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Abstract

DSDP uses a dual-scaling algorithm for the semidefinite programming. The source code of this
interior-point solver, written entirely in ANSI C, is freely available. The solver can be used as a subroutine
library, as a function within the MATLAB environment, or as an executable that reads and writes to files.
Initiated in 1997, DSDP has developed into an efficient and robust general purpose solver for semidefinite
programming. Although the solver is written with semidefinite programming in mind, it can also be used
for linear programming and other constraint cones. This version is for the users to run DSDP with 64-bit
data models (int64) on 64-bit architectures. The features of this DSDP include:

• a robust algorithm with a convergence proof and polynomially bounded complexity under mild
assumptions on the data,

• primal and dual solutions,

• feasible solutions when they exist or approximate certificates of infeasibility,

• initial points that can be feasible or infeasible,

• relatively low memory requirements for an interior-point method,

• sparse and low-rank data structures,

• extensibility that allows applications to customize the solver and improve its performance,

• a subroutine library that enables it to be linked to larger applications,

• support of 64-bit data models to run on the 64-bit platforms, and

• a well documented interface and examples of its use.

The package has been used in many applications and tested for efficiency, robustness, and ease of use.
We welcome and encourage further use under the terms of the license included in this distribution.

∗Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA U.S.A.
†Department of Management Science and Engineering, Stanford University, Stanford, CA U.S.A.
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COPYRIGHT NOTIFICATION

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License, or (at
your option) any later version in http://www.gnu.org/copyleft/gpl.html.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LI-
ABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

The above copyright notice and this permission notice shall be included in all copies or substantial por-
tions of the Software. Any publication resulting from research that made use of the Software should cite this
document. Questions or comments on the Software may be directed to

rsun@cs.stanford.edu or yinyu-ye@stanford.edu.

http://www.gnu.org/copyleft/gpl.html
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1 Introduction

The DSDP package implements a dual-scaling algorithm to find solutions (Xj , yi, Sj) to linear and semidef-
inite optimization problems of the form

(P ) inf

p∑
j=1

〈Cj , Xj〉 subject to

p∑
j=1

〈Ai,j , Xj〉 = bi, i = 1, . . . ,m, Xj ∈ Kj ,

(D) sup

m∑
i=1

bi yi subject to

m∑
i=1

Ai,jyi + Sj = Cj , j = 1, . . . , p, Sj ∈ Kj .

In this formulation, bi and yi are real scalars.

For semidefinite programming, the data Ai,j and Cj are symmetric matrices of dimension nj (Snj ), and
the cone Kj is the set of symmetric positive semidefinite matrices of the same dimension. The inner product
〈C,X〉 := C•X :=

∑
k,l Ck,lXk,l, and the symbol � (�) means the matrix is positive (semi)definite. In linear

programming, Ai and C are vectors of real scalars, K is the nonnegative orthant, and the inner product
〈C,X〉 is the usual vector inner product.

More generally, users specify Cj , Ai,j from an inner-product space Vj that intersects a cone Kj . Using
the notation summarized in Table 1, let the symbol A denote the linear map A : V → Rm defined by
(AX)i = 〈Ai, X〉; its adjoint A∗ : Rm → V is defined by A∗y =

∑m
i=1 yiAi. Equivalent expressions for (P)

and (D) can be written

(P ) inf 〈C,X〉 subject to AX = b, X ∈ K,
(D) sup bT y subject to A∗y + S = C, S ∈ K.

Formulation (P) will be referred to as the primal problem, and formulation (D) will be referred to as the
dual problem. Variables that satisfy the linear equations are called feasible, whereas the others are called
infeasible. The interior of the cone will be denoted by K̂, and the interior feasible sets of (P) and (D) will
be denoted by F0(P ) and F0(D), respectively.

Assumes that the Ai are linearly independent, there exists X ∈ F0(P ), and a starting point (y, S) ∈
F0(D) is known.

Table 1: Basic terms and notation for linear (LP), semidefinite (SDP), and conic programming.
Term LP SDP Conic Notation

Dimension n n
∑
nj n

Data Space (3 C,Ai) Rn Sn V1 ⊕ . . .⊕ Vp V
Cone x, s ≥ 0 X,S � 0 X,S ∈ K1 ⊕ . . .⊕Kp X,S ∈ K
Interior of Cone x, s > 0 X,S � 0 X,S ∈ K̂1 ⊕ . . .⊕ K̂p X,S ∈ K̂
Inner Product cTx C •X

∑
〈Cj , Xj〉 〈C,X〉

Norm ‖x‖2 ‖X‖F
(∑
‖Xj‖2

)1/2 ‖X‖
Product [x1s1 . . . xnsn]T XS X1S1 ⊕ . . .⊕XpSp XS
Identity Element [1 . . . 1]T I I1 ⊕ . . .⊕ Ip I
Inverse [1/s1 . . . 1/sn]T S−1 S−11 ⊕ . . .⊕ S−1p S−1

Dual Barrier
∑

ln sj ln detS
∑

ln detSj ln detS
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2 Dual-Scaling Algorithm

It is well known that under these assumptions, both (P) and (D) have optimal solutions X∗ and (y∗, S∗),
which are characterized by the equivalent conditions that the duality gap 〈X∗, S∗〉 is zero and the product
X∗S∗ is zero. Moreover, for every ν > 0, there exists a unique primal-dual feasible solution (Xν , yν , Sν) that
satisfies the perturbed optimality equation XνSν = νI. The set of all solutions C ≡ {(Xν , yν , Sν) : ν > 0} is
known as the central path, and C serves as the basis for path-following algorithms that solve (P) and (D).
These algorithms construct a sequence {(X, y, S)} ⊂ F0(P )×F0(D) in a neighborhood of the central path
such that the duality gap 〈X,S〉 goes to zero. A scaled measure of the duality gap that proves useful in the
presentation and analysis of path-following algorithms is µ(X,S) = 〈X,S〉/n for all (X,S) ∈ K ×K. Note
that for all (X,S) ∈ K̂ × K̂, we have µ(X,S) > 0 unless XS = 0. Moreover, µ(Xν , Sν) = ν for all points
(Xν , yν , Sν) on the central path.

The dual-scaling algorithm applies Newton’s method to AX = b, A∗y + S = C, and X = νS−1 to
generate

A(X + ∆X) = b, (1)

A∗(∆y) + ∆S = 0, (2)

νS−1∆SS−1 + ∆X = νS−1 −X. (3)

Equations (1)-(3) will be referred to as the Newton equations; their Schur complement is

ν

 〈A1, S
−1A1S

−1〉 · · · 〈A1, S
−1AmS

−1〉
...

. . .
...

〈Am, S−1A1S
−1〉 · · · 〈Am, S−1AmS−1〉

∆y = b− νAS−1. (4)

The matrix on the left-hand side of this linear system is positive definite when S ∈ K̂. In this manuscript,
it will sometimes be referred to as M . DSDP computes ∆′y := M−1b and ∆′′y := M−1AS−1. For any ν,

∆νy :=
1

ν
∆′y −∆′′y

solves (4). We use the subscript to emphasize that ν can be chosen after computing ∆′y and ∆′′y and that
the value chosen for the primal step may be different from the value chosen for the dual step.

Using (2),(3), and ∆νy, we get

X(ν) := ν
(
S−1 + S−1(A∗∆νy)S−1

)
, (5)

which satisfies AX(ν) = b. Because X(ν) ∈ K̂ if and only if

C −A∗(y −∆νy) ∈ K̂, (6)

DSDP applies a Cholesky factorization on (6) to test the condition. If X(ν) ∈ K̂, a new upper bound

z̄ := 〈C,X(ν)〉 = bT y + 〈X(ν), S〉 = bT y + ν
(
∆νy

TAS−1 + n
)

(7)

can be obtained without explicitly computing X(ν). The dual-scaling algorithm does not require X(ν) to
compute the step direction defined by (4), so DSDP does not compute it unless specifically requested. This
feature characterizes the algorithm and its performance.

A complete illustration of the dual scaling algorithm for semidefinite programming is available in the
papers [1, 5].
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3 Feasible Points, Infeasible Points, and Standard Form

The convergence of the algorithm assumes that both (P) and (D) have an interior feasible region and the
current solutions are elements of the interior. To satisfy these assumptions, DSDP bounds the variables
yi(i = 1, . . . ,m) such that li ≤ yi ≤ ui where li, ui ∈ R. By default, li = −107 and ui = 107 for each i from
1 through m. Furthermore, DSDP bounds the trace of X by a penalty parameter Γ whose default value is
Γ = 108. Including these bounds and their associated Lagrange variables xl ∈ Rm, xu ∈ Rm, and r, DSDP
solves following pair of problems:

(PP ) minimize 〈C,X〉 + uTxu − lTxl

subject to AX + xu − xl = b,
〈I,X〉 ≤ Γ,
X ∈ K, xu ≥ 0, xl ≥ 0.

(DD) maximize bT y − Γr
subject to C −A∗y + Ir = S ∈ K,

l ≤ y ≤ u, r ≥ 0.

The reformulations (PP) and (DD) are bounded and feasible, so the optimal objective values to this pair of
problems are equal. Furthermore, (PP) and (DD) can be expressed in the form of (P) and (D).

Unless the user provides a feasible point y, DSDP uses the y values provided by the application (usually
all zeros) and increases r until C −A∗y + Ir ∈ K̂. Large values of r improve robustness, but smaller values
often improve performance. In addition to bounding X, the parameter Γ penalizes infeasibility in (D) and
forces r toward zero. The nonnegative variable r increases the dimension m by one and adds an inequality
to the original problem. The M matrix treats r separately by storing the corresponding row/column as
a separate vector and applying the Sherman-Morrison-Woodbury formula [6]. When r is less than a very
small, positive parameter εr, DSDP will classify y as feasible. Unlike other inequalities, DSDP allows r to
reach the boundary of the cone. Once r = 0, it is fixed and effectively removed from the problem.

The bounds on y add 2m inequality constraints to the original problem; and, with a single exception,
DSDP treats them the same as the constraints on the original model. One difference between these bounds
and the other constraints is that DSDP explicitly computes the corresponding Lagrangian variables xl and
xu at each iteration to quantify the infeasibility in (P). The bounds l and u penalize infeasibility in (P),
force xl and xu toward zero, and prevent numerical difficulties created by variables with large magnitude.

The solution to (PP) and (DD) is a solution to (P) and (D) when the optimal objective values of (P) and
(D) exist and are equal, and the bounds are sufficiently large. DSDP identifies unboundedness or infeasibility
in (P) and (D) through examination of the solutions to (PP) and (DD). Given parameters εP and εD,

• if r ≤ εr, ‖AX − b‖∞/〈I,X〉 > εP , and bT y > 0, it characterizes (D) as unbounded and (P) as
infeasible;

• if r > εr and ‖AX − b‖∞/〈I,X〉 ≤ εP , it characterizes (D) as infeasible and (P) as unbounded.

Normalizing unbounded solutions will provide an approximate certificate of infeasibility. Larger bounds may
improve the quality of the certificate of infeasibility and permit additional feasible solutions, but they may
also create numerical difficulties in the solver.
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4 Data Structures and Parameters

4.1 Data Structures

The DSDP solver computes ∆′y, ∆′′y, ∆νy, ‖P (ν)‖, 〈X(ν), S〉, and other quantities using operations on
vectors, the Schur matrix, and the cones. Vector operations include sums and inner products. Operations
on the Schur matrix include inserting elements and factoring the matrix. Objects representing a cone imple-
ment routines for computing its dual matrix S from y, evaluating the logarithmic barrier function, computing
AS−1, and computing M . The solver object computes M , for example, by calling the corresponding oper-
ations on each cone and summing the results. The solver computes ∆′y through calls to the Schur matrix
object that can factor the matrix and solve systems of linear equations. Table 2 shows eight of the primary
data structures used in DSDP, the operations they implement, and the other objects required to implement
those operations. For dense matrix structures, DSDP uses BLAS and LAPACK to operate on the data.

Table 2: Summary of primary data structures and their functionality.

Solver: Implements an algorithm for linear and semidefinite programming.
Operations: ∆′y, ∆′′y, ∆νy, ∆cy, ‖P (ν)‖, 〈X(ν), S〉, reduce ν.
Implementations: Dual-Scaling Algorithm.
Instances: one.
Requires: Vector, Cone, Schur.
Vector: Represents y, AS−1, b, ∆′y, ∆′′y, ∆νy, and other internal work vectors.
Operations: sum, inner product, norm.
Implementations: dense one-dimensional array.
Instances: about two dozen.
Schur: Represents M , the Schur complement of Newton equations.
Operations: add to row, add to diagonal, factor, solve, vector-multiply.
Implementations: sparse, dense, parallel dense.
Instances: one.
Cone: Represents data C and Ai.
Operations: check if S ← C −A∗y ∈ K, ln detS, AS−1, M , X(ν).
Implementations: SDP Cone, LP Cone, Bounds on y, Variable r ≥ 0.
Instances: three or more.
Requires: Vector, Schur.
SDP Cone requires: V Matrix, Data Matrices, S Matrix, DS Matrix.
SDP V Matrix: Represents X, S−1AiS

−1, and a buffer for C −A∗y.
Operations: V ← 0, V ← V + γwwT , get array.
Implementations: dense.
Instances: one per block.
SDP Data Matrix: Represents a symmetric data matrix.
Operations: V ← V + γA, 〈V,A〉, wTAw, get rank, get eigenvalue/vector.
Implementations: sparse, dense, identity, low-rank.
Instances: up to m+ 1 per block.
SDP S Matrix: Represents S and checks whether X(ν) � 0.
Operations: S ← V , Cholesky factor, forward solve, backward solve, determinant.
Implementations: sparse, dense.
Instances: two per block.
SDP DS Matrix: Represents ∆S.
Operations: ∆S ← V , w ← ∆Sv.
Implementations: dense, sparse, diagonal.
Instances: one per block.
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4.2 Parameters

Table 3 summarizes the significant parameters, options, and default values. The most important of these
options is the initial variable r. By default, DSDP selects a value much larger than required to make S ∈ K̂.
Computational experience indicates that large values are more robust than smaller values. DSDP then sets
the initial values of z̄ = 1010 and ν = (z̄ − bT y + Γr)/(nρn). Users can manually set z̄ and ν, but choices
better than the defaults usually require insight into the solution. The number of corrector steps can also
significantly improve performance. In some examples, corrector steps can reduce the number of iterations
by half—although the impact in total computation time is not as significant. Computational experience
suggests that the number of corrector steps should be between 0 and 12, and the time spent in these steps
should not exceed 30% [5].

Table 3: Summary of important parameters and initial values.

r: Dual infeasibility.
Default: heuristic (large) Suggested Values: 102 − 1012

Comments: Larger values ensure robustness, but smaller values can significantly improve perfor-
mance.
y: Initial solution.
Default: 0 Suggested Values: Depends on data
Comments: Initial points that improve performance can be difficult to find.
ρn: Bound ρ above by n× ρn and influence the barrier parameter.
Default: 3.0 Suggested Values: 2.0− 5.0
Comments: Smaller values ensure robustness, but larger values can significantly improve perfor-
mance.
kkmax : Maximum number of corrector steps.
Default: 4 Suggested Values: 0− 15
Comments: For relatively small block sizes, increase this parameter.
Γ: The penalty parameter r and the bound on the trace of X.
Default: 1e8. Suggested Values: 103 − 1015

Comments: Larger values suitable unless (D) is feasible but has no interior.
l,u: Bounds on the variables y.
Default: −107, 107 Suggested Values: Depends on the data.
Comments: Tighter bounds do not necessarily improve performance.
z̄: Upper bound on (D).
Default: 1010 Suggested Values: Depends on the data.
Comments: A high bound is usually sufficient.
ν: Dual barrier parameter.
Default: Heuristic Suggested Values: Depends on the current solution.
Comments: The default method sets ν = (z̄ − bT y)/ρ.
kmax : Maximum number of dual-scaling iterations.
Default: 200 Suggested Value: 50− 500
Comments: Iteration counts of 20-60 are common.
η: Terminate when (z̄ − bT y)/(|bT y|+ 1) is less than η.
Default: 10−6 Suggested Values: 10−2 − 10−7

Comments: Many problems do not require high accuracy.
ρ : Either a dynamic of a fixed value can be used.
Default: Dynamic. Suggested Values: Dynamic
Comments: The fixed strategy sets ρ = n×ρn and ν = (z̄−bT y)/ρ, but its performance is usually
inferior to the dynamic strategy.
εr, εP : Classify solutions as feasible.
Default: 10−8, 10−4 Suggested Values: 10−2 − 10−10

Comments: Adjust if the scaling of the problem is poor.
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5 DSDP Subroutine Library

DSDP can also be used within a C application through a set of subroutines. There are several examples of
applications that use the DSDP application program interface. Within the DSDPROOT/examples/ directory,
the file dsdp.c is a mexfunction that reads data from the MATLABenvironment, passes the data to the
solver, and returns the solution. The file readsdpa.c reads data from a file for data in SDPAformat, passes
the data to the solver, and prints the solution. The files maxcut.c and theta.c read a graph, formulate a
semidefinite relaxation to a combinatorial problem, and pass the data to a solver. The subroutines used in
these examples are described in this chapter. Further documentation on the routines and examples can be
found in the HTML manual pages in DSDPROOT/docs/dox/html/.

Each of these applications includes the header file DSDPROOT/include/dsdp5.h and links to the library
DSDPROOT/lib/libdsdp.a. All DSDP subroutines also return an int that represents an error code. A
return value of zero indicates success, whereas a nonzero return value indicates that an error has occurred.
The documentation of DSDP subroutines in this chapter will not show the return integer, but we highly
recommend that applications check for errors after each subroutine.

5.1 Creating the Solver

To use DSDP through subroutines, first create a solver object with

DSDPCreate(int64 m, DSDP *newsolver);

The first argument in this subroutine is the number of variables in the problem. The second argument should
be the address of a DSDP variable. The DSDP class is actually a pointer to a structure that contains the state
of the solver. This subroutine will construct a new structure and point the DSDP variable to a new solver. A
difference in typeset distinguishes the DSDP software from the DSDP class. Objects of this class apply the
dual-scaling algorithm to the data.

Specify the objective function associated with these variables using the subroutine

DSDPSetDObjective(DSDP dsdp, int64 i, double bi);

The first argument is the solver, and the second and third arguments specify a variable number and the
objective value bi associated with it. The variables are numbered 1 through m, where m is the number of
variables specified in DSDPCreate. The objective associated with each variable must be specified individually.
The default value is zero.

The next step is to provide the conic structure and data in the problem. These subroutines will be
described in the next sections.

5.2 Semidefinite Cone

To specify an application with a cone of semidefinite constraints, the subroutine

DSDPCreateSDPCone(DSDP dsdp,int64 nblocks,SDPCone *newsdpcone);

can be used to create a new object that describes a semidefinite cone with 1 or more blocks. The first
argument is an existing semidefinite solver, the second argument is the number of blocks in this cone, and
the final argument is an address of a SDPCone variable. This subroutine will allocate structures needed to
specify the constraints and point the variable to this structure. Multiple cones can be created for the same
solver, but it is usually more efficient to group all blocks into the same conic structure.

All subroutines that pass data to the semidefinite cone require an SDPCone object in the first argument.
The second argument often refers to a specific block. The blocks will be labeled from 0 to nblocks-1. The
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subroutine SDPConeSetBlockSize(SDPCone sdpcone, int64 blockj, int64 n) can be used to specify
the dimension of each block and the subroutine SDPConeSetSparsity( SDPCone sdpcone, int64 blockj,

int64 nnzmat) can be used to specify the number of nonzero matrices Ai,j in each block. These subroutines
are optional, but using them can improve error checking on the data matrices and perform a more efficient
allocation of memory.

The data matrices can be specified by any of the following commands. The choice of data structures be-
longs to the user, and the performance of the problem depends upon this choice. In each of these subroutines,
the first four arguments are an SDPCone object, the block number, and the number of variable associated
with it, and the number of rows and columns in the matrix. The blocks must be numbered consecutively,
beginning with the number 0. The y variables are numbered consecutively from 1 to m. The objective
matrices in (P) are specified as constraint number 0. The data passed to the SDPCone object will be used in
the solver but not modified. The user is responsible for freeing the arrays of data it passes to SDPCone after
solving the problem.

The square symmetric data matrices Ai,j and Cj can be represented with a single array of numbers.
DSDP supports the symmetric packed storage format. In symmetric packaged storage format, the ele-
ments of a matrix with n rows and columns are ordered as follows:

[ a1,1 a2,1 a2,2 a3,1 a3,2 a3,3 . . . an,n ]. (8)

In this array ak,l is the element in row k and column l of the matrix. The length of this array is n(n+ 1)/2,
which is the number of distinct elements on or below the diagonal. Several routines described below have
an array of this length in its list of arguments. In this storage format, the element in row i and column j,
where i ≥ j, is in element i(i− 1)/2 + j − 1 of the array.

This array can be passed to the solver using the subroutine

SDPConeSetADenseVecMat(SDPCone sdpcone,int64 blockj, int64 vari,

int64 n, double alpha, double val[], int64 nnz);

The first argument point to a semidefinite cone object, the second argument specifies the block number j,
and the third argument specifies the variable i associated with it. Variables 1, . . . ,m correspond to matrices
A1,j , . . . , Am,j whereas variable 0 corresponds to Cj . The fourth argument is the dimension (number of rows
or columns) of the matrix, n. The sixth argument is the array, and seventh argument is the length of the
array. The data array will be multiplied by the scalar in the fifth argument. The application is responsible
for allocating this array of data and eventually freeing it. SDPCone will directly access this array in the
course of the solving the problem, so it should not be freed until the solver is finished.

A matrix can be passed to the solver in sparse format using the subroutine

SDPConeSetASparseVecMat(SDPCone sdpcone,int64 blockj, int64 vari, int64 n,

double alpha, int64 ishift

const int64 ind[], const double val[], int64 nnz);

In this subroutine, the first five arguments are the same as in the subroutine for dense matrices. The seventh
and eighth arguments are an array an integers and an array of double precision variables. The final argument
states the length of these two arrays, which should equal the number of non-zeros in the lower triangular
part of the matrix. The array of integers specifies which elements of the array (8) are included in the array
of doubles. For example, the matrix

Ai,j =

 3 2 0
2 0 6
0 6 0

 (9)

could be inserted into the cone using one of several ways. If the first element in the val array is a1,1, the
first element in the ind array should be 0. If the second element in the val array is a3,2, then the second
element in ind array should be 4. When the ordering of elements begins with 0, as just shown, the fifth
argument ishift in the subroutine should be set to 0. In general, the argument ishift specifies the index
assigned to a1,1. Although the relative ordering of the elements will not change, the indices assigned to them
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will range from ishift to ishift + n(n + 1)/2 − 1. Many applications, for instance, prefer to index the
array from 1 to n(n+ 1)/2, setting the index argument to 1. The matrix (9) can be set in the block j and
variable i of the semidefinite cone using one of the routines

SDPConeSetASparseVecMat(sdpcone,j,i,3,1.0,0,ind1,val1,3);

SDPConeSetASparseVecMat(sdpcone,j,i,3,1.0,1,ind2,val2,3);

SDPConeSetASparseVecMat(sdpcone,j,i,3,1.0,3,ind3,val3,4);

SDPConeSetASparseVecMat(sdpcone,j,i,3,0.5,0,ind4,val4,3);

where
ind1 = [ 0 1 4 ] val1 = [ 3 2 6 ]
ind2 = [ 1 2 5 ] val2 = [ 3 2 6 ]
ind3 = [ 7 3 5 4 ] val3 = [ 6 3 0 2 ].
ind4 = [ 0 1 4 ] val4 = [ 6 4 12 ]

As these examples suggest, there are many other ways to represent the sparse matrix. The non-zeros
in the matrix do not have to be ordered, but ordering them may improve the efficiency of the solver.
SDPCone assumes that all matrices Ai,j and Cj that are not explicitly defined and passed to the SDPCone

structure will equal the zero matrix. Furthermore, there exist routines SDPConeAddASparseVecMat and
SDPConeAddADenseVecMat that can be used to write a constraint matrix as a sum of multiple matrices. The
arguments to these function match those of the corresponding SDPConeSetASparseVecMat routines.

To check whether the matrix passed into the cone matches the one intended, the subroutine

SDPConeViewDataMatrix(SDPCone sdpcone,int64 blockj, int64 vari)

can be used to print out the the matrix to the screen. The output prints the row and column numbers,
indexed from 0 to n − 1, of each nonzero element in the matrix. The subroutine SDPConeView(SDPCone

sdpcone,int64 blockj) can be used to view all of the matrices in a block.

After the DSDP solver has been applied to the data and the solution matrix Xj have been computed (See
DSDPComputeX), the matrix can be accessed using the command

SDPConeGetXArray(SDPCone sdpcone, int64 blockj, double *xmat[], int64 *nn);

The third argument is the address of a pointer that will be set to the array containing the solution. The
integer whose address is passed in the fourth argument will be set to the length of this array, n(n+ 1)/2, for
the packed symmetric storage format. Since the X solutions are usually fully dense, no sparse representation
is provided. These arrays were allocated by the SDPCone object during DSDPSetup and the memory will be
freed by the DSDP solver object when it is destroyed. The array used to store Xj could be overwritten by
other operations on the SDPCone object. The command,

SDPConeComputeX(SDPCone sdpcone, int64 blockj, int64 n, double xmat[], int64 nn);

recomputes the matrix Xj and places it into the array specified in the fourth argument. The length of this
array is the fifth argument and the dimension of the block in the third argument. The vectors y and ∆y
needed to compute the matrices Xj are stored internally in SDPCone object. The subroutine

SDPConeViewX(SDPCone sdpcone, int64 blockj, int64 n, double xmat[], int64 nn);

can be used to print this matrix to standard output.

The dimension of each block can be found using the routine

SDPConeGetBlockSize(SDPCone sdpcone, int64 blockj, int64 *n);

where the second arguments is the block number and the third arguments are the address of a variable.

The inner product of Xj with Cj , Ai,j , and Ij can be computed using the routine

int64 SDPConeAddADotX(SDPCone sdpcone,int64 blockj, double alpha, double xmat[], int64 nn,

double adotx[], int64 mp2);
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The second argument specifies which block to use, and the third argument is a scalar that will be multiplied
by the inner products. The fourth argument is the array containing Xj , and the fifth argument is th length
of the array. The sixth argument is an array of length m+ 2 and the seventh argument should equal m+ 2
where m is the number of variables in y. This routine will add alpha times 〈Cj , Xj〉 to the initial element of
the array, alpha times 〈Ai,j , Xj〉 to element i of the array, and alpha times 〈Ij , Xj〉 to last element of the
array.

The matrix S in (D) can be computed and copied into an array using the command

SDPConeComputeS(SDPCone sdpcone, int64 blockj, double c, double y[], int64 m, double r,

int64 n, double smat[], int64 nn);

The second argument specifies which block to use, the fourth argument is an array containing the variables
y. The second argument is the multiple of C to be added, and the sixth argument is the multiple of the
identity matrix to be added. The sixth argument is the dimension of the block, and the seventh argument
is an array whose length is given in the eighth argument.

Special support for combinatorial applications also exists. In particular, the subroutines

SDPConeComputeXV(SDPCone sdpcone, int64 blockj, int64 *dpsdefinite);

SDPConeXVMultiply(SDPCone sdpcone, int64 blockj, double v1[], double v2[], int64 n);

SDPConeAddXVAV(SDPCone sdpcone, int64 blockj, double v[], int64 n, double vav[], int64 mp2);

support the used of randomized algorithms for combinatorial optimization. The first routine computes a
matrix Vj such that X = VjV

T
j . The second routine computes the matrix-vector product w = Vjv where

w and v are vectors of dimension equal to the dimension of the block. The third routine computes the
vector-matrix-vector product vTAi,jv for C, A1,j , . . . , Am,j , and the identity matrix. The length of the array
in the fifth argument is m + 2 and should be set in the final argument. In these applications, use of the
routine DSDPConeComputeX may not be necessary if the full matrix is not required.

The memory required for the Xj matrix can be significant for large problems. If the application has an
array of double precision variables of length n(n+ 1)/2 available for use by the solver, the subroutine

SDPConeSetXArray(SDPCone sdpcone,int64 blockj, int64 n, double xmat[], int64 nn);

can be used to pass it to the cone. The second argument specifies the block number whose solution will be
placed into the array xmat. The third argument is the dimension of the block. The dimension specified in
the fifth argument nn refers to the length of the array. The SDPCone object will use this array as a buffer
for its computations and store the solution X in this array at its termination. The application is responsible
for freeing this array after the solution has been found.

DSDP also supports the symmetric full storage format. In symmetric full storage format, an n × n
matrix is stored in an array of n2 elements in row major order. That is, the elements of a matrix with n
rows and columns are ordered

[ a1,1 0 . . . 0 a2,1 a2,2 0 . . . 0 . . . an,1 . . . , an,n ]. (10)

The length of this array is n × n. Early versions of DSDP5 used the packed format exclusively, but this
format has been added because its more convenient for some applications. The routines

SDPConeSetStorageFormat(SDPCone sdpcone,int64 blockj, char UPLQ);

SDPConeGetStorageFormat(SDPCone sdpcone, int64 blockj, char *UPLQ);

set and get the storage format for a block. The second argument specifies the block number and the third
argument should be ’P’ for packed storage format and ’U’ for full storage format. The default value is
’P’. These storage formats correspond the LAPACK storage formats for the upper half matrices in column
major ordering. All of the above commands apply to the symmetric full storage format. One difference in
their use, however, is that the size of the arrays in the arguments should be n× n instead of n× (n+ 1)/2.
Using the symmetric full storage format, if the first element in the val array is a1,1, the first element in the
ind array should be 0. If the second element in the val array is a3,2, then the second element in ind array
should be 8. The matrix (9) can be set in the block j and variable i of the semidefinite cone using one of
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the routine

SDPConeSetASparseVecMat(sdpcone,j,i,3,1.0,0,ind1,val1,3);

where
ind1 = [ 0 3 7 ] val1 = [ 3 2 6 ] .

5.3 LP Cone

To specify an application with a cone of linear scalar inequalities, the subroutine

DSDPCreateLPCone( DSDP dsdp, LPCone *newlpcone);

can be used to create a new object that describes a cone with 1 or more linear scalar inequalities. The first
argument is an existing DSDP object and the second argument is the address of an LPCone variable. This
subroutine will allocate structures needed to specify the constraints and point the variable to this structure.
Multiple cones for these inequalities can be created for the same DSDP object, but it is usually more efficient
to group all inequalities of this type into the same structure. All subroutines that pass data to the LP cone
require an LPCone object in the first argument.

A list of n linear inequalities in (D) are passed to the object in sparse column format. The vector
c ∈ Rn should be considered an additional column of the data. (In the formulation (P), the data A and c is
represented in sparse row format.)

Pass the data to the LPCone using the subroutine:

LPConeSetData(LPCone lpcone, int64 n,

const int64 nnzin[], const int64 row[], const double aval[]);

In this case, the integer array nnzin has length m+ 2, begins with 0, and nnzin[i+1]-nnzin[i] equals the
number of non-zeros in column i (i = 0, . . .m) (or row i of A). The length of the second and third array
equals the number of nonzero in A and c. The arrays contain the nonzero and the associated row numbers
of each element (or column numbers in A). The first column contains the elements of c, the second column
contains the elements corresponding to y1, and the last column contains elements corresponding to ym.

For example, consider the following problem in the form of (D):

Maximize y1 + y2
Subject to 4y1 + 2y2 ≤ 6

3y1 + 7y2 ≤ 10
−y2 ≤ 12

In this example, there three inequalities, so the dimension of the x vector would be 3 and n = 3. The input
arrays would be as follows:

nnzin =
[

0 3 5 7
]

row =
[

0 1 2 0 1 0 1 2
]

aval =
[

6.0 10.0 12.0 4.0 3.0 2.0 7.0 −1.0
]

An example of the use of this subroutine can be seen in the DSDPROOT/examples/readsdpa.c.

If its more convenient to specify the vector c in the last column, consider using the subroutine:

LPConeSetData2(LPCone lpcone,int64 n, const int64 ik[],const int64 cols[],const double vals[]);

This input is also sparse column input, but the c column comes last In this form the input arrays would be
as follows:

nnzin =
[

0 2 5 7
]

row =
[

0 1 0 1 2 0 1 2
]

aval =
[

4.0 3.0 2.0 7.0 −1.0 6.0 10.0 12.0
]
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This subroutine is used in the DSDP MATLAB mex function, which can be used as an example.

The subroutines

LPConeView(LPCone lpcone);

LPConeView2(LPCone lpcone);

can be used to view the data that has been set and verify the correctness of the data. Multiple LPCone

structures can be used, but for efficiency purposes, it is often better to include all linear inequalities in a
single cone.

The variables s in (D) and x in (P) can be found using the subroutines

LPConeGetXArray(LPCone lpcone,double *xout[], int64 *n);

LPConeGetSArray(LPCone lpcone,double *sout[], int64 *n);

In these subroutines, the second argument sets a pointer to an an array of doubles containing the variables
and the integer in the third argument will be set to the length of this array. These array were allocated
by the LPCone object and the memory will be freed when the DSDP object is destroyed. Alternatively, the
application can give the LPCone an array in which to put the solution x of (P). This array should be passed
to the cone using the following subroutine

LPConeSetXVec(LPCone lpcone,double xout[], int64 n);

At completion of the DSDP solver, the solution x will be copied into this array xout, which must have length
n. The slack variables s may be scaled. To get the unscaled vector, pass an array of appropriate length into
the object using LPConeGetSArray2(LPCone lpcone, double s[], int64 n). This subroutine will copy
the slack variables into the array.

A special type of semidefinite and LP cone contains only simple bounds on the variables y. Corresponding
to lower and upper bounds on the y variables are surplus and slack variables in (P) with a cost. The subroutine

DSDPCreateBCone(DSDP dsdp, BCone *bcone);

will create this cone from an existing DSDP object and point the BCone variable to the new structure. The
bounds on the variables can be set using the subroutines:

BConeSetLowerBound(BCone bcone, int64 vari, double yi);

BConeSetUpperBound(BCone bcone, int64 vari, double yi);

The first argument is the conic object, the second argument identifies a variable from 1 to m, and the third
argument is the bound. Here m is the total number of variables in the vector y. For applications using the
formulation (P), the subroutines

BConeSetPSurplusVariable(BCone bcone, int64 vari);

BConeSetPSlackVariable(BCone bcone, int64 vari);

may be more convenient way to represent an inequality in (P). These commands are equivalent to setting a
lower or upper bound on a variable yi to zero. To improve the memory allocation process the application may
want to use the subroutines BConeAllocateBounds( BCone bcone, int64 nbounds); to tell the object how
many bounds will be specified. This subroutine is optional, but is may improve the efficiency of the memory
allocation. The subroutine BConeSetXArray( BCone, double xout[], int64 n) will set an array in the
cone where the cone will copy the variables x. To view the bounds, the application may use the subroutine
BConeView( BCone bcone); To retrieve the dual variables x corresponding to these constraints, use the
subroutine BConeCopyX( BCone bcone, double xl[], double xu[], int64 m); The second and third
arguments of this routine are an array of length m, the fourth argument. This routine will set the values of
this array to the value of the corresponding variable. When no bound is present, the variable will equal zero.

In some applications it may be useful to fix a variable to a number. Instead of modeling this constraint64
as a pair of linear inequalities, fixed variables can be passed directly to the solver using the subroutine

DSDPSetFixedVariables(DSDP dsdp, double vars[], double vals[], double x[],int64 n);
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In this subroutine, the array of variables in the second argument is set to the values in the array of the third
argument. The fourth argument is an optional array in which the solver will put the sensitivities to these
fixed variables. The final argument is the length of the arrays. Note, the values in the second argument are
integer numbers from 1 to m represented in double precision. Again, the integers should be one of 1, . . . ,m.
Alternatively, a single variable can be set to a value using the subroutine DSDPFixVariable(DSDP dsdp,

int64 vari, double val).

5.4 Applying the Solver

After setting the data associated with the constraint64 cones, DSDP allocates internal data structures and
factor the data in the subroutine

DSDPSetup(DSDP dsdp);

This subroutine identifies factors the data, creates a Schur complement matrix with the appropriate sparsity,
and allocates additional resources for the solver. This subroutine should be called after setting the data but
before solving the problem. Furthermore, it should be called only once for each DSDP object. On very large
problems, insufficient memory on the computer may be encountered in this subroutine, so the error code
should be checked. The subroutine

DSDPSetStandardMonitor(DSDP dsdp, int64 k);

will tell the solver to print the objective values and other information at each k iteration to standard
output. The subroutine DSDPLogInfoAllow(int,0); will print even more information if the first argument
is positive.

The subroutine

DSDPSolve(DSDP dsdp);

attempts to solve the problem. This subroutine can be called more than once. For instance, the user may
try solving the problem using different initial points.

After solving the problem, the subroutine

DSDPComputeX(DSDP dsdp);

can be called to compute the variables X in (P). These computations are not performed within the solver
because these variables are not needed to compute the step direction.

Each solver created should be destroyed with the command

DSDPDestroy(DSDP dsdp);

This subroutine frees the work arrays and data structures allocated by the solver.

5.5 Convergence Criteria

Convergence of the DSDP solver may be defined using several options. The precision of the solution can be
set by using the subroutine

DSDPSetGapTolerance(DSDP dsdp, double rgaptol);

The solver will terminate if there is a sufficiently feasible solution such that the difference between the
objective values in (DD) and (PP), divided by the sum of their absolute values, is less than the prescribed
number. A tolerance of 0.001 provides roughly three digits of accuracy, whereas a tolerance of 1.0e-5

provides roughly five digits of accuracy. The subroutine

DSDPSetMaxIts(DSDP dsdp, int64 maxits);



5 DSDP SUBROUTINE LIBRARY 13

specifies the maximum number of iterations. The subroutine DSDPSetDualBound( DSDP, double) specifies
an upper bound on the objective value in (D). The algorithm will terminate when it finds a point when the
variable r in (DD) is less than the prescribed tolerance and the objective value in (DD) is greater than this
number.

5.6 Detecting Infeasibility

Infeasibility in either (P) or (D) can be determined using the subroutine

DSDPGetSolutionType(DSDP dsdp, DSDPSolutionType *pdfeasible);

This command sets the second argument to an enumerated type. There are four types for DSDPSolutionType:

• The type DSDP PDFEASIBLE means that both (D) and (P) have feasible solutions and their objective
values are bounded.

• The type DSDP UNBOUNDED means that (D) is unbounded and (P) is infeasible. This type applies when
the variable r ≤ εr and ‖AX − b‖∞/trace(X) > εP . In this case, at least one variable yi will be
near its bound. The subroutine DSDPSetYBounds can adjust these bounds if the user thinks that they
are not big enough to permit feasibility. Large bounds may create numerical difficulties in the solver,
but they may also permit feasible solutions and improve the quality of the certificate of infeasibility.
Normalizing the vector y will provide an approximate certificate of infeasibility for (P).

• The type DSDP INFEASIBLE means that (D) is infeasible and (P) is unbounded. This type applies when
the variable r > εr and ‖AX − b‖∞/trace(X) ≤ εP . In this case, the trace of the variables X in (P)
will be near the bound Γ. The subroutines DSDPSetPenaltyParameter can adjust Γ if the user thinks
that it is too small, A larger parameter may create numerical difficulties in the solver, but it may also
improve the quality of the certificate of infeasibility. Normalizing these variables so that to have a
trace of 1.0 will provide an approximate certificate of infeasibility.

• The type DSDP PDUNKNOWN means DSDP was unable to determine feasibility in either solution. This
type applies when the initial point for (DD) was infeasible or if the bounds on y appear to be too small
to permit a feasible solution.

The tolerance εr can be set using the subroutine DSDPSetRTolerance(DSDP, double). The tolerance εP can
be set using the subroutine DSDPSetPTolerance(DSDP, double). The subroutines DSDPGetRTolerance(

DSDP, double*) and DSDPGetPTolerance(DSDP,double*) can be used to get the current tolerances.

5.7 Solutions and Statistics

The objective values in (PP) and (DD) can be retrieved using the commands

DSDPGetPPObjective(DSDP dsdp, double *pobj);

DSDPGetDDObjective(DSDP dsdp, double *dobj);

The second argument in these routines is the address of a double precision variable.

The solution vector y can be viewed by using the command

DSDPGetY(DSDP dsdp, double y[], int64 m);

The user passes an array of size m where m is the number of variables in the problem. This subroutine will
copy the solution into this array.

The success of DSDP can be interpreted with the command
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DSDPStopReason(DSDP dsdp, DSDPTerminationReason *reason);

This command sets the second argument to an enumerated type. The various reasons for termination are
listed below.

DSDP CONVERGED The solutions to (PP) and (DD) satisfy the convergence criteria.

DSDP MAX IT The solver applied the maximum number of iterations without
finding solution.

DSDP INFEASIBLE START The initial point in (DD) was infeasible.

DSDP INDEFINITE SCHUR Numerical issues created an indefinite Schur matrix that pre-
vented the further progress.

DSDP SMALL STEPS Small step sizes prevented further progress.

DSDP NUMERICAL ERROR Numerical issues prevented further progress.

The subroutines

DSDPGetBarrierParameter(DSDP dsdp, double *mu);

DSDPGetR(DSDP dsdp, double *r);

DSDPGetStepLengths(DSDP dsdp, double *pstep, double *dstep);

DSDPGetPnorm(DSDP dsdp, double *pnorm);

provide more information about the current solution. The subroutines obtain the barrier parameter, the
variable r in (DD), the step lengths in (PP) and (DD), and a distance to the central path at the current
iteration.

A history of information about the convergence of the solver can be obtained with the commands

DSDPGetGapHistory(DSDP dsdp, double gaphistory[], int64 history);

DSDPGetRHistory(DSDP dsdp, double rhistory[], int64 history);

retrieve the history of the duality gap and the variable r in (DD) for up to 100 iterations. The user passes
an array of double precision variables and the length of this array. The subroutine

DSDPGetTraceX(DSDP dsdp, double *tracex);

gets the trace of the solution X in (P). Recall that the penalty parameter must exceed this quantity in order
to return a feasible solution from an infeasible starting point. The subroutine

DSDPEventLogSummary(void)

will print out a summary of time spent in each cone and many of the primary computational subroutines.

5.8 Improving Performance

The performance of the DSDP may be significantly improved with the proper selection of bounds, parameters
and initial point.

The application may specify an initial vector y to (D), a multiple of the identity matrix to make the
initial matrix S positive definite, and an initial barrier parameter. The subroutine DSDPSetY0(DSDP dsdp,

int64 vari, double yi0) can specify the initial value of the variable yi. Like the objective function in
(D), the variables are labeled from 1 to m. By default the initial values of y equal 0. Since convergence of
the algorithm depends on the proximity of the point to the central path, initial points can be difficult to
determine. Nonetheless, the subroutine

DSDPSetR0(DSDP dsdp, double r0)

will set the initial value of r in (DD). If r0 < 0, a default value will of r0 will be chosen. If S0 is not positive
definite, the solver will terminate will an appropriate termination flag. The default value is usually very
large (1e10), but smaller values can significantly improve performance.
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The subroutine DSDPSetPotentialParameter(DSDP dsdp, double rho) sets the potential parameter
ρ. This parameter must be greater than 1. The default value is 4.0, but larger values such as 5 or 10
can significantly improve performance. Feasibility in (D) is enforced by means of a penalty parameter. By
default it is set to 10e8, but other values can affect the convergence of the algorithm. This parameter can
be set using DSDPSetPenaltyParameter(DSDP dsdp, double Gamma), where Gamma is the large positive
penalty parameter Γ. This parameter must exceed the trace of the solution X in order to return a feasible
solution from an infeasible starting point. The subroutine DSDPUsePenalty(DSDP dsdp,int64 yesorno)

is used to modify the algorithm. By default, the value is 0. A positive value means that the variable r
in (DD) should be kept positive, treated like other inequalities, and penalized with the parameter Gamma.
The subroutine DSDPSetZBar(DSDP dsdp, double zbar) sets an initial upper bound on the objective value
at the solution. This value corresponds to the objective value of any feasible point of (PP). The subrou-
tine DSDPSetBarrierParameter(DSDP dsdp, double mu0) sets the initial barrier parameter. The default
heuristic is very robust, but performance can get generally be improved by providing a smaller value.

DSDP applies the same Schur complement matrix for multiple linear systems. This feature often reduces
the number of iterations and improves robustness. The cost of each iteration increases, especially when the
dimension of the semidefinite blocks is of similar dimension or larger than the number of variables y. The
subroutine

DSDPReuseMatrix(DSDP dsdp, int64 reuse);

can set a maximum on the number of times the Schur complement matrix is reused. The default value is 4,
although the MATLAB mex function and SDPA file reader set this parameter between 0 and 15 depending
upon the size of the semidefinite blocks and the number of variables y. Applications whose semidefinite
blocks are small relative the the number of variables y should probably use larger values while applications
whose semidefinite blocks have size equal to or greater than the number of variables should probably set this
parameter to zero.

The convergence of the dual-scaling algorithm assumes the existence of a strict interior in both (P) and
(D). The use of a penalty parameter can add an interior to (D). An interior to (P) can be created by bounding
the variables y. Default bounds of -1e7 and 1e7 have been set, but applications may change these bounds
using the subroutine

DSDPSetYBounds(DSDP dsdp, double minbound, double maxbound);

The second argument should be a negative number that is a lower bound of each variable yi and the third
argument is an upper bound of each variable. These bounds should not be tight. If one of the variables
nearly equals the bound at the solution, the solver will return a termination code saying (D) is unbounded.
To remove these bounds, set both the lower and upper bound to zero.

5.9 Iteration Monitor

A standard monitor that prints out the objective value and other relevant information at the current iterate
can be set using the command

DSDPSetStandardMonitor(DSDP dsdp, int64 k);

A user can write a customized subroutine of the form

int64 (*monitor)(DSDP dsdp,void* ctx);

This subroutine will be called from the DSDP solver each iteration. It is useful for writing a specialized
convergence criteria or monitoring the progress of the solver. The objective value and other information can
be retrieved from the solver using the commands in the section 5.7. To set this subroutine, use the command

DSDPSetMonitor(DSDP dsdp, int64 (*monitor)(DSDP,void*), void* ctx);

In this subroutine, the first argument is the solver, the second argument is the monitoring subroutine, and
the third argument will be passed as the second argument in the monitoring subroutine. Examples of
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two monitors can be found in DSDPROOT/src/solver/dsdpconverge.c. The first monitor prints the solver
statistics at each iteration and the second monitor determines the convergence of the solver. A monitor can
also be used to print the time, duality gap, potential function at each iteration. Monitors have also been
used to stop the solver after a specified time limit and change the parameters in the solver.
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6 Installing and Configuring DSDP

The compressed tar file DSDP5.8 64.tar.gz contains an implementation of the dual-scaling algorithm for
conic programming optimization problems.

6.1 Installing DSDP

Download all the files into a directory of your choice, e.g. create the DSDP5.8 64 directory structure and
enter it. For example,

gunzip DSDP5.8_64.tar.gz

tar -xvf DSDP5.8_64.tar

cd DSDP5.8_64

DSDPis written in the C programming language. It has been tested using several different compilers,
and 32-bit and 64-bit architectures.

6.2 Compiling DSDP

DSDPwas developed using Make – which is available on MacOS, Linux and most Unix systems.

To compile DSDP :

1. Enter the directory DSDP5.8 64 and edit the file make.include to define the DSDPROOT variable as
the full directory name.

2. Verify whether your system has already defined int64. If int64 is not defined, then do the following:

• Enable the definition of int64 in DSDPROOT/include/dsdpbasictypes.h

typedef int64_t int64;

• You need to check the setting of your compiler associated files, e.g. malloc.h in sys/dsdploginfo.c.

3. In the same file, edit the compiler flags CC, OPTFLAGS, and CFLAGS.

CC = <location of your C compiler>

OPTFLAGS = [compiler optimization options]

DSDPTIMER = [timing support]

DSDPCFLAGS = [additional C compiler flags]

CFLAGS = [flags for C linker library]

CLINKER = [link DSDP library to application]

4. In the same file, edit the location of the BLAS and LAPACK libraries and include any other libraries
required to link to them such as -lg2c or -lm.

If you want to execute DSDP5.8 from command line on 64-bit machine, then you need to BLAS and
LAPACK with 64-bit integer interface. Refer to http://www.netlib.org/lapack/WishList/.

5. If the MATLAB interface is required, also check and edit the MEX flag. If the DSDP MATLAB mex
function does not link with the library, then check the setting of MATLABmex compiler.

6. Compile the source code to create the DSDP library and drivers.

http://www.netlib.org/lapack/WishList/
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make install

7. If problems persist, please send a copy of the compilation log to the developers.

6.3 Compiler Flags

1. BLAS and LAPACK : DSDP uses BLAS and LAPACK for many of the underlying operations and
must be linked to these libraries. The location of these libraries should be specified in make.include.

LAPACKBLAS = -l<location of LAPACK library>

-l<location of BLAS library>

Note that these routines in BLAS and LAPACK are called from the C programming language under
the assumption that the routine names are lower case and end with an underscore. The most common
linking problem occurs when these assumptions are not true.

Several compiler flags can be defined to change these assumptions. Define

• CAPSBLAS if the names of BLAS and LAPACK routine names use all capital letters.

• NOUNDERBLAS if no underscore is appended to the end of routine names. This flag was used to
link DSDP to the reference BLAS available in MATLAB if using the Microsoft Compiler.

• DSDP NONAMEMANGLING if a C++ compiler is being used and the BLAS and LAPACK routine
names should not be changed.

See the makefiles in the distribution for examples of using these terms. Note that those compiling in
the Microsoft Windows Operating System usually need to define the NOUNDERBLAS flag.

Please check whether your BLAS and LAPACK packages support 64-bit data models, hence the
integer type in Fortran is the same size as a long long int in C, and a double precision variable
in Fortran is the same size as a double in C. If problems persist, the macros and type definitions in
the file dsdplapack.c, located in the DSDPROOT/include/ directory will have to be edited.

2. Timing: DSDP can provide time profiles for several important operations. By default, the timing
routine is not implemented due to portability issues among architectures. However, the following flags
may defined for the compiler to activate timing routines:

• DSDP MS TIME activates the timing utility from the Microsoft compiler

• DSDP TIME activates the timing utility from the GCC and many other compilers.

The routines that call these two timing utilities can be found in the file dsdptime.c in DSDPROOT/src/sys/

and edited.

3. MATLAB : If the MATLAB interface is be generated,

several variables for MATLAB macros should be defined, e.g.

MATLAB_HOME = <location of MATLAB directory>

MATLAB_BIN = ${MATLAB_HOME}/bin

MEX_H = ${MATLAB_HOME}/extern/include/

MEX_LIB = ${MATLAB_HOME}/extern/lib/maci64/ \% for mac

Note that some options for the MEX compilation for 64-bit MATLAB.

mexOPTIMFLAGS = -O -largeArrayDims

mexLIBS = -lm -L\${MEX_LIB}

mexFLAG = ${mexOPTIMFLAGS} -I\${MEX_H}
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You may want to modify the following according to your configuration.

MEX = mex -v -largeArrayDims -lmwlapack -lmwblas -O

DSDPMATLABDIR = $DSDPROOT/matlab

Note that for Mac users, please check your Xcode setup. If you encounter the following error:

xcodebuild: error: SDK "macosx10.7" cannot be located.

, then please follow the ”official” solution of

http://www.mathworks.com/matlabcentral/answers/103904.

to correct your configuration.

4. Testing:

• Run the executables by switching to directory DSDPROOT/exec and typing

> dsdp5 truss1.dat-s

> maxcut graph1

> theta graph1

Compare the output with the files output.truss1, output.maxcut, and output.theta. If the
output from any of the tests differs significantly from the files, please report it to the developers.
Note that this step is valid only for the 32-bit platforms.

• DSDP can be called from MATLAB version 6.0 and higher. Run the sample problems by starting
MATLAB in the DSDPROOT/matlab directory and typing

> check;

Compare the output with the output in check.out. For help using the package, type

> help dsdp;

Several example MATLAB files have been provided in DSDPROOT/matlab that create example prob-
lems, read data files, and verify solutions.

http://www.mathworks.com/matlabcentral/answers/103904
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7 Applying DSDP to Graph Problems

We illustrate the application of DSDP to solve four types of problems in graph theory using semidefinite
cones with rank-one constraint matrices and LP constraints. Sample code is included in the directory
DSDPROOT/examples/.

A program maxcut.c reads a file containing a graph, generates the semidefinite relaxation of a maximum
cut problem, and solves the relaxation. For example,

> maxcut graph1

reads the graph in the file graph1 and solves this graph problem. The first line of the graph should contain
two integers. The first integer states the number of nodes in the graph, and the second integer states the
number of edges.

Subsequent lines have two or three entries separated by a space. The first two entries specify the two
nodes that an edge connects. The optional third entry specifies the weight of the edge. If no weight is
specified, a weight of 1 will be assigned.

The second example is for the Lovász θ problem using theta.c that reads graph complement from a file,
formulate the Lovász theta problem, and solve it using DSDP. For example,

> theta graph1

to compute the Lovász theta number for a graph. This number is an upper bound for the maximum clique of
a graph, a lower bound for the minimal graph coloring, and serves as a bound for several other combinatorial
graph problems. The number is the solution to a semidefinite program.

The third example is to solve maximum stable set problems using stable.c that reads graph from a file,
formulate the maximum stable (or independent) set problem, and solve it using DSDP.

The fourth example is to solve minimum graph coloring problems using color.c that read graph from a
file, formulate the semidefinite relaxation of k-coloring problem, solve it using DSDP, and apply randomized
algorithm to generate approximate solutions.
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8 DSDP with MATLAB

Additional help using the DSDP can be found by typing help dsdp in the directory DSDP5.X. The command

> [STAT, y, X] = dsdp(b, AC)

attempts to solve the semidefinite program by using a dual-scaling algorithm. The first argument is the
objective vector b in (D) and the second argument is a cell array that contains the structure and data for
the constraint cones. Most data has a block structure, which should be specified by the user in the second
argument. For a problem with p cones of constraints, AC is a p × 3 cell array. Each row of the cell array
describes a cone. The first element in each row of the cell array is a string that identifies the type of cone.
The second element of the cell array specifies the dimension of the cone, and the third element contains the
cone data.

8.1 Semidefinite Cones

If the jth cone is a semidefinite cone consisting of a single block with n rows and columns in the matrices,
then the first element in this row of the cell array is the string ’SDP’ and the second element is the number
n. The third element in this row of the cell array is a sparse matrix with n(n+1)/2 rows and m+1 columns.
Columns 1 to m of this matrix represent the constraints A1,j , . . . , Am,j for this block and column m + 1
represents Cj .

The square symmetric data matrices Ai,j and Cj map to the columns of AC{j,3} through the operator
dvec( · ) : Rn×n → Rn(n+1)/2, which is defined as

dvec(A) = [a1,1 a1,2 a2,2 a1,3 a2,3 a3,3 . . . an,n]T .

In this definition, ak,l is the element in row k and column l of A. This ordering is often referred to as
symmetric packed storage format. The inverse of dvec( ) is dmat(·) : Rn(n+1)/2 → Rn×n, which converts
the vector into a square symmetric matrix. Using these operations,

Ai,j = dmat( AC{j,3}(:,i) ), Cj = dmat( AC{j,3}(:,m+1) )

and
AC{j,3} = [ dvec(A1,j) . . . dvec(Am,j) dvec(Cj) ];

For example, the problem:

Maximize y1 + y2

Subject to

[
1 0
0 0

]
y1 +

[
0 0
0 1

]
y2 �

[
4 −1
−1 5

]
can be solved by:

> b = [ 1 1 ]’;

> AAC = [ [ 1.0 0 0 ]’ [ 0 0 1.0 ]’ [ 4.0 -1.0 5.0 ]’ ];

> AC{1,1} = ’SDP’;

> AC{1,2} = [2];

> AC{1,3} = sparse(AAC);

> [STAT,y,X]=dsdp(b,AC);

> XX=dmat(X{1});

The solution y is the column vector y’ = [ 3 4 ]’ and the solution X is a p × 1 cell array. In this case,
X = [ 3 x 1 double ], X{1}’=[ 1.0 1.0 1.0 ], and dmat(X{1})=[ 1 1 ; 1 1 ].

Each semidefinite block can be stated in a separate row of the cell array; only the available memory on
the machine limits the number of cones that can be specified.
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Each semidefinite block may, however, be grouped into a single row in the cell array. To group these
blocks together, the second cell entry must be an array of integers stating the dimension of each block. The
data from the blocks should be concatenated such that the number of rows in the data matrix increases
whereas the number of columns remains constant. The following lines indicate how to group the semidefinite
blocks in rows 1 and 2 of cell array AC1 into a new cell array AC2

> AC2{1,1} = ’SDP’;

> AC2{1,2} = [AC1{1,2} AC1{2,2}];

> AC2{1,3} = [AC1{1,3}; AC1{2,3}]

The new cell array AC2 can be passed directly into DSDP. The advantage of grouping multiple blocks
together is that it uses less memory – especially when there are many blocks and many of the matrices in
these blocks are zero. The performance of DSDP, measured by execution time, will change very little.

This distribution contains several examples files in SDPA format. A utility routine called readsdpa( ·
) can read these files and put the problems in DSDP format. They may serve as examples on how to format
an application for use by the DSDP solver. Another example can be seen in the file maxcut( · ) , which
takes a graph and creates an SDP relaxation of the maximum cut problem from a graph.

8.2 LP Cones

A cone of LP variables can specified separately. For example a randomly generated LP cone AT y ≤ c with
3 variables y and 5 inequality constraints can be specified in the following code.

> n=5; m=3;

> b = rand(m,1);

> At=rand(n,m);

> c=rand(n,1);

> AC{1,1} = ’LP’;

> AC{1,2} = n;

> AC{1,3} = sparse([At c]);

> [STAT,y,X]=dsdp(b,AC);

Multiple cones of LP variables may be passed into the DSDP solver, but for efficiency reasons, it is best to
group them all together. This cone may also be passed to the DSDP solver as a semidefinite cone, where
the matrices Ai and C are diagonal. For efficiency reasons, however, it is best to identify them separately
as belonging the the cone of ’LP’ variables.

Although y variables that are fixed to a constant can be preprocessed and removed from a model, it is
often more convenient to leave them in the model. It is more efficient for to identify fixed variables to DSDP
than to model these constraints as a pair of linear inequalities. The following example sets variables 1 and
8 to the values 2.4 and −6.1, respectively.

> AC{j,1} = ’FIXED’; AC{j,2} = [ 1 8 ]; AC{j,3} = [ 2.4 -6.1 ];

The corresponding variables x to these constraints may be positive or negative.

8.3 Solver Options

There are more ways to call the solver. The command

> [STAT,y,X] = DSDP(b,AC,OPTIONS)

specifies some options for the solver. The OPTIONS structure may contain any of the following fields that
may significantly affect the performance of the solver. Options that affect the formulation of the problem
are:
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r0 initial value for r in (DD). If r0 < 0, a heuristic will select a very large
number ( 1e10). IMPORTANT: To improve convergence, use a smaller
value. [default -1 (Heuristic)].

zbar an upper bound z̄ on the objective value at the solution [default 1.0e10].

penalty penalty parameter Γ in (DD) that enforces feasibility in (D). IMPORTANT:
This parameter must be positive and greater than the trace of the solution
X of (P). [default 1e8].

boundy determines the bounds l and u on the variables y in (DD). That is, −boundy =
l ≤ yi ≤ u = boundy for all i. [default: 1e7].

Fields in the OPTIONS structure that affect the stopping criteria for the solver are:

gaptol tolerance for duality gap as a fraction of the value of the objective functions
[default 1e-6].

maxit maximum number of iterations allowed [default 1000].

steptol tolerance for stopping because of small steps [default 1e-2].

pnormtol ‖P (ν)‖ of solution should also be less than [default 1e30].

inftol the value r in (DD) must be less than this tolerance to classify the final
solution of (D) as feasible. [default 1e-8].

dual bound Terminate the solver when it finds a feasible point of (D) with an objective
greater than this value. (Helpful in branch-and-bound algorithms.) [default
1e+30].

Fields in the OPTIONS structure that affect printing are:

print = k to display output at each k iteration, else = 0 [default 10].

logtime =1 to profile the performance of DSDP subroutines, else =0. (Assumes
proper compilation flags.)

cc add this constant the objective value. This parameter is algorithmically
irrelevant, but it can make the objective values displayed on the screen
more consistent with the underlying application [default 0].

Other fields recognized in OPTIONS structure are:

rho to set the potential parameter ρ in the function (??) to this multiple of the
conic dimension n. [default: 3] IMPORTANT! Increasing this parameter
to 4 or 5 may significantly improve performance.

dynamicrho to use dynamic rho strategy. [default: 1].

bigM if > 0, the variable r in (DD) will remain positive (as opposed to nonnega-
tive). [default 0].

mu0 initial barrier parameter ν. [default -1: use heuristic]

reuse sets a maximum on the number of times the Schur complement matrix can
be reused. Larger numbers reduce the number of iterations but increase
the cost of each iteration. Applications requiring few iterations (¡60) should
consider setting this parameter to 0. [default: 4]
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For instance, the commands

> OPTIONS.gaptol = 0.001;

> OPTIONS.boundy = 1000;

> OPTIONS.rho = 5;

> [STAT,y,X] = DSDP(b,AC,OPTIONS);

asks for a solution with approximately three significant digits, bound the y variables by −1000 and +1000,
and use a potential parameter ρ of 5 times the conic dimension. Some of these fields, especially rho, r0, and
ybound can significantly improve performance of the solver.

Using a fourth input argument, the command

> [STAT,y,X] = DSDP(b,AC,OPTIONS,y0);

specifies an initial solution y0 in (D). The default starting vector is the zero vector.

8.4 Solver Performance and Statistics

The second and third output arguments return objective values for (D) and (P), respectively.

The first output argument is a structure with several fields that describe the solution of the problem:

stype PDFeasible if the solutions to both (D) and (P) are feasible, Infeasible
if (D) in infeasible, and and Unbounded if (D) is unbounded.

obj an approximately optimal objective value.

pobj objective value of (PP).

dobj objective value of (DD).

stopcode equals 0 if the solutions to (PP) and (DD) satisfy the prescribed tolerances
and equals nonzero if the solver terminated for other reasons.

Additional fields describe characteristics of the solution:

tracex the trace of the solution X of (P).

r the multiple of the identity element added to C−AT (y) in the final solution
to make S positive definite.

mu the final barrier parameter (ν).

ynorm the largest element of y (infinity norm).

boundy the bounds placed on the magnitude of each variable y.

penalty the penalty parameter Γ used by the solver, which must be greater than
the trace of the variables X in (P). (see above).

Additional fields provide statistics from the solver:

iterations number of iterations used by the algorithm.

pstep the final step length.in (PP)

dstep the final step length in (DD).

pnorm the final value ‖P (ν)‖.
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rho the potential parameter (as a multiple of the total dimension of the cones).

gaphist a history of the duality gap.

infhist a history of the variable r in (DD).

datanorm the Frobenius norm of C, A and b.

DSDP has also provides several utility routines. The utility derror( · ) verifies that the solution
satisfies the constraints and that the objective values (P) and (D) are equal. The errors are computed
according to the the standards of the DIMACS Challenge.
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9 Reading SDPA files

DSDP can be used if the user has a problem written in sparse SDPA format[8]. These executables have
been put in the directory DSDPROOT/exec/. The file name should follow the executable. For example,

> dsdp5 truss4.dat-s

Other options can also be used with DSDP. These should follow the SDPA filename.

-gaptol <rtol> to stop the problem when the relative duality gap is
less than this number.

-mu0 <mu0> to specify the initial barrier parameter ν.

-r0 <r0> to specify the initial value of r in (DD).

-boundy <1e7> to bound the magnitude of each variable y in (DD).

-save <filename> to save the solution into a file with a format similar to
SDPA.

-y0 <filename> to specify an initial vector y in (D).

-maxit <iter> to stop the problem after a specified number of itera-
tions.

-rho <3> to set the potential parameter ρ to this multiple of the
conic dimension n.

-dobjmin <dd> to add a constraint that sets a lower bound on the ob-
jective value at the solution.

-penalty <1e8> to set the penalty parameter Γ for infeasibility in (D).

-print <1> print standard output at each k iteration.

-bigM <0> treat the inequality r ≥ 0 in (DD) as other inequalities
and keep it positive.

-dloginfo <0> to print more detailed output. Higher number produce
more output.

-dlogsummary <1> to print detailed timing information about each domi-
nant computations.
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10 Iteration Monitor

The progress of the DSDP solver can be monitored by using standard output printed to the screen. The
data below shows an example of this output.

Iter PP Objective DD Objective PInfeas DInfeas Nu StepLength Pnrm

-----------------------------------------------------------------------------------

0 1.00000000e+02 -1.13743137e+05 2.2e+00 3.8e+02 1.1e+05 0.00 0.00 0.00

1 1.36503342e+06 -6.65779055e+04 5.1e+00 2.2e+02 1.1e+04 1.00 0.33 4.06

2 1.36631922e+05 -6.21604409e+03 5.4e+00 1.9e+01 4.5e+02 1.00 1.00 7.85

3 5.45799174e+03 -3.18292092e+03 1.5e-03 9.1e+00 7.5e+01 1.00 1.00 17.63

4 1.02930559e+03 -5.39166166e+02 1.1e-05 5.3e-01 2.7e+01 1.00 1.00 7.58

5 4.30074471e+02 -3.02460061e+01 3.3e-09 0.0e+00 5.6e+00 1.00 1.00 11.36

...

11 8.99999824e+00 8.99999617e+00 1.1e-16 0.0e+00 1.7e-08 1.00 1.00 7.03

12 8.99999668e+00 8.99999629e+00 2.9e-19 0.0e+00 3.4e-09 1.00 1.00 14.19

The program will print a variety of statistics for each problem to the screen.

Iter the iteration number.

PP Objective the upper bound z̄ and objective value in (PP).

DD Objective the objective value in (DD).

PInfeas the primal infeasiblity in (P) is ‖xu − xl‖∞.

DInfeas the dual infeasibility in (D) is the variable r.

Nu the barrier parameter ν.

StepLength the multiple of the step-directions in (P) and (D).

Pnrm the proximity to the central path: ‖∇ψ‖M−1 .
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A Brief History

DSDP began as a specialized solver for combinatorial optimization problems. Over the years, improvements
in efficiency and design have enabled its use in many applications.

1997 At the University of Iowa the authors release the initial version of DSDP. It solved the semidefinite
relaxations of the maximum cut, minimum bisection, s-t cut, and bound constrained quadratic problems
[1].

1999 DSDP version 2 increased functionality to address semidefinite cones with rank-one constraint matrices
and LP constraints. It was used specifically for combinatorial problems such as graph coloring, stable
sets, and satisfiability problems.

2000 DSDP version 3 [2] was a preliminary implementation of a general purpose SDP solver that addressed
applications from the Seventh DIMACS Implementation Challenge on Semidefinite and Related Opti-
mization Problems [7]. It ran in serial and parallel.

2002 DSDP version 4 [3] added new sparse data structures to improve efficiency and precision. A Lanczos
based line search and efficient iterative solver were added. It solved all problems in the SDPLIB collec-
tion that includes examples from control theory, truss topology design, and relaxations of combinatorial
problems.

2004 DSDP version 5 [5] features a new efficient interface for semidefinite constraints, a corrector direction,
and extensibility to structured applications in conic programming. Existence of the central path was
ensured by bounding the variables. New applications from computational chemistry, global optimiza-
tion, and sensor network location motivated the improvements in efficiency in robustness. The latest
release of version 5 is 5.8 [4].

2014 DSDP version 5.8 64 features a new support 64-bit data models to run DSDP on 64-bit platforms.
The interfaces to access 64-bit MATLAB libraries and read SDPAfiles was also updated.
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SDPConeSetXArray(), 9
SDPConeView(), 8
SDPConeViewDataMatrix(), 8
SDPConeViewX(), 8
SDPConeXVMultiply, 9
slack variable, 11
sparse data, 7, 8, 10
stable, 20

step length, 14, 27
surplus variable, 11
symmetric full storage format, 9
symmetric packed storage format, 7, 21

theta, 20
time, 14, 18
trace, 14
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