k
eeT )

λ

2
√
x̄
‖ ≤ ‖(I − 1

k
eeT‖2‖

λ

2
√
x̄
‖= ‖ λ

2
√
x̄
‖

which together with (26) completes the proof of this theorem.

Proof of Theorem 2. (i) Assume the contrary that P̄+ ∩ P̄− 6= ∅. Then there exists an index j

such that x̄+
j > 0 and x̄−j > 0. Let λ1 and λ2 (≤ 0) be the optimal Lagrangian multiplier associated

with the constraints of (10). Since (x+, x−) is a KKT point of (10), it holds that
[
(Q+µI)(x̄+− x̄−)

]
i
− ci +

λ

2
√

(x̄+)i
−λ1−λ2 = 0[

(Q+µI)(x̄−− x̄+)
]
i
+ ci +

λ

2
√

(x̄−)i
+λ1−λ2 = 0

. (29)

By adding the two equalities above, we have

λ

2
√

(x̄+)i
+

λ

2
√

(x̄−)i
− 2λ2 = 0. (30)

However, since (x̄+)i > 0, (x̄−)i > 0 and λ2 ≤ 0, the equality (30) cannot hold. This contradiction

shows that P̄+∩ P̄− 6= ∅. (ii,iii) Since the proof of the remainder parts of this theorem is similar to

that of Theorem 1, we omit the details.

7.2. Appendix II: Polynomial Time Interior Point Algorithms

Most nonlinear optimization solvers can only guarantee to compute a first-order KKT solution.

In this section, we extend the interior-point algorithm described in Bian et al. (2012) to solve the

following generally `p-norm regularized model

min f(x) :=
1

2
xTQx− cTx+λ‖x‖pp

s.t. Ax= b,

x≥ 0,

(31)
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where A is a matrix in <p×n, b is a vector in <p and the feasible region is strictly feasible. For

simplicity, we fix p= 1
2
.

Naturally, we would start from an interior-point feasible solution such as the analytical of the

feasible set, and let the iterative algorithm to decide which entry goes to zero. This is the basic idea

of affine scaling algorithm developed in Bian et al. (2012) for regularized nonconvex programming.

The algorithm starts from an initial interior-point solution, then follows an interior feasible path

and finally converges to either a global minimizer or a second-order KKT solution. At each step,

it chooses a new interior point which produces a reduction to the objective function by an affine-

scaling trust-region iteration.

Specifically, give an interior point xk of the feasible region, the algorithm looks for an objective

reduction by a update from xk to xk+1. Let dk be a vector in <p satisfying Adk = 0 and xk+1 :=

xk + dk > 0. Using the second Taylor expansion of f(·), we know

f(xk+1)≈ f(xk) +
1

2
(dk)T

(
Q− λ

4
(Xk)−3/2

)
dk +

(
Qxk− c+

λ

2
√
xk

)T
dk,

where Xk = Diag(xk). For given ε∈ (0,1], we solve the ellipsoidal trust-region constrained problem

min
1

2
(dk)T

(
Q− λ

4
(Xk)−3/2

)
dk +

(
Qxk− c+

λ

2
√
xk

)T
dk

s.t. Adk = 0,

‖X−1
k dk‖2 ≤ β2ε < 1,

to obtain the direction dk. By letting d̃k =X−1
k dk, we can recast the above ellipsoidal trust-region

constrained problem above as a ball-constrained quadratic problem

min
1

2
(d̃k)TXk

(
Q− λ

4
(Xk)−3/2

)
Xkd̃k +

(
Qxk− c+

λ

2
√
xk

)T
Xkd̃k,

s.t. AXkd̃
k = 0,

‖d̃k‖2 ≤ β2ε.

(32)

Note that problem (32) can be solved efficiently even when it is nonconvex (see Bian et al. 2012).

Let Q̃k =XkQXk − λ
4

√
Xk and c̃k =Xk(Qx

k − c) + λ
2

√
xk. If Q̃k is semidefinite, the solution d̃k

of problem (32) satisfies the following necessary and sufficient conditions:
(Q̃k +µkI)d̃k− (AXk)Tyk =−c̃k,
AXkd̃k = 0,

µk ≥ 0, ‖d̃k‖2 ≤ β2ε, µk(‖d̃k‖2−β2ε) = 0.

(33)

In the case that Q̃k is indefinite, it holds that
(Q̃k +µkI)d̃k− (AXk)Tyk =−c̃k,
AXkd̃

k = 0,

µk ≥ 0, NT
k Q̃

kNk +µkI � 0,

‖d̃k‖= β
√
ε,

(34)
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where Nk is an orthogonal basis spanning the space of XkAT .

To evaluate the performance of the affine scaling method, we need the definitions of ε scaled

first-order and second-order KKT solutions. x∗ is said to be an ε scaled first-order KKT solution

of (31) if there exists a y∗ ∈<p such that
‖X∗(Qx∗− c) +

λ

2

√
x∗−X∗ATy∗‖ ≤ ε,

Ax∗ = b,

x∗ ≥ 0.

(35)

Furthermore, if X∗QX∗− λ
4

√
X∗+

√
εI is also semidefinite on the null space of X∗AT , we call x∗

an ε scaled second-order KKT solution. If ε= 0, the ε scaled first-order KKT solution reduces to

X∗(Qx∗− c) +
λ

2

√
x∗−X∗ATy∗ = 0,

which is exactly the first-order condition of (31). In this case, the ε scaled second-order condition

collapses to

NTX∗QX∗N − λ
4
NT
√
X∗N � 0 (36)

where N is an orthogonal basis spanning the space of X∗AT . By direct computation, we know (36)

recovers exactly the second-order optimality condition of problem (31).

For the convergence analysis of our proposed interior-point algorithm, we make the following

standard assumption.

Assumption 1. For any given x0 ≥ 0 such that Ax= b, there exists R≥ 1 such that

sup{‖x‖∞ : f(x)≤ f(x0),Ax= b,x≥ 0} ≤R.

Under the assumption above, we are able to establish the next theorem showing that the affine

scaling is able to obtain either an ε-scaled second-order KKT solution or an ε global minimizer in

polynomial time.

Theorem 3. Let ε∈ (0,1]. There exists a positive number τ such that the proposed second-order

interior point obtains either an ε scaled second-order KKT solution or ε global minimizer of (31)

in no more than O(ε−3/2) iterations provided that β ∈ (0, τ).

PROOF. With loss of generality, we assume the radius R = 1 in the assumption. To proceed

the proof of this theorem, we first introduce the following Lemma.

Lemma 1. If µk >λ/6‖d̃k‖ holds for all k= 0,1,2, . . ., then the second-order interior point algo-

rithm produces an ε global minimizer of (31) in at most O(ε−3/2) iterations.
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PROOF. By the Taylor expansion of
√
·, it is easily to show that

f(xk+1)− f(xk)≤ 1

2

〈
d̃k, Q̃kd̃k

〉
+
〈
c̃k, d̃k〉+ 3λ

48
‖d̃k‖3.

From (33) and (34), then

f(xk+1)− f(xk) ≤ 1

2

〈
d̃k, Q̃kd̃k

〉
+
〈
− Q̃kd̃k−µkd̃k + (AXk)

Tyk, d̃
k〉+ 3λ

48
‖d̃k‖3

=−1

2
d̃kQ̃kd̃k−µk‖d̃k‖2 +

3λ

48
‖d̃k‖3

=−1

2
(vk)T (Nk)

T Q̃kNkv
k−µk‖d̃k‖2 +

3λ

48
‖d̃k‖3

≤ µk
2
‖vk‖2−µk‖d̃k‖2 +

λ

48
‖d̃k‖3

=−µk
2
‖d̃k‖2 +

3λ

48
‖d̃k‖3

≤−1

8
µk‖d̃k‖2,

(37)

where the second inequality follows from the semidefiniteness of (Nk)
T (Q̃k)Nk + µkI and the last

inequality comes from the relationship that ‖d̃k‖ < 6µk/λ. Combining (37) with the fact that

‖d̃k‖= β
√
ε due to µk > 0, we further have

f(xk)− f(x0)≤−1

8

k−1∑
j=0

µj‖d̃j‖2 ≤−
λ

48
k
(
β2ε
)3/2

and hence the interior-point algorithm produces an ε global minimizer in O(ε−
3
2 ) iterations. �

In what follows, we analyze to the case where µk ≤ λ/6‖d̃k‖ for some k.

Lemma 2. Let β ≤ min{ 1
2
,
√

2
λ
, 3

(18
√

2+2)λ
}. If there exists some k such that µk ≤ λ

6
‖d̃k‖, then

xk+1 is an ε second-order KKT solution of (31).

PROOF. (i) We firstly show xk+1 is an ε scaled first order KKT solution when β is restricted

into the special range. From (33) and (34), it follows that

−µkd̃k =Xk(Qxk+1− c)− λ
4

√
Xkd̃k +

λ
√
xk

2
−XkATyk,

which implies that

Qxk+1− c−ATyk =
λ

4
(Xk)−1/2d̃k− λ

2
(xk)−1/2−µk(Xk)−1d̃k.

Therefore, we have

‖Xk+1(Qxk+1− c) +
λ
√
xk+1

2
−Xk+1ATyk‖

= ‖λ
√
xk+1

2
− λ

2
Xk+1(xk)(−1/2) +

λ

4
Xk+1(Xk)−1/2d̃k−µkXk+1(Xk)−1d̃k‖

≤ ‖λ
√
xk+1

2
− λ

2
Xk+1(xk)(−1/2) +

λ

4
Xk+1(Xk)−1/2d̃k‖+µk‖Xk+1(Xk)−1d̃k‖

≤ λ

2
‖
√
Xk‖∞‖

√
d̃k + e− e− 1

2
d̃k +

1

2
(d̃k)2‖+µk‖d̃k‖(1 + ‖d̃k‖)

(38)
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Since the condition µj >
λ
6
‖d̃j‖ holds for j = 0,1,2 . . . , k − 1, by the proof of Lemma 1, we have

f(xk)≤ f(x0), which together with Assumption 1 implies ‖xk‖∞ ≤ 1. Moreover, we know from the

proof of Lemma 4 in Bian et al. (2012) that

‖
√
d̃k + e− e− 1

2
d̃k +

1

2
(d̃k)2‖ ≤ 1

2
‖d̃k‖2

and hence

‖(Xk+1)(Qxk+1− c) +
λ
√
xk+1

2
−Xk+1ATyk‖

≤ λ

4
‖d̃k‖2 +

3

2
µk‖d̃k‖ ≤

λ

2
‖d̃k‖2 ≤ ε,

which means xk+1 is an ε scaled first-order KKT solution.

(ii) Again from (33) and (34), we know that

XkQXk− λ
4

√
Xk +µkI

is positive semidefinite on the null space that XkAT . Let Nk be the orthogonal basis of this null

space and it therefore holds

NT
k (XkQXk− λ

4

√
Xk)Nk �−µkI �−

λ

6
β
√
εI. (39)

Clearly, Nk+1 := (Xk+1)−1XkNk is a basis of the null space of Xk+1AT . By simple algebraic com-

putation, we can easily obtain that

NT
k+1

[
Xk+1QXk+1− λ

4

√
Xk+1 +

√
εI

]
Nk+1

= NT
k (XkQXk− λ

4

√
Xk)Nk +

√
εNT

k

[
X−2
k+1(Xk)2

]
Nk

+
λ

4
NT
k

√
Xk
[
I − (Xk)3/2(Xk+1)−3/2

]
Nk

� −λ
6
β
√
εI +

√
εNT

k (I +Dk)
−2NK + λ

4
NT
k

√
Xk
[
I − (I +Dk)

−3/2
]
Nk

(40)

where Dk = Diag(d̃k). Since ‖d̃k‖ ≤ β
√
ε≤ 1

2
< 1, we know

(I +Dk)
−2 � (1 +β

√
ε)−2I � 1

4
I (41)

and

I − (I +Dk)
−3/2 �

[
1− (1−β

√
ε)−3/2

]
I. (42)

Moreover, the mean-value theorem applied to the function x−3/2 yields that

1− (1−β
√
ε)−3/2 =−3

2
β
√
εθ−5/2,
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where θ is in the open interval (1−β
√
ε, 1). Note that β

√
ε≤ 1

2
, then it holds that

1− (1−β
√
ε)−3/2 ≥−6

√
2β
√
ε. (43)

By substituting (41), (42) and (43) into (40), we immediately get that

NT
k+1

[
Xk+1QXk+1− λ

4

√
Xk+1 +

√
εI

]
Nk+1 � (

1

4
− 3
√

2βλ

2
− λ

6
β)
√
εI � 0.

Thus xk+1 is an ε scaled second-order KKT solution. �

According to the above two lemmas, we know the proposed second order interior point obtains

either an ε scaled second KKT solution or ε global minimizer in no more than O(ε−3/2) iterations

provided that βk ≤min{ 1
2
,
√

2
λ
, 3

(18
√

2+2)λ
}. This completes the proof of this Theorem.

7.3. Appendix III: `p-norm Portfolios VS CCPS Portfolios

A comprehensive comparison of in sample computational results between our `p-norm regularized

model and the cardinality constrained portfolio selection (CCPS) model using S&P dataset are

reported in the Table 10. Here we use a different way to calculate proper φ to test the robustness

of the model. Specifically, we consider the following mean-variance Markowitz model

min
1

2
xTQx

s.t. eTx= 1,

mTx≥m0,
x≥ 0,

(44)

and calculate the φ-values from the Lagrangian multipliers associated with the return constraint

by setting reasonable values for the minimum target return m0. As can be seen in the table, our

regularized `p-norm performs almost as well as theoretically possible—the differences of the variance

estimation between the two models are within 0.2% in all cases and the differences of the mean

estimation are within 0.02%. Therefore, compared to the computational intractable cardinality

constrained portfolio optimization, our `p-norm regularized portfolio, which can be obtained in

polynomial time, performs almost as well and seeks near optimal sparse portfolios.

Figure 3 and Figure 4 show the out-of-sample portfolio returns and variances obtained by the `p-

norm regularized Markowitz model with λ ranging from 5.0e-7 to 5.5e-6 and the CCPS, respectively.

From Figure 3, we observe clearly that most of the plots go up slightly and then achieve its

maximum, indicating that the portfolios with moderate sparsity (around 10) perform very well,

even better than the Markowitz portfolio. However, with the continuously increasing of sparsity, the

mean will go down dramatically and thus the regularized portfolios with extreme sparsity perform

poorly in the sense of portfolio mean. Figure 4 shows that the variance of the regularized portfolios

is increasing with a incremental rate with the increasing sparsity of the portfolios. However, though



Author: Chen et al., Sparse Portfolio Selection via Quasi-Norm Regularization
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 31

Table 10 Comparison of Sparsity, Mean and Variance between the `p-norm Model and CCPS (S&P Dataset).

`p-norm CCPS

λ Sparsity Mean Variance Sparsity Mean Variance

m0 = 0.02% 5.0e-7 9 0.05% 4.45% 9 0.05% 4.46%

1.0e-6 7 0.03% 3.68% 7 0.04% 3.66%

2.0e-6 5 0.03% 3.90% 5 0.04% 3.75%

3.5e-6 4 0.02% 4.08% 4 0.04% 3.89%

4.5e-6 3 0.02% 4.12% 3 0.04% 4.06%

m0 = 0.1% 5.0e-7 10 0.06% 4.57% 10 0.05% 4.58%

1.0e-6 7 0.10% 4.90% 7 0.10% 4.86%

2.0e-6 7 0.09% 5.27% 5 0.09% 5.37%

3.5e-6 6 0.09% 5.18% 6 0.09% 5.28%

4.5e-6 6 0.09% 5.18% 6 0.09% 5.28%

Figure 3 Portfolio Returns(S & P Dataset)

Figure 4 Portfolio Variances(S & P Dataset)

the highly sparse portfolios performs poorly in the sense of portfolio variance, the intermediate

portfolios with about 10 companies suffered a 15-25% increase in variance which is also comparable

to the CCPS integer portfolios.
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Figure 5 Portfolio Sharpe Ratios(S & P Dataset)

Figure 5 shows the out-of-performance Sharpe Ratios of our `p-norm regularized portfolio and

the CCPS integer portfolio. Although the Markowitz portfolio (with λ = 0) outperforms our `p-

norm regularized model in terms of the out-of-sample Sharpe Ratio, the sparse portfolios may

be more implementable due to the transaction costs or logistical limitations reasons. Our results

indicate that an intermediate sparse portfolio may get a comparable or at most only 10-20% cost

in Sharpe Ratio while reducing more construction costs. Also, the `p-norm regularized approach

is competitive with the computationally gigantic integer approach in the sense of out-of-sample

performance.
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