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Linear Programming started…
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…
 

with the simplex method
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Outlines
•

 
Counterexamples to the Hirsch conjecture

•
 

More pivoting rules and their behavior
•

 
Simplex and policy-iteration methods for 
stochastic Markov Decision Process (MDP) and 
Zero-Sum Game with fixed discounts

•
 

Simplex method for deterministic MDP with 
variable discounts

•
 

Other efficient methods and results for linear 
programming

De Loera, “New Insights into the Complexity and Geometry of Linear 
Optimization,”

 

OPTIMA, 2011.
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Hirsch’s Conjecture

•
 

Warren Hirsch conjectured in 1957 that 
the diameter

 
of the graph of a polyhedron 

defined by n inequalities in d dimensions 
is at most n-d. 

•
 

The diameter of the graph is the maximum
 of the shortest paths between every two 

vertices. 



ISMP 2012 Berlin

Counter examples to Hirsch’s conjecture

Francisco Santos (2010):
•

 
There is a 43-dimensional polytope

 
with 86 

facets and of diameter at least 44.
•

 
There is an infinite family of non-Hirsch 
polytopes

 
with diameter  (1 + ε)n, even in 

fixed dimension. 
•

 
Santos' construction is an extension of a 
result of Klee and Walkup (1967), where 
they proved that the Hirsch conjecture could 
be proved true from just the case n = 2d.
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More pivoting rules …
•

 
The simplex method is governed by a pivot rule, 
i.e. a method of choosing adjacent vertices with a 
better objective function value. 

•
 

Klee and Minty (1972) showed that Dantzig's
 original greedy

 
pivot rule may require exponentially 

many steps.
•

 
The random edge

 
pivot rule chooses, from among 

all improving pivoting steps (or edges) from the 
current basic feasible solution (or vertex), one 
uniformly at random.

•
 

The Zadeh
 

pivot rule chooses the decreasing edge 
or the entering variable that has been entered least 
often

 
in the previous pivot steps.
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…
 

and they fall as well

•
 

No non-polynomial
 

lower bounds were known 
until now for these two pivot rules.

•
 

Friedmann, Hansen and Zwick
 

(2011) gave an 
example that the random edge pivot rule needs 
sub-exponentially many steps.

•
 

Friedman (2011) developed an example that the 
Zadeh

 
pivot rule needs exponentially many steps.

•
 

These examples explore the connection of linear 
programming and Markov Decision Process

 
(MDP), 

and the close relation between the simplex 
method for solving linear programs and the policy 
iteration method

 
for MDP.

(The diameter of MDP polytopes
 

is bounded by d.)
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Markov Decision Process

•
 

Markov decision process provides a mathematical 
framework for modeling sequential

 
decision-

 making in situations where outcomes are partly 
random and partly under the control of a decision 
maker.

•
 

MDPs
 

are useful for studying a wide range of 
optimization problems solved via dynamic 
programming, where it was known at least as early 
as the 1950s (cf. Shapley 1953, Bellman 1957).

•
 

Modern applications include dynamic planning, 
reinforcement learning, social networking, and 
almost all other dynamic/sequential decision 
making problems in Mathematical, Physical, 
Management, Economics, and Social Sciences.
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States and Actions

•
 

At each time step, the process is in some state
 

i = 1, 
...,m, and the decision maker chooses an action

 
j ∈ Ai

 
that is available for state i, say of total n actions.

•
 

The process responds at the next time step by 
randomly moving into a new state i’ , and giving the 
decision maker an immediate

 
corresponding cost cj

 

.
•

 
The probability that the process enters i’

 
as its new 

state is influenced by the chosen action j . 
Specifically, it is given by the state transition 
probability distribution

 
Pj

 

.
•

 
But given action

 
j , the probability is conditionally 

independent
 

of all previous states and actions; in 
other words, the state transitions of an MDP possess 
the Markov property.
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Policy and Discount Factor

•
 

A policy
 

of MDP is a set function π = { j1
 

, j2
 

, ・ ・ ・

 , jm
 

} that specifies one action ji
 

∈ Ai

 

that the 
decision maker will choose for each state i .

•
 

The MDP is to find an optimal (stationary) policy to 
minimize the expected discounted sum over an 
infinite horizon with a discount factor

 
0 ≤ γ < 1.

•
 

One can obtain an LP that models the MDP problem 
in such a way that there is a one-to-one

 correspondence between policies of the MDP and 
basic feasible solutions of the (dual) LP, and 
between improving switches and improving pivots.

de Ghellinck
 

(1960), D’Epenoux
 

(1960) and 
Manne

 
(1960)
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Cost-to-Go values and LP formulation

•
 

Let y ∈ Rm represent the expected present cost-
 to-go values of the m states, respectively, for a 

given policy. Then, the cost-to-go vector of the 
optimal policy is a Fixed Point of

•
 

Such a fixed point computation can be formulated 
as an LP
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The dual of the MDP-LP

where eij

 

=1 if j ∈ Ai

 

and 0
 

otherwise.

Dual variable
 

xj

 

represents the expected action 
flow or visit-frequency, that is, the expected 
present value of the number of times action j is 
used.
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A Simple MDP Problem I



ISMP 2012 Berlin

A Simple MDP Problem II



ISMP 2012 Berlin

Cost-to-Go values

Chosen actions in Red
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Greedy Simplex Rule

Chosen actions in Red



ISMP 2012 Berlin

Lowest-Index Simplex Rule

Chosen actions in Red
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Policy Iteration Rule (Howard 1960)

Chosen actions in Red
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Efficiency of simplex/policy methods

•
 

Early work included that of Paul Tseng (1990)
•

 
Melekopoglou

 
and Condon (1990) showed that the 

simplex method with the smallest index
 

pivot rule 
needs an exponential number of iterations to compute 
an optimal policy for a specific MDP problem regardless 
of discount factors.

•
 

Fearnley
 

(2010) showed that the policy-iteration method 
needs an exponential number of iterations for a 
undiscounted

 
finite-horizon MDP.

•
 

In practice, the policy-iteration method, including the 
simplex method with greedy pivot rule, has been 
remarkably successful and shown to be most effective 
and widely

 
used.

•
 

Are the policy-iteration method and the simplex 
method efficient for MDP with discounts, or are they 
strongly

 
polynomial-time algorithms? –

 
A vindication?
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Bound on the simplex/policy methods

•
 

Y (2011): The classic simplex and policy iteration 
methods, with the greedy pivoting rule, terminate 
in no more than

pivot steps, where n is the total number of actions 
in an m-state MDP with discount factor γ. 

•
 

This is a strongly
 

polynomial-time upper bound 
when γ is bounded above by a constant less than 
one.
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Roadmap of proof

•
 

Define a combinatorial event
 

that cannot repeats more 
than n times. More precisely, at any step of the pivot 
process, there exists a non-optimal action

 
j that will 

never re-enter future policies or bases after 

pivot steps
•

 
There are at most (n - m) such non-optimal action to 
eliminate

 
from appearance in any future policies 

generated by the simplex or policy-iteration method.
•

 
The proof relies on the duality, the reduced-cost

 vector at the current policy and the optimal reduced-
 cost vector to provide a lower and upper bound for a 

non-optimal action when the greedy rule is used.
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Improvement and extension

Hansen, Miltersen
 

and Zwick
 

(2011):
•

 
For the policy iteration method, there exists a non-

 optimal action j that will never re-enter policies after

pivot steps.

•
 

The simplex and policy iteration methods, with 
the greedy pivoting rule, are strongly polynomial-

 time algorithms for Turn-Based Two-Person 
Zero-Sum Stochastic Game

 
with any fixed 

discount factor, which problem cannot
 

even be 
formulated as an LP.
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A Turn-Based Zero-Sum Game
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Improvement and extension
•

 

Kitahara

 

and Mizuno (2011) extended the bound to solving 
general

 

non-degenerate LPs:

•

 

The simplex method terminates in at most

pivot steps, when the ratio

 

of the minimum value over the 
maximum value, in all basic feasible solution entries, is 
bounded below by σ.
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Deterministic MDP with discounts

Distribution vector pj

 

∈ Rm contains exactly
 

one 1
 and 0 everywhere else
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It has uniform
 

discounts if all γj

 

are identical.
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The dual resembles generalized flow

where eij

 

=1 if j ∈ Ai

 

and 0
 

otherwise.

Dual variable
 

xj

 

represents the expected action 
flow or frequency, that is, the expected present 
value of the number of times action j is chosen.
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Efficiency of simplex/policy methods
•

 
They are not known to be polynomial-time algorithms 
for deterministic MDP even with uniform discounts.

•
 

There are quadratic
 

lower bounds on these methods for 
solving MDP with uniform discounts.

•
 

Ian Post and Y (2012): The Simplex method with the 
greedy pivot rule terminates in at most

pivot steps when discount factors are uniform, or in at 
most

pivot steps with non-uniform discounts.
We are not

 
yet able to prove such results hold for the 

policy iteration method.
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)log(0 235 mnm
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Policy structures with uniform factors

Each chosen action can be either a path-edge
 

or 
cycle-edge.

xj

 

in [ 1, m ] if it is a path-action, 
xj

 

in [ 1/(1-γ), m/(1-γ) ]
 

if it is a cycle-action, so that they 
form two possible polynomial layers.
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Roadmap of proof

•
 

There two types of pivots: the newly chosen 
action is either on a path or on a cycle of the new 
policy. 

•
 

In every m2n log(m ) consecutive pivot steps, 
there must be at least one step that is a cycle 
pivot.

•
 

After every m log(m ) cycle pivot steps, there is an 
action that would never

 
re-enter as a cycle or 

path action. 
•

 
There are at most n action for such a down-

 grade.
•

 
Item 2 result remains true when discounts are not 
uniform, but others do not hold.
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Policy structures of general factors

The flow value of xj

 

depends on the smallest
 

discount 
factor (dominating factor γa ) on a same cycle. 

There are n different discount factors, so that there 
are n possible different polynomial layers

 
of xj

 

s.
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Decomposed “s-dual”
 

of MDP-LP

There are m such “dual”
 LPs, and the optimal policy 

is also optimal for each of 
them. 
xj

 

of a given policy
 

on 
each “s-dual”

 
form a 

single path+cycle
 

or a 
single cycle.
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Roadmap of Proof

•
 

Let (s,γa ) denote a policy where the cycle for the 
s-dual

 
is dominated by γa .

•
 

In every m2n log(m ) consecutive pivot steps, 
there must be at least one step that is a cycle 
pivot.

•
 

After every m2 log(m ) cycle pivot steps, there is 
an action that would never

 
re-enter to form a 

(s,γa ) policy. 
•

 
There are at most nm such combinations, and at 
most n actions for such a down-grade.

•
 

This gives the overall pivot step bound.
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Other efficient methods and results

•

 

Chubanov

 

(2011) announced a new polynomial time 
algorithm to determine the feasibility of a system given in 
certain form: 
There exists a strongly

 

polynomial algorithm which either 
finds a solution of a linear system Ax = b, 0 ≤

 

x ≤

 

1, or 
correctly decides that the system has no {0, 1} solutions.

•

 

Bertsimas and Vempala

 

(2004) and Dunagan

 

and Vempala

 
(2008) present random-walk

 

type methods of which they 
can prove run in polynomial time.

•

 

Spielman

 

and Teng

 

(2004) and later with significant 
improvements by Vershynin

 

(2009) have provided new 
probabilistic insights, called smoothed analysis, into why we 
observe a good practical performance of the simplex 
algorithm.

•

 

Dedieu, Malajovich, and Shub

 

(2005), Deza, Terlaky

 

and 
Zinchenko

 

(2009), Loera, Sturmfels, and Vinzant

 

(2010) 
provided new insights on total curvature

 

of the central path.
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Linear Programming and the Simplex 
Method Story Continues …

•Is the policy iteration method a strongly
 

polynomial 
time algorithm for deterministic MDP?

•Is there strongly
 

polynomial time algorithm for MDP 
with variable discounts, generalized network flow, or 
even LP?

•New LP applications?

•Solve LPs with a huge
 

size (billion-dimension) in 
practice?

Remarks and Open Problems
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