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Large-scale continuous optimization arises in many practical problems such as

machine learning, signal processing, and imaging. It is usually challenging to

analyze the theoretical properties of optimization algorithms and design scal-

able algorithms that work well in practice. This dissertation provides new per-

spectives on continuous optimization in both theory and methodology. From

the theoretical side, we present a framework for reasoning about equivalence

between a broad class of iterative convex continuous optimization algorithms.

The notion of algorithm equivalence can make it easier to understand the con-

nections between optimization algorithms, relate many analytical properties of

interest such as convergence or robustness, and further give insights to design

new algorithms. From the methodological side, we first present NysADMM, a

scalable algorithm for faster composite convex optimization by exploiting the

low-rank structure. NysADMM accelerates the inexact linearized Alternating

Direction Method of Multipliers (ADMM) by constructing a preconditioner for

the ADMM subproblem from a randomized low-rank Nyström approximation.

Second, we present GeNI-ADMM, a framework generalized from NysADMM,

which encompasses any ADMM algorithm that solves a first- or (generalized)

second-order approximation to the ADMM subproblem and allows inexact sub-

problem solves. It facilitates the theoretical analysis of various approximate

ADMM schemes for large-scale composite convex optimization.
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CHAPTER 1

INTRODUCTION

The practice of solving problems through optimization has become widely

prevalent in numerous applied fields. Within the domains of machine learning

and data analysis, large-scale continuous optimization is routinely encountered

with the trend of Big Data. Nonetheless, the interest in utilizing such optimiza-

tion techniques for large-scale problems presents several significant challenges

that need to be addressed.

The first challenge is to analyze the theoretical properties of optimization al-

gorithms and further distinguish them. During the past 10 years or so, lots of

progresses have been made in the field of optimization. New optimization algo-

rithms are regularly proposed in order to capture more complicated models, re-

duce computational burdens, or obtain stronger performance and convergence

guarantees. However, the novelty of an algorithm can be difficult to establish

because algorithms can be written in different equivalent forms.

For example, algorithm 1.1 was originally proposed by Popov [85] in the

context of solving saddle point problems. This method was later generalized

by Chiang et al. [22, §4.1] in the context of online optimization. Algorithm 1.2

is a reformulation of algorithm 1.1 adapted for use in generative adversarial

networks (GANs) [45]. Algorithm 1.3 is an adaptation of Optimistic Mirror De-

scent [88] used by Daskalakis et al. [25] and also used to train GANs. Finally,

algorithm 1.4 was proposed by Malitsky [67] for solving monotone variational

inequality problems. (Some of these algorithms were originally proposed in

conjunction with projections or other operations that make them more distinct.)

In all four algorithms, the vectors xk
1 and xk

2 are algorithm states, η is a tun-
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able parameter, and Fk(·) is the gradient of the loss function at time step k.

Algorithm 1.1
(Modified Arrow–Hurwicz)

for k = 1, 2, . . . do
xk+1

1 = xk
1 − ηF

k(xk
2)

xk+1
2 = xk+1

1 − ηFk(xk
2)

end for

Algorithm 1.2
(Extrapolation from the past)

for k = 1, 2, . . . do
xk

2 = xk
1 − ηF

k−1(xk−1
2 )

xk+1
1 = xk

1 − ηF
k(xk

2)
end for

Algorithm 1.3
(Optimistic Mirror Descent)

for k = 1, 2, . . . do
xk+1

2 = xk
2−2ηFk(xk

2)+ηFk−1(xk−1
2 )

end for

Algorithm 1.4
(Reflected Gradient Method)

for k = 1, 2, . . . do
xk+1

1 = xk
1 − ηF

k(2xk
1 − xk−1

1 )
end for

Algorithms 1.1 to 1.4 are equivalent in the sense that when suitably ini-

tialized, the sequences (xk
1)k≥0 and (xk

2)k≥0 are identical for all four algorithms.1

Although these particular equivalences are not difficult to verify and many

have been explicitly pointed out in the literature, for example in [45], algorithm

equivalence is not always immediately apparent.

The second challenge is to design scalable algorithms that work well in prac-

tice. Take the famous Alternating Directions Method of Multipliers (ADMM)

framework as an example [12]. Although it is one of the most popular methods

for solving composite optimization problems thanks to its ability to provide a

general template for a wide swath of problems, it scales poorly for many large-

scale problem instances raised in the era of Big Data. The scaling issue arises

as ADMM requires solving two subproblems at each iteration, whose cost can

increase superlinearly with the problem size. As a concrete example, in the

1In their original formulations, algorithms 1.1, 1.2 and 1.4 included projections onto convex
constraint sets. We assume an unconstrained setting here for illustrative purposes. Some of the
equivalences no longer hold in the constrained case.
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case of ℓ1-logistic regression with an n × d data matrix, ADMM requires solv-

ing an ℓ2-regularized logistic regression problem at each iteration [12]. If we

apply a fast-gradient method, the total complexity of solving the subproblem is

Õ(nd
√
κ) [15], where κ is the condition number of the problem. When n and d are

in the tens of thousands or larger—a moderate problem size by contemporary

machine machine standards—and κ is large, such a high per-iteration cost be-

comes unacceptable. The latter point on conditioning is especially relevant, as

ill-conditioning is ubiquitous in machine learning problems; often κ = Ω(n), in

which case the cost of the subproblem solve becomes superlinear in the problem

size.

This dissertation provides new perspectives on these two challenges:

1. We present a framework for reasoning about equivalence between a broad

class of iterative algorithms, with a focus on algorithms designed for con-

vex optimization. We propose several notions of what it means for two

algorithms to be equivalent, and provide computationally tractable means

to detect equivalence. The main definition, oracle equivalence, states that

two algorithms are equivalent if they result in the same sequence of calls

to the function oracles (for suitable initialization). Borrowing from con-

trol theory, state-space realizations are used to represent algorithms and

characterize algorithm equivalence via transfer functions. The proposed

framework can also identify and characterize some algorithm transforma-

tions including permutations of the update equations, repetition of the

iteration, and conjugation of some of the function oracles in the algo-

rithm. A software package named Linnaeus have also been developed

that implements the framework to identify other iterative algorithms that

3



are equivalent to an input algorithm. More broadly, this framework and

software advances the goal of making mathematics searchable.

2. We present a scalable new algorithm, called NysADMM, for composite

convex optimization to minimize a smooth convex loss function with a

convex regularizer. NysADMM accelerates the inexact ADMM by con-

structing a preconditioner for the ADMM subproblem from a randomized

low-rank Nyström approximation. NysADMM comes with strong theo-

retical guarantees: it solves the ADMM subproblem in a constant number

of iterations when the rank of the Nystrom approximation is the effective

dimension of the subproblem regularized Gram matrix. In practice, ranks

much smaller than the effective dimension can succeed, so NysADMM

uses an adaptive strategy to choose the rank that enjoys analogous guar-

antees. Numerical experiments on real-world datasets demonstrate that

NysADMM can solve important applications, such as the lasso, logistic

regression, and support vector machines, in half the time (or less) required

by standard solvers.

The idea of NysADMM is further extended to a generalized frame-

work, GeNI-ADMM. It facilitates theoretical analysis of both existing

and new approximate ADMM schemes. GeNI-ADMM encompasses any

ADMM algorithm that solves a first- or second-order approximation to

the ADMM subproblem inexactly. GeNI-ADMM exhibits the usual O(1/t)-

convergence rate under standard hypotheses and converges linearly un-

der additional hypotheses such as strong convexity. Moreover, the GeNI-

ADMM framework provides explicit convergence rates for ADMM vari-

ants accelerated with randomized linear algebra, such as NysADMM and

sketch-and-solve ADMM, resolving an important open question on the

4



convergence of these methods. This analysis quantifies the benefit of im-

proved approximations and can inspire the design of new ADMM variants

with faster convergence.

This dissertation is based on three (working) papers. Generally, chapter 2

comes from [113], and chapter 3 comes from [112]. Chapter 4 comes from [42]

and is our most recent work. Some contents are reorganized for a clear and

concise presentation.
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CHAPTER 2

AN AUTOMATIC SYSTEM TO DETECT EQUIVALENCE BETWEEN

ITERATIVE ALGORITHMS

This chapter introduces the framework we proposed for reasoning about al-

gorithm equivalence. The contents are mainly based on [113]. In section 2.2,

we briefly summarize existing literature related to this chapter. In section 2.3,

we introduce three examples of equivalent algorithms that motivate our frame-

work. In section 2.4, we briefly review important background on linear sys-

tems and optimization used throughout this chapter. We formally define two

notions of algorithm equivalence, oracle equivalence and shift equivalence, in sec-

tion 2.5 and discuss how to characterize them via transfer functions in sec-

tions 2.6 and 2.7. Certain transformations can also be identified and character-

ized with our framework including algorithm repetition, repeating an algorithm

multiple times, and conjugation, a transformation using conjugate function or-

acles. These are discussed in sections 2.8 and 2.9 respectively. In section 2.10,

we briefly introduce our software package LINNAEUS for the classification of

iterative algorithms.

2.1 Introduction

As discussed in chapter 1, algorithm equivalence is important and is not always

immediately apparent. One famous example concerns the relations between the

Chambolle-Pock method, Douglas-Rachford splitting, and the alternating direc-

tions method of multipliers (ADMM): indeed, showing the connection between

Chambolle-Pock and Douglas-Rachford requires a full page of mathematics in

6



[20]. In contrast, our analysis supports a single coherent view of these algo-

rithms that can be summarized in a commutative diagram (fig. 2.7).

In this chapter, we present a framework for reasoning about algorithm

equivalence, with the ultimate goal of making the analysis and design of al-

gorithms more principled and streamlined. The main contributions include:

• A universal way of representing algorithms, inspired by methods from

control theory.

• Several definitions of what it means for algorithms to be equivalent.

• A computationally efficient way to verify whether two algorithms are

equivalent.

Briefly, our method is to parse each algorithm to a standard form as a linear sys-

tem in feedback with a nonlinearity; to compute the transfer function of each

linear system; and to check, using a computer algebra system, if there are pa-

rameter values that make the transfer functions equal.

We also present a software package implementing this framework named

LINNAEUS1, for the classification and taxonomy of iterative algorithms. The

software is a search engine, where the input is an algorithm described using

natural syntax, and the output is a canonical form for the algorithm along with

any known names and pointers to relevant literature. The approach described

in this chapter allows LINNAEUS to search over first-order optimization algo-

rithms such as gradient descent with acceleration, ADMM, and the extragra-

dient method. As the database in LINNAEUS grows, it will help algorithm re-

searchers understand and efficiently discover connections between algorithms.
1Named after Carl Linnaeus, a botanist and zoologist who invented the modern system of

naming organisms.
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More generally, LINNAEUS advances the goal of making mathematics search-

able.

We must point out a tension in our terminology: the notion of algorithm

equivalence we define below is rather broad, which is in order to discover in-

teresting connections between algorithms. As a consequence, equivalent algo-

rithms (in our terminology) can nevertheless be extremely useful for different

tasks: for example, writing one algorithm in different ways can yield different

generalizations, different interpretations, different computational complexity,

and different numerical stability. On the other hand, equivalent algorithms will

share many properties, such as convergence, stability, and fixed points.

2.2 Related work

A variety of existing work advances the goal of making mathematics search-

able. This work is too diverse to survey here. As an example, consider the On-

Line Encyclopedia of Integer Sequences: given a sub-sequence or a keyword,

the encyclopedia will find a matching sequence and return useful information

such as mathematical motivation for the sequence and links to other literature

[96]. As a very different example, recent work in deep learning has led to new

language models, such as GPT3, that can generate code snippets, including ma-

chine learning models, javascript applications, and SQL queries [1, 2, 14, 94].

As these models are trained from large corpuses of data, we might view such

models as implementing a generalized search.

Within the optimization literature, several standard forms have been pro-

posed to represent problems and algorithms. For example, the CVX* modeling
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languages represent (disciplined) convex optimization problems in a standard

conic form, building up the representations of complex problems from a few

basic functions and a small set of composition rules [30, 48, 49, 95, 103]. This

chapter builds on a foundation developed by Lessard et al. [61] that represents

first-order algorithms as linear systems in feedback with a nonlinearity. Lessard

et al. use this representation to analyze convergence properties of an algorithm

with integral quadratic constraints. Our work extends theirs with the insight

that such representations can be computed automatically by a computer.

There are rich connections between many first-order methods for convex op-

timization. These algorithms are surveyed in a recent textbook by Ryu and Yin,

which summarizes and unifies several operator splitting methods for convex

optimization [91]. Many of these connections are well known to experts, but

the connections have traditionally been complex to explain, communicate, or

even remember. For example, Boyd et al. [12] write, “There are also a number of

other algorithms distinct from but inspired by ADMM. For instance, Fukushima

[44] applies ADMM to a dual problem formulation, yielding a ‘dual ADMM’

algorithm, which is shown in [36] to be equivalent to the ‘primal Douglas-

Rachford’ method discussed in [34, §3.5.6].” As another example, Chambolle

and Pock in [20] propose a new primal-dual splitting algorithm and demon-

strate that transformations of their algorithm can yield Douglas-Rachford split-

ting and ADMM, using a full page of mathematics to sketch the connection. Us-

ing our framework, the (many!) relations between the Chambolle-Pock method,

Douglas-Rachford splitting, and ADMM can be established precisely and con-

veyed efficiently in a commutative diagram; see section 2.9 and fig. 2.7 in par-

ticular.
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2.3 Motivating examples

To explain what we mean by algorithm equivalence, we introduce three mo-

tivating examples in this section. Each provides a different view of how two

algorithms might be equivalent.

Algorithm 2.3.1

for k = 0, 1, 2, . . . do
xk+1

1 = 2xk
1 − xk

2 −
1
10∇ f (2xk

1 − xk
2)

xk+1
2 = xk

1
end for

Algorithm 2.3.2

for k = 0, 1, 2, . . . do
ξk+1

1 = ξk
1 − ξ

k
2 −

1
5∇ f (ξk

1)
ξk+1

2 = ξk
2 +

1
10∇ f (ξk

1)
end for

The first example consists of algorithms 2.3.1 and 2.3.2. These algorithms

are equivalent in a strong sense: when suitably initialized, we may transform

the iterates of algorithm 2.3.1 by the invertible linear map ξk
1 = 2xk

1 − xk
2, ξ

k
2 =

−xk
1 + xk

2 to yield the iterates of algorithm 2.3.2. We say that the sequences (xk
1)k≥0

and (xk
2)k≥0 are equivalent to sequences (ξk

1)k≥0 and (ξk
2)k≥0 up to an invertible linear

transformation.

Algorithm 2.3.3

for k = 0, 1, 2, . . . do
xk+1

1 = 3xk
1−2xk

2+
1
5∇ f (−xk

1+2xk
2)

xk+1
2 = xk

1
end for

Algorithm 2.3.4

for k = 0, 1, 2, . . . do
ξk+1 = ξk − 1

5∇ f (ξk)
end for

The second example consists of algorithms 2.3.3 and 2.3.4. These algorithms

do not even have the same number of state variables, so these algorithms are

not equivalent up to an invertible linear transformation. But when suitably ini-

tialized, we may transform the iterates of algorithm 2.3.3 by the linear map

ξk = −xk
1 + 2xk

2 to yield the iterates of algorithm 2.3.4. This transformation is
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linear but not invertible. Instead, notice that the sequence of calls to the gradi-

ent oracle are identical: the algorithms satisfy oracle equivalence, a notion we will

define formally later in this chapter.

Algorithm 2.3.5

for k = 0, 1, 2, . . . do
xk+1

1 = prox f (xk
3)

xk+1
2 = proxg(2xk+1

1 − xk
3)

xk+1
3 = xk

3 + xk+1
2 − xk+1

1
end for

Algorithm 2.3.6

for k = 0, 1, 2, . . . do
ξk+1

1 = proxg(−ξk
1 + 2ξk

2) + ξk
1 − ξ

k
2

ξk+1
2 = prox f (ξ

k+1
1 )

end for

The third example consists of algorithms 2.3.5 and 2.3.6. With suitable initial-

ization, they will generate the same sequence of calls to the proximal operator,

ignoring the very first call to one of the oracles. Specifically, algorithm 2.3.6 is

initialized as ξ0
1 = x0

3, ξ0
2 = x1

1 and the first call to prox f in algorithm 2.3.5 is ig-

nored. We will say they are equivalent up to a prefix or shift: they satisfy shift

equivalence.

Generalizing from these motivating examples, we will call algorithms equiv-

alent when they generate an identical sequence (e.g., of states or oracle calls) up

to some transformations, with suitable initialization. To make our ideas formal,

we need a few definitions and some ideas from control theory. We will then

revisit those motivating examples and define algorithm equivalence.

2.4 Preliminaries

We letRn denote the standard Euclidean space of n-dimensional vectors, and use

boldface lowercase symbols denote semi-infinite sequences of vectors, which
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we index using superscripts. For example, we may write x := (x0, x1, . . . ), where

xk ∈ Rn for each k ≥ 0. Subscripts index components or subvectors: for example,

we may write x =
[ x1

x2

]
∈ Rn, where x1 ∈ R

n1 and x2 ∈ R
n−n1 .

2.4.1 Optimization

Optimization problem, objective, and constraints An optimization problem

is identified by an objective function and a constraint set. The objective may be

written as the sum of several functions, and the constraint set may be the inter-

section of several sets. As an example, in the optimization problem eq. (2.1) [12]

minimize f (x) + g(z)

subject to Ax + Bz = c,
(2.1)

the objective function is f (x) + g(z) and the constraint set is {(x, z) : Ax + Bz = c}.

Oracles We assume an oracle model of optimization: we can only

access an optimization problem by querying oracles at discrete query

points [13, §4; 15, §1; 76, §1]. Oracles might include the gradient or proximal

operator of a function, or projection onto a constraint set [8, §6; 39, §2; 82, §1].

Each query to the oracle returns an output such as the function value, gradient,

or proximal operator. For example, the oracles for problem eq. (2.1) might in-

clude the gradients or proximal operators of f and g, and projection onto the

hyperplane {(x, z) : Ax + Bz = c}.
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2.4.2 Algorithms

Detecting equivalence between any pair of algorithms is beyond the scope of this

work. Instead, we restrict our attention to equivalence between iterative linear

time invariant optimization algorithms. In the following section, we provide

some intuition and define each of these terms. Further formalism of these terms

will be provided in the next subsection on control theory.

Iterative algorithms Given an optimization problem and an initial point x0 ∈

X, an iterative algorithmA generates a sequence of points x := (xk)k≥0 by repeated

application of the map A : X → X. (We do not distinguish the algorithm from

its associated map.) Hence, xk+1 = A(xk) for k ≥ 0. We call xk the state of the

algorithm at time k. We make two important simplifying assumptions when

treating algorithms.

First, suppose the operator A calls each different oracle exactly once. (We

will see how to extend our ideas to more complex algorithms later.) This as-

sumption forbids trivial repetition, such as A′ := A ◦ A. Second, we consider

algorithms that are time-invariant. In general, one could envision an algorithm

Ak that changes at each timestep. Such time-varying algorithms are common

in practice: for example, gradient-based methods with diminishing stepsizes.

We view time-varying algorithms as a scheme for switching between different

time-invariant algorithms. Since our aim is to reason about algorithm equiva-

lence, we restrict our attention to time-invariant algorithms. A nice benefit of

this restriction is that we can define algorithm equivalence independently of the

choice of initial point.
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The formulation xk+1 = A(xk) is general enough to include algorithms with

multiple timesteps. For example consider algorithm 1.4: xk+1
1 = xk

1−ηF(2xk
1−xk−1

1 ).

If we define the new state xk
2 := xk−1

1 and let xk :=
[

xk
1

xk
2

]
, then we may rewrite the

algorithm as

xk+1 =

xk+1
1

xk+1
2

 =
xk

1 − ηF(2xk
1 − xk

2)

xk
1

 = A

xk

1

xk
2


 = A(xk). (2.2)

The algorithm A contains a combination of oracle calls and state updates.

Define yk and uk to be the input and output of the oracles called at time k, re-

spectively. Now, write three separate equations for the state update, oracle in-

put, and oracle output. Applying this to eq. (2.2), we obtain:xk+1
1

xk+1
2

 =
1 0

1 0


xk

1

xk
2

 +
−η0

 uk (state update), (2.3a)

yk =

[
2 −1

] xk
1

xk
2

 (oracle input), (2.3b)

uk = F(yk) (oracle output). (2.3c)

Oracle sequence We have defined an algorithm A as a map X → X. In op-

timization, it is also conventional to write an algorithm as a sequence of up-

date equations, that are executed sequentially on a computer to implement the

map. When this sequence of updates is executed, we may record the sequence

of states or the sequence of oracle calls (oracle and its input pairs), which we call

the oracle sequence. There may be several ways of writing the algorithm as a

sequence of updates, which may produce different state sequences or oracle se-

quences. We are not aware of any practical algorithm for optimization that may

be written to produce two different oracle sequences. Hence we will assume for

14



now that the oracle sequence produced by an algorithm is unique. 2 We will

revisit this assumption later in section 2.7 to see how our ideas extend to more

complex (not-yet-discovered) algorithms.

Linear algorithms The equations eq. (2.3) have the general linear form

xk+1 = Axk + Buk, (2.4a)

yk = Cxk + Duk, (2.4b)

uk = ϕ(yk). (2.4c)

We say that a time-invariant algorithm is linear if it can be written in the form of

eq. (2.4), where xk is the algorithm state and ϕ is the set of oracles. Here ϕ can

be any nonlinear map, including a map with internal state. For example, the

oracle ϕ corresponding to the subgradient ∂ f of a nondifferentiable function f

might make a choice to ensure the output is unique and consistent, for example,

by selecting the subgradient of minimum norm; the oracle ϕ corresponding to

a stochastic gradient might include an internal random seed that ensures the

output is unique and deterministic, given the seed.

In the rest of this chapter, unless specifically noted, our discussion is limited

2This assumption eliminates the possibility that some oracles may be permuted without
changing the state sequence: e.g.,

Algorithm 2.4.1

for k = 1, 2, . . . do
xk+1

1 = A1(xk
1)

xk+1
2 = A2(xk

2)
xk+1

3 = A3(xk+1
1 , x

k+1
2 )

end for

Algorithm 2.4.2

for k = 1, 2, . . . do
xk+1

2 = A2(xk
2)

xk+1
1 = A1(xk

1)
xk+1

3 = A3(xk+1
1 , x

k+1
2 )

end for

Here, the algorithm may be equally well written with the oracle sequence (A1,A2,A3) as with
the oracle sequence (A2,A1,A3). But again, we are not aware of any concrete examples of
optimization algorithms with this structure.
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to linear algorithms. We will see that the class of linear algorithms includes

commonly used algorithms, such as accelerated methods, proximal methods,

operator splitting methods, and more [54, 61].

The general form eq. (2.4) represents a convenient parameterization of linear

algorithms in terms of matrices (A, B,C,D), but it is only a starting point. For

example, algorithms 1.1 to 1.4 have different (A, B,C,D) parameters despite be-

ing equivalent algorithms. In the next section, we show how tools from control

theory can be brought to bear on these sorts of representations.

Remark For an arbitrary state-space realization (A, B,C,D), the corresponding

algorithmic sequence may not exist or may not be unique. However, any im-

plementable practical algorithm, written as a sequence of update equations has

a corresponding algorithmic sequence that exists and is unique: it is obtained

by performing the steps indicated in the update equations and recording the

values of x, u, and y.

2.4.3 Control theory

This subsection provides a brief overview of relevant methods and terminology

from control theory. More detail can be found in standard references such as [5,

Ch. 1–3] and [108, Ch. 1,2,5].

Algorithms as linear systems Let u denote the entire sequence of uk and y

denote the entire sequence of yk. The equations in eq. (2.4) can be separated

into two parts. Equations eq. (2.4a) and eq. (2.4b) define a map H from u to y
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compactly as y = Hu, while eq. (2.4c) defines a map Φ from y to u as u = Φy,

where Φ = diag{ϕ, ϕ, . . . }. We can represent these algebraic relations visually via

the block-diagram shown in fig. 2.1.

H

Φ

uy

Figure 2.1: Block-diagram representation of an algorithm. This is equivalent to
the pair of equations y = Hu and u = Φy.

Consider map H defined by eq. (2.4a) and eq. (2.4b). For simplicity, we as-

sume that x0 = 0. As we eliminate {x1, . . . , xk} from eq. (2.4a) and eq. (2.4b), map

H can be represented as a semi-infinite matrix,



y0

y1

y2

y3

...


=



D 0 0 0 · · ·

CB D 0 0 · · ·

CAB CB D 0 · · ·

C(A)2B CAB CB D · · ·

...
. . .

. . .
. . .
. . .

︸                                   ︷︷                                   ︸
H



u0

u1

u2

u3

...


. (2.5)

In control theory, map H is considered as a (discrete-time) system that maps

a sequence of inputs u to a sequence of outputs y. Map H is linear since it can

be represented as a semi-infinite matrix. The matrix representation is lower-

triangular and it indicates H is causal. Further, H is time-invariant because the

matrix representation is (block) Toeplitz, which means that H is (block) constant

along diagonals from top-left to bottom right. Thus, H is a causal linear time-

invariant system. For the rest of this chapter, we will work with such systems

and we will refer to such systems as linear systems.
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Further, to combine maps H and Φ together, a linear algorithm in the form

of eq. (2.4) can be regarded as a linear system connected in feedback with a

nonlinearity shown by fig. 2.1. At time k, uk is the input and yk is the output

of the system. Nonlinear feedback ϕ represents the set of oracles such as the

gradient or subgradient of a convex function and it maps the output yk to the

input uk.

State-space realization Reconsider equations eq. (2.4a) and eq. (2.4b). They

correspond to the state-space realization of system H. In control theory, a state-

space realization is characterized by an internal sequence of states x that evolves

according to a difference equation with parameters (A, B,C,D):

xk+1 = Axk + Buk,

yk = Cxk + Duk,

or equivalently,

xk+1

yk

 = L

xk

uk

 , where L =

A B

C D

 . (2.6)

Here, uk ∈ Rm, yk ∈ Rp, and xk ∈ Rn. The parameters (A, B,C,D) are matrices of

compatible dimensions, so A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The

state-space realization corresponding to the system H can also be characterized

by omitting all vectors and writing the block matrix L shown in eq. (2.6) (right),

which is the map from (xk, uk) to (xk+1, yk).

In this work, we rely on such formalism that represents algorithms as linear

systems using a state-space realization as eq. (2.6) for each algorithm, follow-

ing [54, 61]. The state-space realization L represents the linear part of an algo-

rithm and map ϕ represents the nonlinear part. Moreover, we have A = (L, ϕ).

In this way, we can unroll fig. 2.1 in time to obtain the block-diagram shown in

fig. 2.2. Each dashed box in fig. 2.2 represents mapA for each iteration.
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Lxk−1. . . xk

ϕ yk−1uk−1

L xk+1

ϕ ykuk

L
. . .

ϕ yk+1uk+1

Figure 2.2: Unrolled-in-time block-diagram representation of an algorithm.

Impulse response and transfer function From eq. (2.5), without the assump-

tion that x0 = 0, we can obtain

yk = C(A)kx0 +

k−1∑
j=0

C(A)k−( j+1)Bu j + Duk. (2.7)

The output yk is the sum of C(A)kx0, which is due to the initial condition x0, and∑k−1
j=0 C(A)k−( j+1)Bu j+Duk, which is due to the inputs {u0, . . . , uk}. The compact form

y = Hu and its matrix representation eq. (2.5) omit the first term that depends

on x0. These representations are formally equivalent to the state-space model

only when the state is initialized at x0 = 0. However, linearity of H allows the

two contributions to be studied separately:

(total response) = (zero input response)︸                        ︷︷                        ︸
set uk = 0 for k ≥ 0

+ (zero state response)︸                       ︷︷                       ︸
set x0 = 0

.

This decomposition is analogous to writing the general solution to a linear dif-

ferential (or difference) equation as the sum of a homogeneous solution (due to

initial conditions only) and a particular solution (due to the non-homogeneous

terms only). We will characterize linear systems by their input-output map. The

input-output map depends only on the zero state response, which allows us to

avoid details about initialization. For simplicity, we denote the entries in the

matrix representation of H in eq. (2.5) as

Hk =


D k = 0

C(A)k−1B k ≥ 1
. (2.8)
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To study the zero state response, recall from eq. (2.5) that

yk = Hku0 + Hk−1u1 + · · · + H1uk−1 + H0uk. (2.9)

The sequence (Hk)k≥0 is called the impulse response of H, because it corresponds

to the impulsive input u0 = 1 and u j = 0 for j ≥ 1.

A convenient way to represent H is via the use of a transfer function. To

this end, we can represent y and u as generating functions in the variable z−1.

Equating powers of z−1, we have:(
y0 + y1z−1 + y2z−2 + · · ·

)︸                          ︷︷                          ︸
ŷ(z)

=
(
H0 + H1z−1 + H2z−2 + · · ·

)︸                              ︷︷                              ︸
Ĥ(z)

(
u0 + u1z−1 + u2z−2 + · · ·

)︸                           ︷︷                           ︸
û(z)

.

(2.10)

We can recover eq. (2.9) by expanding the multiplication in eq. (2.10) and group-

ing terms with the same power of z−1. So when written as generating functions,

the output is related to the input via multiplication. The functions ŷ and û are

the z-transforms of the sequences y and u, respectively, and Ĥ is called the trans-

fer function. If p ≥ 2 or m ≥ 2 (the Hk are matrices), then Ĥ is called the transfer

matrix.

Substituting eq. (2.8) into the definition of the transfer function, we can write

a compact form for the formal power series Ĥ, which converges on some appro-

priate set:

Ĥ(z) =

 A B

C D

 = D +
∞∑

k=1

C(A)k−1Bz−k = C(zI − A)−1B + D. (2.11)

The transfer function Ĥ(z) = C(zI − A)−1B+D can be directly computed from the

state-space matrices (A, B,C,D). Moreover, Ĥ(z) is a matrix whose entries are

rational functions of z. Hence the transfer function provides a computationally

efficient way to uniquely characterize the input-output map of a system. We
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will use the block notation with solid lines to indicate transfer function as in

eq. (2.11).

Linear transformations of state-space realizations Consider a linear transfor-

mation of the states xk in eq. (2.6). Specifically, suppose Q ∈ Rn×n is invertible,

and define x̃k = Qxk for each k. The new state-space realization in terms of the

new variables x̃k is

x̃k+1 = QAQ−1 x̃k + QBuk

yk = CQ−1 x̃k + Duk
, L̃ =

QAQ−1 QB

CQ−1 D

 . (2.12)

It is straightforward to check that H and H̃ have the same transfer function.

Therefore, whether we apply the linear system H or H̃, the same input sequence

u will produce the same output sequence y, although the respective states xk and

x̃k will generally be different. So although the state-space realization (A, B,C,D)

depend on the coordinates used to represent states xk, the transfer function is

invariant under linear transformations.

This invariance is the key to understanding when two optimization algo-

rithms are the same, even if they look different as written. For example, this

idea alone suffices to show that algorithms 2.3.1 and 2.3.2 are equivalent.

Minimal realizations Every set of appropriately-sized state-space parameters

(A, B,C,D) produces a transfer matrix whose entries are rational functions of z.

Closer inspection of the formula Ĥ(z) = C(zI − A)−1B + D reveals that Ĥ(z) → D

as z → ∞. Therefore, the rational entries of Ĥ(z) must be proper: the degree

of the numerator cannot exceed the degree of the denominator. Moreover, the
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degree of the common denominator of all entries of Ĥ(z) cannot exceed n (the

size of the matrix A). Further, given any transfer matrix Ĥ(z) whose entries are

proper, there exists at least one realization (A, B,C,D) whose transfer function

is Ĥ(z). Any realization of Ĥ(z) for which the size of A is as small as possible is

called minimal. All minimal realizations of Ĥ(z) are related by an invertible state

transformation via a suitably chosen invertible matrix Q, as in eq. (2.12).

Realizations can be non-minimal when the transfer function has factors that

cancel from both the numerator and denominator. For example, the following

pair of state-space equations both have the same transfer function:

Ĥ(z) =

 1 1

1 0

 = 1 · (z − 1)−1 · 1 =
1

z − 1
,

Ĥ(z) =


1 2 1

0 3 0

1 6 0

 =
[
1 6

] z − 1 −2

0 z − 3


−1 10

 = z − 3
z2 − 4z + 3

=
1

z − 1
.

We can detect when two optimization algorithms are equivalent, even when one

has additional (redundant) state variables, by computing their minimal realiza-

tions. This strategy shows that algorithms 2.3.3 and 2.3.4 are equivalent.

Inverse of state-space realization Consider a state-space system H with real-

ization eq. (2.6) and for which m = p (input and output dimension are the same).

Is it possible to find a state-space system H−1 that maps y back to u? It turns out

this is possible if and only if D is invertible. In this case, the transfer function

of H−1 is Ĥ−1(z), a matrix whose entries are rational functions of z. One possible
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state-space realization of the inverse system H−1 is

Ĥ−1(z) =

 A B

C D


−1

=

 A − BD−1C BD−1

−D−1C D−1

 .
This explicit realization can be obtained by applying the matrix inversion

lemma to eq. (2.11). We can extend this idea to partial inverses of linear sys-

tems. Suppose the input sequence u is partitioned as

u := (u0, u1, . . . ) =


u

0
1

u0
2

 ,
u

1
1

u1
2

 , . . .
 =

u1

u2

 , where uk
1 ∈ R

m1 , uk
2 ∈ R

m2 for all k ≥ 0

and similarly for y. The matrix D and transfer matrix Ĥ(z) can also be partitioned

conformally as

D =

D11 D12

D21 D22

 and Ĥ(z) =

Ĥ11(z) Ĥ12(z)

Ĥ21(z) Ĥ22(z)

 , where Di j ∈ R
pi×m j and similarly for Ĥ(z).

(2.13)

If D11 is invertible, we can partially invert H with respect to u1 and y1 to form

a new system H′ that maps (y1,u2) 7→ (u1, y2). The transfer function Ĥ′(z) of the

new system H′ satisfies

Ĥ′(z) =

 Ĥ−1
11 (z) −Ĥ−1

11 (z)Ĥ12(z)

Ĥ21(z)Ĥ−1
11 (z) Ĥ22(z) − Ĥ21(z)Ĥ−1

11 (z)Ĥ12(z)

 . (2.14)

A detailed proof of eq. (2.14) is presented in appendix A.1. Note that if D22

is invertible, we can perform a similar partial inverse with respect to the sec-

ond component. When an optimization algorithm is related to another by con-

jugation of one of the function oracles, their transfer functions are related by

(possibly partial) inversion.

23



2.5 Algorithm equivalence

We are now ready to revisit the motivating examples and formally define algo-

rithm equivalence.

2.5.1 Assumptions

We now formally state the assumptions that we have discussed informally

in section 2.4. We assume all algorithms throughout this chapter satisfy these

assumptions unless specifically noted.

Assumption 2.5.1. The algorithm is causal, time-invariant, and linear.

Any algorithm satisfying assumption 2.5.1 can be implemented as a se-

quence of update equations (because it is causal) and can be written in form

eq. (2.4) (because it is linear and time-invariant).

Assumption 2.5.2. Given an oracle ϕ, the oracle sequence produced by the al-

gorithm is unique.

Assumption 2.5.2 follows if the output of ϕ is deterministic. It also follows if

ϕ has internal state but is deterministic given the sequence of inputs to ϕ so far.

Two algorithms can only produce the same sequences if called on the same

set of oracles (or on compatible oracles, for example, related by convex conju-

gacy). We say that two algorithms are comparable if they use the same or com-

patible oracles.
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Assumption 2.5.3. When we compare two algorithms to detect equivalence or

other relations, we assume that they are comparable.

We will discuss several kinds of compatible oracles in the sequel.

2.5.2 Oracle equivalence

In the first motivating example, the algorithms have the same number of

states, and the state sequences are equivalent up to an invertible linear transfor-

mation. We call these algorithms state-equivalent.

In the second motivating example, the state sequence of algorithm 2.3.3 can

be transformed into the state sequence of algorithm 2.3.4 with a linear trans-

formation. However, unlike the first motivating example, the linear transfor-

mation is not invertible; indeed, algorithm 2.3.4 uses fewer state variables than

algorithm 2.3.3. Instead, recall that the sequence of calls to the gradient oracle

are identical for algorithms 2.3.3 and 2.3.4. Hence these algorithms are oracle-

equivalent.

Definition 2.5.1. Two algorithms are oracle-equivalent on a set of optimization

problems if, for any problem in the set and for all possible oracles, there exist

initializations for both algorithms such that the two algorithms generate the

same oracle sequence.

Oracle-equivalent algorithms generate identical sequence regardless of ora-

cles. For example, if two oracle-equivalent algorithms both call oracle ∇ f and

generate identical oracle sequence, they will still produce identical oracle se-
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quence if we replace oracle ∇ f to ∇g or every other possible oracle. Further,

oracle equivalence is a symmetric relation. Notice that if the oracle sequences

(that is, the oracles and their arguments yk) are the same, then the oracles pro-

duce the same inputs uk for the linear systems of each algorithm. Hence, as

shown in fig. 2.3, oracle-equivalent algorithms have matching input u and out-

put y sequences. The solid double-sided arrow indicates the sequences yk and

ỹk are identical, and the sequences uk and ũk are identical.

Lxk−1. . . xk

ϕ yk−1uk−1

L xk+1

ϕ ykuk

L
. . .

ϕ yk+1uk+1

L̃
x̃k−1. . . x̃k

ϕ ỹk−1ũk−1

L̃
x̃k+1

ϕ ỹkũk

L̃ . . .

ϕ ỹk+1ũk+1

Figure 2.3: Unrolled block-diagram representation of oracle equivalence.

Further, since oracle-equivalent algorithms have identical input and output

sequences, many analytical properties of interest, particularly those pertaining

to algorithm convergence or robustness, are preserved. For example, suppose

the target problem is to minimize f (x) with x ∈ Rn, with solution x⋆ and corre-

sponding objective value f (x⋆). Further suppose f is convex and differentiable

with oracle ∇ f . If two algorithms are oracle-equivalent, the sequence of gra-

dients ∥∇ f (x)∥, distance to the solution
∥∥∥x − x⋆

∥∥∥, and objective function values

∥ f (x) − f (x⋆)∥ evolve identically, so they have the same worst-case convergence,

etc: the gradient sequence and objective value are controlled by the oracle se-

quence. Moreover, even if the oracle is noisy (e.g., suffers from additive or mul-

tiplicative noise, or even adversarial noise), from the point of view of the oracle,

the algorithms are indistinguishable and any analytical property that involves

only the oracle sequence will be the same.
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2.5.3 Shift equivalence

L
xk−1

1 , x
k−1
2 , x

k−1
3

. . . xk
1, xk

2, xk
3

ϕ yk−1
1 , y

k−1
2uk−1

1 , u
k−1
2

L
xk+1

1 , x
k+1
2 , x

k+1
3

ϕ yk
1, yk

2uk
1, uk

2

. . .

L̃x̃k−1
1 , x̃

k−1
2 , x̃

k−1
3

. . . x̃k
1, x̃k

2, x̃k
3

ϕ ỹk−1
1 , ỹ

k−1
2ũk−1

1 , ũ
k−1
2

L̃ x̃k+1
1 , x̃

k+1
2 , x̃

k+1
3

ϕ ỹk
1, ỹk

2ũk
1, ũk

2

. . .

Figure 2.4: Unrolled block-diagram representation of shift equivalence.

Now consider algorithms 2.3.5 and 2.3.6 from the third motivating exam-

ple. They are not oracle-equivalent. However, their input and output sequences

become identical after shifting algorithm 2.3.5 one step backward: these algo-

rithms are shift-equivalent.

Definition 2.5.2. Two algorithms are shift-equivalent on a set of problems if, for

any problem in the set and for all possible oracles, there exist initializations for

both algorithms such that the oracle sequences match up to a prefix.

Shift equivalence can also be interpreted as oracle equivalence up to a shift.

We depict shift equivalence graphically in fig. 2.4. Conversely, oracle equiva-

lence can be regarded as a special case of shift equivalence, where the oracle

sequences match without any shift. Besides, similar as oracle equivalence, shift

equivalence is also symmetric.

2.5.4 Discussion
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One algorithm, many interpretations Is it useful to have many different

forms of an algorithm, if all the forms are (oracle- or shift-)equivalent? Yes:

different rewritings of one algorithm often yield different (“physical”) intuition.

For example, algorithm 1.1 uses the current loss function for extrapolation [106];

while algorithm 1.2 seems to extrapolate from the previous loss function [19].

Equivalent algorithms can differ in memory usage, computational efficiency, or

numerical stability. For example, implementations of algorithms 1.3 and 1.4 lead

to different memory usage [25, 67]. In each time step k, algorithm 1.3 needs to

store xk
2, x

k+1
2 and Fk(·), but algorithm 1.4 only needs to store xk

1 and xk+1
1 in mem-

ory. These different rewritings also naturally yield different generalizations, for

example, by projecting different state variables.

Limitations Do these formal notions of equivalence capture everything an op-

timization expert might mean by “equivalent algorithms”? No: an example is

shown in algorithm 2.5.1. Algorithms 2.5.1 and 2.3.4 are related by a nonlin-

ear state transformation, xk = exp(ξk). However, none of the equivalences we

have discussed capture this example. The difficulty is that algorithm 2.5.1 is a

nonlinear algorithm, while all of our machinery for detecting algorithm equiv-

alence requires linearity. While notions of nonlinear equivalence are certainly

interesting, in this chapter we will define only those types of equivalence that

our framework can detect.

Algorithm 2.5.1

for k = 1, 2, . . . do
xk+1 = xkexp(−1

5∇ f (logxk))
end for
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2.6 A characterization of oracle equivalence

In this section, we will discuss how to characterize oracle equivalence via trans-

fer functions. Recall that oracle equivalence, introduced in section 2.5, character-

izes an algorithm by its oracle sequence. This sequence is uniquely determined

by the initialization of the algorithm (which we ignore) and the input-output

map of the linear system representing the algorithm. While the state-space re-

alization of two equivalent algorithms may differ, from section 2.4.3, recall that

the transfer function of a linear system uniquely characterizes the system as

an input-output map. Fortunately, using eq. (2.11), we can directly calculate

the transfer function from the state-space realization of an algorithm; and we

can use equality of transfer functions to check if two algorithms are equivalent.

This machinery allows us to avoid the issue of initialization (or of the optimiza-

tion problem!) entirely, as we can check algorithm equivalence without ever

producing a sequence of iterates.

More formally, consider two oracle-equivalent algorithms with the same

number of oracle calls in each iteration. From section 2.5.2, we know that for

every optimization problem, and for all possible oracles, there exist initializa-

tions for both algorithms so that the oracle sequence of the two algorithms is

the same. Concretely, by picking the initializations of both algorithms appro-

priately, we can ensure that the first output of the linear systems match. Hence

(since the oracles are the same), the first input of the linear systems match, and

so the second output of the linear systems match, etc. By induction, for each pos-

sible sequence of input u, they produce identical sequences of output y. Then

from section 2.4.3, the algorithms must have identical impulse responses and

consequently identical transfer functions. In light of the previous discussion,
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we have proved the following proposition, since each step in the reasoning

above is necessary and sufficient. We defer a detailed mathematical proof to

appendix A.2.

Proposition 2.6.1. Algorithms with the same oracle calls in each iteration are

oracle-equivalent if and only if they have identical transfer functions.

Importantly, oracle-equivalent algorithms have the same transfer function,

even if they have a different number of state variables. But any realization of the

algorithm must have at least as many state variables as the minimal realization

of the linear system.

Remark It is meaningless to compare algorithms with different oracle calls, as

two algorithms are oracle equivalent if there exist initializations for both algo-

rithms such that they generate the same oracle sequence. Hence throughout this

section, we make assumption 2.5.3: when we compare two algorithms, we as-

sume both algorithms use the same set of oracles. In this case, by section 2.4.3,

we can always initialize both algorithms at zero to satisfy the requirement of

oracle equivalence. For any algorithm that involves constant terms in its state-

space realization, we can affinely transform it into an equivalent state-space re-

alization without constant terms. Under this affine transformation, zero still sat-

isfies the requirements of initialization for oracle-equivalence. This justifies our

approach to characterize oracle equivalence with transfer functions and ignore

the initializations. Further, from eq. (2.7), the effect of initialization diminishes

as time step goes to infinity, thus, asymptotically initialization does not affect

the behavior of an algorithm such as convergence properties.

Oracle-equivalent algorithms have identical oracle sequences and hence con-
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verge to the same fixed point (if they converge). Suppose algorithmA1 : X → X

with (nonlinear) oracle ϕ : X → X and state-space realization (A1, B1,C1,D1),

converges to a fixed point (y⋆, u⋆, x⋆) that satisfies

x⋆ = A1x⋆ + B1u⋆

y⋆ = C1x⋆ + D1u⋆

u⋆ = ϕ(y⋆).

(2.15)

If algorithm A2 is oracle-equivalent to A1, A2 converges to a fixed point

(y⋆, u⋆, x̃⋆) that has the same output and input as the fixed point of A1; how-

ever, the state x̃⋆ may not be the same, or even have the same dimension.

Further, if there is an invertible linear map Q between the states of A1 and

A2 and (y⋆, u⋆, x⋆) is a fixed point ofA1, then (y⋆, u⋆,Qx⋆) is a fixed point ofA2.

We can use this fact to derive a relation between the state-space realizations of

the two algorithms: the fixed point equation forA2 can be written as

Qx⋆ = QA1Q−1Qx⋆ + QB1u⋆

y⋆ = C1Q−1Qx⋆ + D1u⋆

u⋆ = ϕ(y⋆),

(2.16)

which shows that the state-space realization ofA2 isQA1Q−1 QB1

C1Q−1 D1

 , (2.17)

which can be obtained by eq. (2.12).

2.6.1 Motivating examples: proof of equivalence

Now, we will revisit the first and second motivating examples and apply propo-

sition 2.6.1 to show equivalence. We perform the computation using the gradi-
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ent oracle (∇ f ) as the oracle to compute the state-space realizations and transfer

functions.

Algorithms 2.3.1 and 2.3.2 The state-space realization and transfer function of

algorithm 2.3.1 are shown as

Ĥ1(z) =


2 −1 − 1

10

1 0 0

2 −1 0

 =
[

2 −1
] zI −

 2 −1

1 0



−1  −

1
10

0

 = −2z + 1
10(z − 1)2 .

The state-space realization and the transfer function of algorithm 2.3.2 are

Ĥ2(z) =


1 −1 −1

5

0 1 1
10

1 0 0

 =
[

1 0
] zI −

 1 −1

0 1



−1  −

1
5

1
10

 = −2z + 1
10(z − 1)2 .

Hence we see algorithms 2.3.1 and 2.3.2 have the same transfer function, so by

proposition 2.6.1 they are oracle-equivalent. In fact, since the algorithms have

the same number of state variables, there exists an invertible linear transforma-

tion

Q =

 2 −1

−1 1


to convert the state-space realization of algorithm 2.3.1 to the state-space real-

ization of algorithm 2.3.2 following eq. (2.12).

Algorithms 2.3.3 and 2.3.4 The state-space realization and transfer function of

algorithm 2.3.3 are

Ĥ3(z) =


3 −2 1

5

1 0 0

−1 2 0

 =
[
−1 2

] zI −

 3 −2

1 0



−1 

1
5

0

 = − 1
5(z − 1)

.
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The state-space realization and transfer function of algorithm 2.3.4 are

Ĥ4(z) =

 1 −1
5

1 0

 =
[

1
] (

zI −
[

1
])−1 [

−1
5

]
= −

1
5(z − 1)

.

Algorithms 2.3.3 and 2.3.4 have the same transfer function, so by proposi-

tion 2.6.1 they are oracle-equivalent. On the other hand, they have different

numbers of states. Consider the invertible linear transformation

Q =

 −1 2

0 1

 .
Applying Q to the state-space realization of algorithm 2.3.3 leads to

1 0 −1
5

−1 2 0

1 0 0

 ,
where we have used dashed lines to demarcate the blocks in the state-space

realization. This has the same minimal realization as algorithm 2.3.4 by sec-

tion 2.4.3.  1 −1
5

1 0

 .
Note that the state-space realization of algorithm 2.3.4 is a minimal realization.

This shows the reason why algorithms 2.3.3 and 2.3.4 are equivalent even if they

have different numbers of states.

Now we show how the sausage was made. Algorithm 2.3.3 was designed by

starting with the more complex Triple momentum algorithm algorithm 2.6.1 [61,

104] and choosing parameters of the algorithm so its transfer function matched

algorithm 2.3.4.
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Algorithm 2.6.1 Triple momentum algorithm

for k = 0, 1, 2, . . . do
xk+1

1 = (1 + β)xk
1 − βx

k
2 − α∇ f ((1 + η)xk

1 − ηx
k
2)

xk+1
2 = xk

1
end for

The state-space realization and transfer function of algorithm 2.6.1 are

Ĥ7(z) =


1 + β −β −α

1 0 0

1 + η −η 0

 = −
α((η + 1)z − η)
(z − 1)(z − β)

. (2.18)

We now demand that eq. (2.18)(right) must equal the transfer function of algo-

rithm 2.3.4 for all values of z, resulting in the equations

5α(η + 1) = 1

5αη = β.
(2.19)

We solve for the parameters α, η and β to find a solution α = −1
5 , β = 2 and

η = −2 to eq. (2.19) that corresponds to algorithm 2.3.3. Other solutions exist:

for example, α = 1, β = −4 and η = −4
5 solves eq. (2.19) and yields another

(different!) algorithm equivalent to algorithm 2.3.4.

2.7 A characterization of shift equivalence

We can also characterize shift equivalence using transfer functions. Suppose an

algorithm uses more than one oracle, and the call to the second oracle depends

on the value of the first. Take algorithm 2.3.5 as example: at iteration k, the

first update equation calls the oracle prox f to compute xk+1
1 = prox f (xk

3), and the

second update equation calls the oracle proxg to compute xk+1
2 = proxg(2xk+1

1 −xk
3).
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This second update relies on the value of xk+1
1 . Imagine now that we reorder

the update equations by some permutation. Generally this change produces

an entirely different algorithm. But if the permutation is a cyclic permutation,

the order of the oracle calls is preserved. In the example of algorithm 2.3.5,

we could start with the update equation xk+1
2 = proxg(2xk+1

1 − xk
3) and produce

exactly the same sequence of oracle calls (after the first) by initializing xk+1
1 and

xk
3 appropriately. This new algorithm is shift-equivalent to algorithm 2.3.5 by

definition 2.5.2.

Algorithm 2.3.5 has three update equations, and so there are two other algo-

rithms that may be produced by cyclic permutations of algorithm 2.3.5, shown

below as algorithms 2.7.1 and 2.7.2.

Algorithm 2.7.1

for k = 0, 1, 2, . . . do
xk+1

2 = proxg(2xk
1 − xk

3)
xk+1

3 = xk
3 + xk+1

2 − xk
1

xk+1
1 = prox f (xk+1

3 )
end for

Algorithm 2.7.2

for k = 0, 1, 2, . . . do
xk+1

3 = xk
3 + xk

2 − xk
1

xk+1
1 = prox f (xk+1

3 )
xk+1

2 = proxg(2xk+1
1 − xk+1

3 )
end for

Both are shift-equivalent to algorithm 2.3.5, but algorithm 2.7.2 is also oracle-

equivalent to algorithm 2.3.5. (We will revisit and formally prove this result

later.) It is easy to see why: the oracles prox f and proxg are called in the same

order in algorithms 2.7.2 and 2.3.5, but in the opposite order in algorithm 2.7.1.

We introduce notation to generalize this idea to more complex algorithms.

Consider an algorithm A that consists of m update equations and makes n se-

quential oracle calls in each iteration. We insist that no update equation may

contain more than one oracle call, so m ≥ n. At iteration k, the algorithm gener-
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ates states xk
1, . . . , x

k
m, outputs yk

1, . . . , y
k
n, and inputs uk

1, . . . , u
k
n, respectively. Con-

sider any permutation π̃ of the sequence (m) = (1, . . . ,m). We call algorithm

B = Pπ̃A a permutation of algorithm A if B performs the update equations of A

in the order π̃ at each iteration. The algorithms A and B are shift-equivalent if

and only if π̃ is a cyclic permutation of (m).

Proposition 2.7.1. An algorithm and any of its cyclic permutations are shift-

equivalent. Any two shift-equivalent algorithms are equivalent to cyclic per-

mutations of each other.

Proof. We provide a proof sketch here, and defer a detailed proof to ap-

pendix A.3. Let us name the oracle calls of the original algorithm A so that

the oracles are called in order (n).

Cyclic permutation implies shift equivalence. Suppose B = Pπ̃A where π̃ is

a cyclic permutation of (m). The permutation of update equations may reorder

the oracle calls within one iteration, so that the oracle calls in algorithm B fol-

low a cyclic permutation π of (n) (possibly, the identity). Hence A and B are

shift-equivalent. (If the permutation is the identity, then the algorithms are also

oracle-equivalent.)

Shift equivalence implies cyclic permutation. Suppose algorithms A and B

are shift-equivalent. If they are also oracle-equivalent, then they can be written

using the same set of update equations. If they are not oracle-equivalent, we can

always find a cyclic permutation of the update equations ofA that produces the

same oracle sequence as B. Therefore A and B are equivalent to cyclic permu-

tations of each other. (In the first case, the permutation is the identity.) □
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2.7.1 Reordering oracle calls

Most optimization algorithms proceed by sequential updates, each of which de-

pends on the previous update. However, for completeness, we consider a more

general class of equivalences that arises for algorithms whose oracle updates

have a more complex dependency structure. We may express the order of ora-

cle calls at each iteration using a directed graph, where the graph has edge from

oracle i to oracle j if oracle call j depends on the result of oracle call i (within

the same iteration). In other words, within the iteration we must call oracle i

before oracle j. We call this directed graph the oracle dependence graph (ODG) of

the algorithm.

An example is provided below as algorithm 2.7.3. Note that we are not aware

of any practical algorithm for optimization with this ODG. It is constructed only

for illustration.

Algorithm 2.7.3

for k = 0, 1, 2, . . . do
xk+1

1 = xk
4 − t∇ f (xk

4)
xk+1

2 = xk+1
1 − t∇g(xk+1

1 )
xk+1

3 = xk+1
1 − t∇h(xk+1

1 )
xk+1

4 = proxt f (
1
2 xk+1

2 + 1
2 xk+1

3 )
end for

Algorithm 2.7.4

for k = 0, 1, 2, . . . do
xk+1

1 = xk
4 − t∇ f (xk

4)
xk+1

3 = xk+1
1 − t∇h(xk+1

1 )
xk+1

2 = xk+1
1 − t∇g(xk+1

1 )
xk+1

4 = proxt f (
1
2 xk+1

2 + 1
2 xk+1

3 )
end for

Figure 2.5 expresses the dependency of oracle calls within each iteration of

algorithm 2.7.3. At each iteration, oracle calls 2 (∇g) and 3 (∇h) depends on the

result of oracle call 1 (∇ f ); oracle call 4 (proxt f ) depends on the results of oracle

calls 1, 2, and 3.

An algorithm is always written as a sequence of update equations. But some

37



1

23

4

Figure 2.5: Directed graph representing dependency of oracle calls in algo-
rithm 2.7.3.

algorithms might have a directed graph that may be written as a sequence (with

all edges pointing forward) in more than one way, and so can be implemented

as a sequence of oracle calls in more than one way. For illustration, consider

algorithms 2.7.3 and 2.7.4. At each iteration, the oracle calls of algorithms 2.7.3

and 2.7.4 are identical: that is, calls to oracles ∇ f , ∇g, ∇h, and proxt f are identical.

The only difference is that the oracle calls ∇g and ∇h are swapped in the oracle

sequence at each iteration. Notice that the state-space realizations of these al-

gorithms still have the same transfer function (after swapping the second and

third columns and rows), consistent with the fact that algorithms 2.7.3 and 2.7.4

share the same directed graph of oracle calls (fig. 2.5).

We know of no practical optimization algorithm like this. However, were

one to be discovered, we would suggest an expanded definition of oracle equiv-

alence: two algorithms are oracle-equivalent if there exists a way of writing each

algorithm as a sequence of updates so that both algorithms have the same se-

quence of oracle calls. The transfer function still identifies algorithms that are

oracle-equivalent in this expanded sense.

The oracle calls in an algorithm at each iteration are always written in se-

quential form. This sequential form is lost in the state-space realization of the

algorithm. However, the order (dependency) of oracle calls is encoded in the

D matrix of the state-space realization. In this sense, the D matrix encodes the
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adjacency matrix of the directed graph. We have Di j , 0 if and only if oracle

call i depends on the results of oracle call j at each iteration. For example, in the

state-space realization of algorithm 2.7.3, the D matrix is

0 0 0 0

−t 0 0 0

−t 0 0 0

−t −1
2 t −1

2 t 0


.

In light of this discussion, we can strengthen proposition 2.7.1 to proposi-

tion 2.7.2.

Proposition 2.7.2. An algorithm and any of its cyclic permutations are shift-

equivalent; further, if they share the same D matrix in their state-space realiza-

tions, they are also oracle-equivalent. Any two shift-equivalent algorithms are

equivalent to cyclic permutations of each other.

If an algorithm contains m update equations and n oracle calls at each itera-

tion (m ≥ n), there are m possible cyclic permutations on the update equations.

According to the D matrix in the state-space realization, we can group the m

cyclic permutations into n distinct equivalent classes. Algorithms within each

equivalence class are oracle-equivalent and shift-equivalent, while algorithms

in different equivalent classes are only shift-equivalent. The n distinct equiv-

alence classes correspond to the n cyclic permutations of the original order of

oracle calls (n).

2.7.2 Characterization of cyclic permutation

In the remainder of this chapter, let us restrict our attention to algorithms
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for which a (cyclic) permutation of the algorithm changes the update order of

oracle calls within one iteration, or in other words, changes the D matrix in the

state-space realization. In this way, we call algorithm B = PπA a permutation of

algorithm A if B performs the update equations of A in a different order such

that the update order of oracle calls of B is π at each iteration.

Suppose A has state-space realization (A, B,C,D), and B = PπA where π =

( j + 1, . . . , n, 1, . . . , j) for 1 < j < n is a cyclic permutation of (n). We will show

how to recognize this relationship between the algorithms using their transfer

functions. Partition the oracle calls into two parts, (1, . . . , j) and ( j+1, . . . , n), and

partition the input and output sequences in the same way: ū1, ū2 for inputs and

ȳ1, ȳ2 for outputs. The state-space realization LA and transfer function ĤA(z) can

also be partitioned accordingly as

LA =


A B1 B2

C1 D11 D12

C2 D21 D22

 , (2.20)

ĤA(z) =

 C1(zI − A)−1B1 + D11 C1(zI − A)−1B2 + D12

C2(zI − A)−1B1 + D21 C2(zI − A)−1B2 + D22

 =
 Ĥ11(z) Ĥ12(z)

Ĥ21(z) Ĥ22(z)

 .
Now we can say how the transfer function of an algorithm is related to that

of its cyclic permutation. Recall that by assumption 2.5.3, when we compare

transfer functions to detect shift equivalence (or cyclic permutations), both al-

gorithms call the same set of oracles in each iteration.

Proposition 2.7.3. Instate notation as in eq. (2.20) and assume D12 = 0. Then B

is equivalent to PπA if and only if the transfer function of B satisfies

ĤB(z) =

 Ĥ11(z) zĤ12(z)

Ĥ21(z)/z Ĥ22(z)

 . (2.21)
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Proof. We provide a proof sketch here and defer a detailed proof to ap-

pendix A.4. The state-space realization of PπA is

A B1 0 B2

0 0 I 0

C1A C1B1 D11 C1B2

C2 D21 0 D22


. (2.22)

From the state-space realization, we may compute the transfer function as

ĤB(z) =

 C1(zI − A)−1B1 + D11 zC1(zI − A)−1B2

C2(zI − A)−1B1/z + D21/z C2(zI − A)−1B2 + D22

 =
 Ĥ11(z) zĤ12(z)

Ĥ21(z)/z Ĥ22(z)

 .
Finally, note two algorithms are equivalent if and only if they have identical

transfer functions by proposition 2.6.1. □

We have assumed that D12 = 0 for algorithm A. This assumption is quite

weak. In fact, D12 must be 0 for any algorithm A that can be represented as

a causal linear time-invariant system. Here, causal means that we can imple-

ment the algorithm by calling state update equations sequentially. To see this,

suppose the state update equations have been arranged in this order, and use

eq. (2.5) to write down the matrix representation of the infinite dimensional map

H that maps input u to output y corresponding toA as eq. (2.23):

H =



D11 D12 0 0 0 0 · · ·

D21 D22 0 0 0 0 · · ·

C1B1 C1B2 D11 D12 0 0 · · ·

C2B1 C2B2 D21 D22 0 0 · · ·

C1AB1 C1AB2 C1B1 C1B2 D11 D12 · · ·

C2AB1 C2AB2 C2B1 C2B2 D21 D22 · · ·

...
. . .

. . .
. . .

. . .
. . .

. . .



. (2.23)
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We can see that map H is (block) Toeplitz. Further, if algorithmA is causal, map

H must be lower-triangular, and so D12 must be 0.

By causality, at each iteration the former oracle calls must be independent

with the latter oracle calls while the latter calls can depend on the former calls.

This indicates that there are no directed cycles in the directed graph representing

oracle calls at each iteration for any causal algorithm. In other words, the graph

is a directed acyclic graph (DAG). This is consistent with the fact that any causal

algorithm has a lower-triangular D matrix (lower-triangular adjacency matrix of

the directed graph).

Note that algorithms are not always written with state update equations or-

dered causally: for example, the state-space realization eq. (2.22) has a non-

zero D12 block. However, we may reorder these equations so that each equation

depends only on previously-computed quantities to reveal that the iteration is

causal; after this rearrangement, the new D12 block is 0. We discuss permuta-

tions further in appendix A.5.

The fixed points of an algorithm and its cyclic permutations are the same up

to a permutation, as stated by proposition 2.7.4.

Proposition 2.7.4. If algorithm A converges to a fixed point (ȳ⋆1 , ȳ
⋆
2 , ū

⋆
1 , ū

⋆
2 , x

⋆),

then its cyclic permutation PπA converges to fixed point (ȳ⋆2 , ȳ
⋆
1 , ū

⋆
2 , ū

⋆
1 , x

⋆).

A detailed proof is provided in appendix A.6.
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2.7.3 Applications: proof of shift equivalence

Algorithms 2.3.5 and 2.3.6 Now, we can revisit algorithms 2.3.5 and 2.3.6 in

the third motivating example and show that they are shift-equivalent. Here the

oracles of algorithms 2.3.5 and 2.3.6 are prox f and proxg. The transfer function

of algorithm 2.3.5 is

Ĥ5(z) =



0 0 0 1 0

0 0 0 0 1

0 0 1 −1 1

0 0 1 0 0

0 0 −1 2 0


=

 −
1

z−1
1

z−1

2z−1
z−1 − 1

z−1

 .

The transfer functions of algorithm 2.3.6 is

Ĥ6(z) =



1 −1 0 1

0 0 1 0

1 −1 0 1

−1 2 0 0


=

 −
1

z−1
z

z−1

2z−1
z(z−1) −

1
z−1

 .

From propositions 2.7.1 and 2.7.3, we know that they are shift-equivalent and

equivalent up to a cyclic permutation.

Algorithms 2.7.1 and 2.7.2 Here we revisit algorithms 2.7.1 and 2.7.2 at the

beginning of this chapter and show their relations with algorithm 2.3.5. The
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oracles are prox f and proxg. The transfer function of algorithm 2.7.1 is

Ĥ8(z) =



0 0 0 1 0

0 0 0 0 1

−1 0 1 0 1

−1 0 1 0 1

2 0 −1 0 0


=

 −
1

z−1
z

z−1

2z−1
z(z−1) −

1
z−1

 .

The transfer function of algorithm 2.7.2 is

Ĥ9(z) =



0 0 0 1 0

0 0 0 0 1

−1 1 1 0 0

−1 1 1 0 0

1 −1 −1 2 0


=

 −
1

z−1
1

z−1

2z−1
z−1 − 1

z−1

 .

From propositions 2.7.1 and 2.7.3, we know that algorithms 2.7.1 and 2.3.5

are shift-equivalent and equivalent up to a cyclic permutation. From propo-

sition 2.6.1, we know algorithms 2.7.2 and 2.3.5 are oracle-equivalent, thus they

are also shift-equivalent.

Algorithm 2.7.5
Douglas-Rachford splitting

for k = 0, 1, 2, . . . do
xk+1

1 = proxt f (xk
3)

xk+1
2 = proxt(g◦L)(2xk+1

1 − xk
3)

xk+1
3 = xk

3 + xk+1
2 − xk+1

1
end for

Algorithm 2.7.6 ADMM

for k = 0, 1, 2, . . . do
ξk+1

1 = argminξ{g(ξ) +

ρ

2

∥∥∥Aξ + Bξk
2 − c + ξk

3

∥∥∥2
}

ξk+1
2 = argminξ{ f (ξ) +

ρ

2

∥∥∥Aξk+1
1 + Bξ − c + ξk

3

∥∥∥2
}

ξk+1
3 = ξk

3 + Aξk+1
1 + Bξk+1

2 − c
end for

Douglas-Rachford splitting and ADMM Consider a last example of al-

gorithm permutation: Douglas-Rachford splitting (DR) (algorithm 2.7.5 [31,
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35]) and the alternating direction method of multipliers (ADMM) (algo-

rithm 2.7.6 [91, §8]). Suppose that linear operator L is invertible, A = L−1,

B = −I, and c = 0 in eq. (2.1). Then both DR and ADMM solve problem

eq. (2.1) [12, 63, 107], and the update equations of ADMM can be simplified

as algorithm 2.7.7. Further, we assume ρ = 1/t in ADMM. We will compute the

Algorithm 2.7.7 Simplified ADMM

for k = 0, 1, 2, . . . do
ξk+1

1 = Lprox 1
ρ (g◦L)(ξ

k
2 − ξ

k
3)

ξk+1
2 = prox 1

ρ f (L
−1ξk+1

1 + ξk
3)

ξk+1
3 = ξk

3 + L−1ξk+1
1 − ξk+1

2
end for

transfer function of both algorithms using proxt f and proxt(g◦L) as the oracles.

The transfer function of DR is

Ĥ10(z) =



0 0 0 I 0

0 0 0 0 I

0 0 I −I I

0 0 I 0 0

0 0 −I 2I 0


=

 −
1

z−1 I 1
z−1 I

2z−1
z−1 I − 1

z−1 I

 (2.24)

and the transfer function of ADMM is

Ĥ11(z) =



0 0 0 0 L

0 0 0 I 0

0 0 I −I I

0 0 I 0 I

0 I −I 0 0


=

 −
1

z−1 I z
z−1 I

2z−1
z(z−1) I −

1
z−1 I

 . (2.25)

From propositions 2.7.1 and 2.7.3, we know that DR and ADMM (with ρ = 1/t)

are shift-equivalent and that DR is equivalent to a cyclic permutation of ADMM.

In fact, it is also possible to write the state-space realization for each algorithm
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using the gradient (or subgradient) of f and g as the oracle. The transfer func-

tions depend on the choice of oracle, but in either case, we obtain the same

results: the algorithms are shift-equivalent. We discuss the details further in ap-

pendix A.7. We can write the state-space realizations of DR and ADMM using

the (sub)gradients as oracles in appendix A.7: the corresponding D12 blocks are

still zero and thus still satisfy causality.

2.8 Algorithm repetition

In previous sections, we have defined equivalence between algorithms with the

same number of oracle calls in each iteration. This section considers how to

identify relations between two algorithms when the number of oracles in each

iteration differs. For example, we would like to detect when one algorithm

consists of another, simpler algorithm, repeated twice or more, possibly with

changes to variables or shifts that obscure the relation.

Consider an algorithm A. Given a problem and an initialization, the algo-

rithm will generate state sequence (xk
A

)k≥0, input sequence (uk
A

)k≥0, and output

sequence (yk
A

)k≥0, respectively. Specifically, the update at time step k can be writ-

ten as xk+1
A
= A(xk

A
). Suppose we have another algorithm B such that B = A2:

repeatingA twice gives the same result as B. We call B a repetition ofA.

Just as in the previous sections, algorithm repetition can be characterized by

the transfer function. Here, assumption 2.5.3 ensures the algorithms compared

call the same set of oracles, although the number of times each oracle is called

may be different.

Proposition 2.8.1. Suppose A has state-space realization (A, B,C,D). Then B is
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equivalent toA2 if and only if its transfer function has the form C(zI − A2)−1AB + D C(zI − A2)−1B

CA(zI − A2)−1AB +CB CA(zI − A2)−1B + D

 . (2.26)

Detailed proof of proposition 2.8.1 is provided in appendix A.8.

Algorithm 2.8.1 Gradient method

for k = 0, 1, 2, . . . do
xk+1 = xk − t∇ f (xk)

end for

Algorithm 2.8.2
Repetition of gradient method

for k = 0, 1, 2, . . . do
ξk+1

2 = ξk
1 − t∇ f (ξk

1)
ξk+1

1 = ξk+1
2 − t∇ f (ξk+1

2 )
end for

One example of repetition consists the gradient method algorithm 2.8.1 and

its repetition algorithm 2.8.2. Both call the same set of oracles (∇ f ). The transfer

functions of each algorithm are computed as Ĥ12(z) and Ĥ13(z) respectively:

Ĥ12(z) =

 1 −t

1 0

 = − t
z − 1

, Ĥ13(z) =


1 −t −t

1 0 0

1 −t 0

 =
 −

t
z−1 − t

z−1

− tz
z−1 − t

z−1

 .

Proposition 2.8.1 reveals how the transfer function changes when an algo-

rithm is repeated twice. In fact, we can identify an algorithm that has been re-

peated arbitrarily many times. Suppose algorithm C is A repeated n ≥ 1 times:

C = An.

Proposition 2.8.2. Suppose A has state-space realization (A, B,C,D). Then C is

equivalent to An for n ≥ 1 if and only if C has a transfer function given by

eq. (2.28).
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Proof. Sufficiency. We can represent Cwith state-space realization

An An−1B . . . . . . AB B

C D 0 0 . . . 0

CA CB D 0 . . . 0
...

...
. . .

. . .
. . .

...

CAn−1 CAn−2B . . . . . . CB D


. (2.27)

Note that (zI − An)−1Al = Al(zI − An)−1 for any n and l. Let C̃ = C(zI − An)−1, and

compute the transfer function of C:

C̃An−1B + D C̃An−2B . . . . . . C̃AB C̃B

C̃AnB +CB C̃An−1B + D . . . . . . C̃A2B C̃AB
...

...
. . .

. . .
...

...

C̃A2n−2B +CAn−2B C̃A2n−3B +CAn−3B . . . . . . C̃AnB +CB C̃An−1B + D


.

(2.28)

Necessity is provided by proposition 2.6.1 since the transfer function

uniquely characterizes an equivalence class of algorithms. □

Remark Proposition 2.8.1 is a special case of proposition 2.8.2 when n = 2. The

dimension of transfer function of C is n times the dimension of transfer function

ofA. Similarly, the dimension of input and output of C is n times the dimension

of the input and output ofA. At time step k, we have yk
C
= (ynk

A
, . . . , y(n+1)k−1

A
) and

uk
C
= (unk

A
, . . . , u(n+1)k−1

A
).

Just as for oracle equivalence and cyclic permutations, the fixed points of an

algorithm and its repetitions are related, as shown in proposition 2.8.3.

Proposition 2.8.3. If algorithm A converges to a fixed point (y⋆, u⋆, x⋆), then its

repetition An for n ≥ 1 converges to fixed point (y′, u′, x⋆), with y′ = y⋆
⊗

1
n
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and u′ = u⋆
⊗

1
n. Here

⊗
is the Kronecker product and 1

n is an n dimensional

vector whose entries are all ones.

Detailed proof is provided in appendix A.9. Since An repeats A n times, the

input and output of the fixed point of An are obtained by repeating the input

and output on the corresponding fixed point ofA n times.

Repetition gives us many more ways to combine algorithms into complex

and unwieldly (but convergent) new methods. We can repeat a sequence of

iterations from different algorithms and regard them together as a new algo-

rithm. Suppose we choose n algorithmsA1, . . . ,An with state-space realizations

(A1, B1,C1,D1), . . . , (An, Bn,Cn,Dn) and run one iteration of each as a single itera-

tion of our new monster algorithm. For simplicity, suppose the state-space re-

alization matrices Ai, Bi,Ci,Di for each algorithm Ai have the same dimensions

as all others i = 1, . . . , n. (Otherwise the result is harder to write down, but

still straightforward to compute.) Then we can represent the resulting monster

algorithm with transfer function

∏1
i=n Ai

∏2
i=n AiB1 . . . . . . AnBn−1 Bn

C1 D1 0 0 . . . 0

C2A1 C2B1 D2 0 . . . 0
...

...
. . .

. . .
. . .

...

Cn
∏1

i=n−1 Ai Cn
∏2

i=n−1 AiB1 . . . . . . CnBn−1 Dn


. (2.29)

Hence one way to develop a new optimization algorithm would be to com-

bine existing algorithms into a new monster algorithm with similar convergence

properties but (perhaps) new exciting interpretations. For example, we could

combine gradient descent with the proximal point method to derive a proximal
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gradient method for minimizing f (x): prox f (x − ∇ f (x)). (We are not aware of

any published optimization algorithms that have been constructed in this way.)

Using our software, it would be easy to detect such algorithm surgery by

searching over all pairs (or trios, etc) of known algorithms. This combinatorial

search is still not too expensive, since the list of known algorithms is still rather

small, and the number of algorithms that makes up a monster algorithm is lim-

ited by the number of oracle calls at each iteration of the monster algorithm.

2.9 Algorithm conjugation

In this section, we introduce one last algorithm transformation, conjugation,

which alters the oracle calls but results in algorithms that still bear a family

resemblance.

In convex optimization, algorithm conjugation naturally relates some oracles

to others [90; 91, §2]: for example, when f ∗(y) = supx{x
T y − f (x)} is the Fenchel

conjugate of f [39, §3],

• (∂ f )−1 = ∂ f ∗, and

• Moreau’s identity. I − prox f = prox f ∗ .

We can rewrite any algorithm in terms of different, also easily computable, or-

acles using these identities. Consider a simple example: we will obfuscate the

proximal gradient method (algorithm 2.9.1 [8, §10; 9]) by rewriting it in terms

of the conjugate of the original oracle proxg, using Moreau’s identity, as algo-

rithm 2.9.2 [74].
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Algorithm 2.9.1
Proximal gradient method

for k = 0, 1, 2, . . . do
xk+1 = proxtg(xk − t∇ f (xk))

end for

Algorithm 2.9.2
Conjugate of proximal gradient method

for k = 0, 1, 2, . . . do
ξk+1 = ξk − t∇ f (ξk) − tprox 1

t g∗(
1
t (ξk −

t∇ f (ξk)))
end for

The transfer function of the algorithm changes when we rewrite the algo-

rithm to call a different oracle, such as calling prox f ∗ instead of prox f . Yet the

sequence of states is preserved! Similarly, when we rewrite an algorithm to call

∂ f ∗ instead of ∂ f , the resulting algorithm is related to the original algorithm by

swapping the input and output sequences. We say that algorithm B = CκA is a

conjugate of algorithm A if algorithm B results from rewriting algorithm A to

use the conjugates of the oracles in set κ ⊆ [n], where [n] = {1, . . . , n} is the set

of oracle indices for algorithm A. Interestingly, conjugation preserves the state

sequence but not the oracle sequence. We will also call two algorithms conju-

gates if they are oracle-equivalent to a conjugate pair. Our goal in this section is

to describe how to identify conjugate algorithms.

For simplicity in the remainder of this section, we suppose that all oracles are

(sub)gradients. To detect equivalence of algorithms involving prox using meth-

ods presented here, we may write the state-space realization of the algorithm in

terms of (sub)gradients:

u = prox f (y) ⇐⇒ y ∈ u + ∂ f (u).

In fact, our software uses this method to check algorithm conjugation.

Restricting to (sub)gradients, we see from the identity (∂ f )−1 = ∂ f ∗ that algo-

rithm conjugation swaps the input and output of an algorithm: the algorithm
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after conjugation takes the output of the original algorithm as input and pro-

duces the input of the original one as output. As shown in fig. 2.6, the input

sequence of the algorithm after conjugation is the original output sequence and

the output sequence in the algorithm after conjugation is the original input se-

quence.

Lxk−1. . . xk

ϕ yk−1uk−1

L xk+1

ϕ ykuk

L
. . .

ϕ yk+1uk+1

L̃
x̃k−1. . . x̃k

ϕ−1 ỹk−1ũk−1

L̃
x̃k+1

ϕ−1 ỹkũk

L̃ . . .

ϕ−1 ỹk+1ũk+1

Figure 2.6: Unrolled block-diagram representation of algorithm conjugation.

First, let’s introduce a bit of standard notation. Suppose an algorithm A

contains n oracle calls in each iteration. The cardinality of a subset κ ⊆ [n] is |κ|

and the complement is κ̄ = [n] \ κ. For any matrix M ∈ Rn×n, M[κ, ν] is the sub-

matrix of M whose rows and columns are indexed by κ and ν ⊆ [n], respectively.

We write M[κ, κ] as M[κ] for simplicity. For i ∈ [n], the conjugation operator

Ci conjugates oracle i: it replaces the ith oracle by its inverse. The operator Cκ

conjugates all oracles in the set κ ⊆ [n] to produce the conjugate algorithm CκA.

Proposition 2.9.1. SupposeA has state-space realization (A, B,C,D) and transfer

function Ĥ(z), and D[κ] is invertible. Then B is equivalent to CκA if and only if

the transfer function Ĥ′(z) of B satisfies

PĤ′(z)PT =

 Ĥ[κ]−1(z) −Ĥ[κ]−1(z)Ĥ[κ, κ̄](z)

Ĥ[κ̄, κ](z)Ĥ[κ]−1(z) Ĥ[κ̄](z) − Ĥ[κ̄, κ](z)Ĥ[κ]−1(z)Ĥ[κ, κ̄](z)

 . (2.30)

Here P is a permutation matrix that swaps rows and columns so indices in κ
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come first:

PĤ(z)PT =

 Ĥ[κ](z) Ĥ[κ, κ̄](z)

Ĥ[κ̄, κ](z) Ĥ[κ̄](z)

 . (2.31)

Proof. Sufficiency. Without loss of generality, suppose the oracles κ = {1, . . . , |κ|}

appear first,

Ĥ(z) =

 Ĥ[κ](z) Ĥ[κ, κ̄](z)

Ĥ[κ̄, κ](z) Ĥ[κ̄](z)

 , D =

 D[κ] D[κ, κ̄]

D[κ̄, κ] D[κ̄]

 ,
and consequently the permutation matrix P is the identity. We obtain the de-

sired results from eq. (2.14) by setting D11 = D[κ], Ĥ11(z) = Ĥ[κ](z), Ĥ12(z) =

Ĥ[κ, κ̄](z), Ĥ21(z) = Ĥ[κ̄, κ](z), and Ĥ22(z) = Ĥ[κ̄](z).

Necessity is provided by proposition 2.6.1 as the transfer function uniquely

characterizes an equivalence class of algorithms.

□

From proposition 2.9.1, the transfer function Ĥ(z) of algorithmA is partially

inverted when the algorithm is conjugated by Cκ. The new transfer function

Ĥ′(z) results from applying the Sweep operator with indices κ to Ĥ(z) [46, 102].

If we consider the input and output sequences for each oracle separately, for

any oracle in κ, the input sequence corresponding to CκA is the original output

sequence in A and the output sequence corresponding to CκA is the original

input sequence in A. The input and output sequences of oracles in [n] \ κ re-

main unchanged in the new algorithm CκA. Here, assumption 2.5.3 ensures the

algorithms compared call either same oracles or their corresponding conjugate

oracles and in each iteration the number of oracle calls are the same.
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Proposition 2.9.1 assumes that D[κ] is invertible. In fact, CκA is a causal

algorithm if and only if D[κ] is invertible. We need not condition on causality in

the proposition, since any algorithm that can be written down as a set of update

equations is necessarily causal.

Now we consider two special cases: conjugating 1) a single oracle, or 2) all

of the oracles.

Corollary 2.9.1. Consider algorithm A with state-space realization (A, B,C,D)

and transfer function Ĥ(z) ∈ Rn×n.

(a) Suppose Dkk , 0 for any k ∈ [n]. Then the new transfer function Ĥ′(z) of

CkA can be expressed entrywise as

h′i j(z) =



1/hkk(z) i = k, j = k

−hk j(z)/hkk(z) i = k, j , k

hik(z)/hkk(z) i , k, j = k

hi j(z) − hik(z)hk j(z)/hkk(z) i , k, j , k,

(2.32)

as hi j(z) and h′i j(z) 1 ≤ i, j ≤ n denote the entries of Ĥ(z) and Ĥ′(z) respec-

tively.

(b) Suppose D is invertible. Then the transfer function Ĥ′(z) of C[n]A satisfies

Ĥ′(z) = Ĥ−1(z).

Proximal gradient Now we can revisit algorithms 2.9.1 and 2.9.2 and show

that they are conjugate. The transfer functions of algorithms 2.9.1 and 2.9.2 are

computed as Ĥ14(z) and Ĥ15(z) below. Note that the state-space realizations are

written in terms of (sub)gradients. From corollary 2.9.1, they are conjugate with

respect to the second oracle.
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Ĥ14(z) =

 −
t

z−1 − t
z−1

− tz
z−1 − tz

z−1

 , Ĥ15(z) =

 0 1
z

−1 − z−1
tz


Algorithm 2.9.3 Chambolle-Pock method

for k = 0, 1, 2, . . . do
xk+1

1 = proxτ f (xk
1 − τM

T xk
2)

xk+1
2 = proxσg∗(xk

2 + σM(2xk+1
1 − xk

1))
end for

DR and Chambolle-Pock Another important example is the relation between

DR (algorithm 2.7.5) and the primal-dual optimization method proposed by

Chambolle and Pock (algorithm 2.9.3 [20; 80]). Note that algorithm 2.7.5 has

parameter t and linear operator L, and algorithm 2.9.3 has parameters τ and

σ and linear operator M. Let M = L so that algorithms 2.9.3 and 2.7.5 solve the

same problem. Further suppose that M is invertible and MMT = δI for any δ > 0.

By corollary 2.9.1, we know that they are conjugate with respect to the second

oracle if τ = t and σ = 1/(δt). So DR and the Chambolle-Pock method (when the

parameter value τ = t and σ = 1/(δt)) are conjugate. The transfer functions of

algorithms 2.9.3 and 2.7.5 are provided below as Ĥ10(z) and Ĥ16(z) respectively.

We will say more about how to discover the correct parameter restriction in ??.

Ĥ10(z) =

 −
tz

z−1 I − t
z−1 LT

t(1−2z)
z−1 L − tz

z−1 LLT

 , Ĥ16(z)
M=L,LLT=δI
−−−−−−−−−→
σ= 1
δt ,τ=t


t(1−z)

z I 1
z LT (LLT )−1

1−2z
z (LLT )−1L 1−z

tz (LLT )−1


In order to test equivalence, all algorithms must use the same set of oracles.

This requirement becomes tricky when algorithms are written in terms of an

argmin: what is the oracle? To resolve this issue, we compute the state-space
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realization of every algorithm in this section using the subgradient as the ora-

cle. All these subgradient oracles are associated with proximal operators, and

so they are unique-valued, even though subgradients are generally set-valued:

the input-output pairs match those returned by the proximal operator. (These

subgradient oracles are used for the analysis but need not be computed explic-

itly.)

The fixed points of an algorithm and its conjugate are related as stated in

proposition 2.9.2.

Proposition 2.9.2. If an algorithmA converges to a fixed point (y[κ]⋆, y[κ̄]⋆, u[κ]⋆, u[κ̄]⋆, x⋆),

then its conjugate CκA converges to fixed point (u[κ]⋆, y[κ̄]⋆, y[κ]⋆, u[κ̄]⋆, x⋆).

For simplicity, detailed proof is provided in appendix A.10. Intuitively, as

we invert the input-output map of u[κ] and y[κ], the corresponding parts in the

fixed point are also inverted.

Proposition 2.9.3. Suppose algorithm A has state-space realization (A, B,C,D),

where Dii , 0 and D j j , 0. Then CiC jA = C jCiA = C{i j}A.

Proof. By corollary 2.9.1, if Dii , 0 and D j j , 0, then CiA and C jA are causal.

Note that entries above diagonal of D are all zero because A is causal. Thus,

det(D[{i j}]) = DiiD j j , 0 and C{i j}A is causal. The commutative property of the

Sweep operator gives the result CiC jA = C jCiA = C{i j}A [46, 102]. □

Proposition 2.9.3 states that conjugation of different oracles commutes. This

justifies our notation Cκ for set κ, as the order of the oracles in κ is irrelevant. Fur-

ther, conjugation and cyclic permutation also commute; see proposition A.11.1

and proof in appendix A.11.
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DR and ADMM We showed in section 2.7.3 that the DR (algorithm 2.7.5) and

ADMM (algorithm 2.7.6) are related by permutation with a certain choice of

parameters. Here, we show that they are related by permutation and conjuga-

tion (in either order, as they commute), with a different choice of parameters:

A = LT , B = I, c = 0, ρ = t for ADMM. Further suppose that linear operator L

is invertible. The transfer function of this special parameterization of ADMM

is shown as Ĥ17(z). Relations between DR and ADMM can be illustrated as fol-

lows. Recall Ĥ10(z) is the transfer function of DR. Here we can observe that

different choices of parameters of algorithms can lead to different relations be-

tween algorithms.

Ĥ17(z) =

 −
z

t(z−1) I z
t(z−1) L−1

2z−1
tz(z−1) L−T − z

t(z−1) (LLT )−1

 C12
−−→

 −
tz

z−1 I − tz
z−1 LT

t(1−2z)
z(z−1) L − tz

z−1 LLT

 P21
−−→

 −
tz

z−1 I − t
z−1 LT

t(1−2z)
z−1 L − tz

z−1 LLT

 = Ĥ10(z)

The commutative property is important to identify relations between algo-

rithms efficiently. For example, suppose we would like to identify the relations

between algorithms 2.7.5 and 2.7.6, with transfer functions Ĥ10(z) and Ĥ17(z). We

can first perform conjugation and next permutation on algorithm 2.7.5, and then

test equivalence between the resulting algorithm and algorithm 2.7.6. We need

not try permutation followed by conjugation; as these commute, both orders

lead to the same transfer function.

We have already shown several relations between DR (algorithm 2.7.5),

ADMM (algorithm 2.7.6), and the Chambolle-Pock method (algorithm 2.9.3) us-

ing conjugation and permutation. We represent these relations in fig. 2.7. The

figure relates 8 different algorithms: Starting from DR, since it contains 2 oracles,

there are 2 possible different algorithms by permutation. From the state-space

57



realization, we can conjugate both oracles, which yields 4 different algorithms

by conjugation of different oracles. Therefore, in total there are 2 × 4 = 8 pos-

sible different algorithms, including both ADMM and Chambolle-Pock. In the

figure, C1 and C2 denote conjugation with respect to the first and second oracles

respectively, P denotes permutation, and we can move between algorithms by

applying the transformation on each edge, in either direction, as each transfor-

mation is an involution.

Figure 2.7: Connections between DR, ADMM, and Chambolle-Pock method.

2.10 Linnaeus

In this section, we introduce our software package called LINNAEUS that im-

plements these ideas in detail. This package can be used by researchers (or

peer reviewers) who wish to understand the novelty of new algorithmic ideas

and connections to existing algorithms. The input is an algorithm described in

user-friendly syntax with variables, parameters, functions, oracles, and update

equations. The system will automatically translate the input algorithm into a

canonical form (the transfer function) and use the canonical form to identify
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whether the algorithm is equivalent to any reference algorithm, possibly after

transformations such as permutation, conjugation, or repetition. Further, the

software can also serve as a search engine, which will identify connections from

the input algorithm to existing algorithms in the literature that appear in LIN-

NAEUS’s algorithm library.

2.10.1 Illustrative examples

We use LINNAEUS to identify the relations between algorithms presented previ-

ously in this chapter. These examples demonstrate the power and simplicity of

LINNAEUS. Code for these examples can be found at https://github.com/

udellgroup/Linnaeus_software.

Algorithms 2.3.1 and 2.3.2 The following code identifies that algorithms 2.3.1

and 2.3.2 are oracle-equivalent. We input algorithms 2.3.1 and 2.3.2 with vari-

ables, oracles, and update equations, and parse them into state-space realiza-

tions. Then we check oracle equivalence using the function is equivalent.

The system returns True, consistent with our analytical results in sections 2.3

and 2.6.

# define Algorithm 2.3.1

algo1 = Algorithm("Algorithm 2.3.1")

# add oracle gradient of f to Algorithm 2.3.1

gradf = algo1.add_oracle("gradf")
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# add variables x1, x2, and x3 to Algorithm 2.3.1

x1, x2, x3 = algo1.add_var("x1", "x2", "x3")

# add update equations

# x3 <- 2x1 - x2

algo1.add_update(x3, 2*x1 - x2)

# x2 <- x1

algo1.add_update(x2, x1)

# x1 <- x3 - 1/10*gradf(x3)

algo1.add_update(x1, x3 - 1/10*gradf(x3))

# parse Algorithm 2.3.1, translate it into

↪→canonical form

algo1.parse()

----------------------------------------------------------

Parse Algorithm 2.3.1:

x3 ← 2x1 − x2

x2 ← x1

x1 ← x3 − 0.1gradf(x3)

----------------------------------------------------------
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algo2 = Algorithm("Algorithm 2.3.2")

xi1, xi2, xi3 = algo2.add_var("xi1", "xi2",

↪→"xi3")

gradf = algo2.add_oracle("gradf")

# xi3 <- xi1

algo2.add_update(xi3, xi1)

# xi1 <- xi1 - xi2 - 1/5*gradf(xi1)

algo2.add_update(xi1, xi1 - xi2 - 1/5*gradf(xi3))

# xi2 <- xi2 + 1/10*gradf(xi3)

algo2.add_update(xi2, xi2 + 1/10*gradf(xi3))

algo2.parse()

----------------------------------------------------------

Parse Algorithm 2.3.2:

ξ3 ← ξ1

ξ1 ← ξ1 − ξ2 − 0.2gradf(ξ3)

ξ2 ← ξ2 + 0.1gradf(ξ3)

----------------------------------------------------------

# check oracle equivalence

lin.is_equivalent(algo1, algo2, verbose = True)
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----------------------------------------------------------

Algorithm 2.3.1 is equivalent to Algorithm 2.3.2.

----------------------------------------------------------

True

Algorithms 2.3.5 and 2.3.6 The second example identifies that algorithms 2.3.5

and 2.3.6 are shift-equivalent. We input and parse the algorithms into state-

space realizations and then check shift equivalence (cyclic permutation) using

the function is permutation. The system returns True, consistent with re-

sults in sections 2.3 and 2.7.

algo5 = Algorithm("Algorithm 2.3.5")

x1, x2, x3 = algo5.add_var("x1", "x2", "x3")

proxf, proxg = algo5.add_oracle("proxf", "proxg")

# x1 <- proxf(x3)

algo5.add_update(x1, proxf(x3))

# x2 <- proxg(2x1 - x3)

algo5.add_update(x2, proxg(2*x1 - x3))

# x3 <- x3 + x2 - x1

algo5.add_update(x3, x3 + x2 - x1)

algo5.parse()

----------------------------------------------------------

Parse Algorithm 2.3.5:
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x1 ← proxf(x3)

x2 ← proxg(2x1 − x3)

x3 ← x3 + x2 − x1

----------------------------------------------------------

algo4 = Algorithm("Algorithm 2.3.6")

xi1, xi2 = algo4.add_var("xi1", "xi2")

proxf, proxg = algo4.add_oracle("proxf", "proxg")

# xi1 <- proxg(-xi1 + 2xi2) + xi1 - xi2

algo4.add_update(xi1, proxg(-xi1 + 2*xi2) + xi1

↪→- xi2)

# xi2 <- proxf(xi1)

algo4.add_update(xi2, proxf(xi1))

algo4.parse()

----------------------------------------------------------

Parse Algorithm 2.3.6:

ξ1 ← proxg(−ξ1 + 2ξ2) + ξ1 − ξ2

ξ2 ← proxf(ξ1)

----------------------------------------------------------
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# check cyclic permutation (shift equivalence)

lin.is_permutation(algo5, algo6, verbose = True)

----------------------------------------------------------

Algorithm 2.3.5 is a permutation of Algorithm 2.3.6.

----------------------------------------------------------

True

DR and ADMM The third illustrative example shows that DR and ADMM

are related by permutation and conjugation, as we saw in section 2.9. Further,

LINNAEUS can even reveal the specific parameter choice required for the rela-

tion to hold. Just as in section 2.9, suppose both DR and ADMM solve problem

eq. (2.1) with A = LT , B = I, and c = 0. We input and parse DR and ADMM. To

detect the relations, we use function test conjugate permutation to check

conjugation and permutation between DR and ADMM. The results are the same

as section 2.9.

DR = Algorithm("Douglas-Rachford splitting")

x1, x2, x3 = DR.add_var("x1", "x2", "x3")

t = DR.add_parameter("t")

L = DR.add_parameter("L", commutative = False)

# x1 <- prox_tf(x3)

DR.add_update(x1, lin.prox(f, t)(x3))

# x2 <- prox_tgL(2x1 - x3)

DR.add_update(x2, lin.prox(g, t, L)(2*x1 - x3))

64



# x3 <- x3 + x2 - x1

DR.add_update(x3, x3 + x2 - x1)

DR.parse()

----------------------------------------------------------

Parse Douglas-Rachford splitting:

x1 ← proxt f (x3)

x2 ← proxt(g◦L)(2x1 − x3)

x3 ← x3 + x2 − x1

----------------------------------------------------------

ADMM = Algorithm("ADMM")

f, g = ADMM.add_function("f", "g")

rho = ADMM.add_parameter("rho")

L = ADMM.add_parameter("L", commutative = False)

xi1, xi2, xi3 = ADMM.add_var("xi1", "xi2", "xi3")

# xi1 <- argmin(x1, gˆ*(xi1) + 1/2*rho*||T(L)xi1

↪→+ xi2 + xi3||ˆ2)

ADMM.add_update(xi1, lin.argmin(xi1, g(xi1) + 1/

↪→2*rho*lin.norm_square(T(L)*xi1 + xi2 + xi3)))

# xi2 <- argmin(x2, fˆ*(xi2) + 1/2*rho*||T(L)xi1

↪→+ xi2 + xi3||ˆ2)
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ADMM.add_update(xi2, lin.argmin(xi2, f(xi2) + 1/

↪→2*rho*lin.norm_square(T(L)*xi1 + xi2 + xi3)))

# xi3 <- xi3 + T(L)xi1 + xi2

ADMM.add_update(xi3, xi3 + T(L)*xi1 + xi2)

ADMM.parse()

----------------------------------------------------------

Parse ADMM:

ξ1 ← argminξ1{g(ξ1) + 0.5ρnormsquare(T (L)ξ1 + ξ2 + ξ3)}

ξ2 ← argminξ2{ f (ξ2) + 0.5ρnormsquare(T (L)ξ1 + ξ2 + ξ3)}

ξ3 ← T (L)ξ1 + ξ2 + ξ3

----------------------------------------------------------

# check permutation and conjugation

# between DR and ADMM

lin.test_conjugate_permutation(DR, ADMM)

----------------------------------------------------------

==========================================================

Parameters of Douglas-Rachford splitting:

t, L
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Parameters of ADMM:

ρ, L

Douglas-Rachford splitting is a conjugate permutation of

↪→ADMM, if the parameters satisfy:

ρ = t

L = L

==========================================================

----------------------------------------------------------

2.10.2 Implementation

In this subsection, we briefly describe the implementation of LINNAEUS. All

expressions in LINNAEUS are defined symbolically, using the python package

for symbolic mathematics sympy. In LINNAEUS, an algorithm is specified by

defining variables, parameters, functions, oracles, and update equations. All

variables and parameters are symbolic, so there is no need to specialize problem

dimensions or parameter choices. The system automatically translates an input

algorithm into its state-space realization and computes the transfer function.

The transfer functions can be compared and manipulated as needed to establish

various kinds of equivalences or other relations between algorithms.
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Parameter declaration Parameters of the algorithm can be declared as scalar

(commutative) or vector or matrix (noncommutative). The following code

shows how to add scalar t and matrix L to algo1.

# add a scalar parameter t

t = algo1.add_parameter("t")

# add a matrix parameter L

L = algo1.add_parameter("L", commutative = False)

Parameter specification Given two input algorithms, LINNAEUS computes

the transfer functions and can compare them to detect equivalence and other

relations. Some algorithms are equivalent or related only when the parame-

ters satisfy a certain condition: for example, DR and ADMM. If the transfer

functions of each algorithm use different parameters, LINNAEUS form symbolic

equations and solve the equations to determine conditions that, if satisfied by

the algorithm parameters, yield the desired relation between the algorithms; see

eq. (2.19) in section 2.6.

Oracles and function Oracles play the starring role in our framework: oracle

equivalence is possible only if two algorithms share the same oracles. In LIN-

NAEUS, we provide two approaches to declare and add oracles to an algorithm.

The black-box approach is to define oracles as black boxes. When parsing the

algorithm, the system treats each oracle as a distinct entity unrelated to any

other oracle. An oracle declared using syntax add oracle uses the black-box

approach. For example, we may add oracles ∇ f and proxg to algorithm algo1:
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# add oracle gradient of f in the first approach

gradf = algo1.add_oracle("gradf")

# add oracle prox of g in the first approach

proxg = algo1.add_oracle("proxg")

The functional approach is to define oracles in terms of the (sub)gradient of

a function. When parsing an algorithm, all the oracles will be decomposed into

(sub)gradients and the state-space realization given in terms of (sub)gradients.

We say that two algorithms are oracle-equivalent in terms of functional or-

acles if they are oracle-equivalent after rewriting the algorithm to use only

(sub)gradient oracles. This approach is critical to allow us to identify algorithm

conjugation, since conjugate algorithms use different (conjugate) oracles. If ev-

ery algorithm is represented in terms of (sub)gradients, algorithm conjugation

can be detected using proposition 2.9.1. Fortunately, common oracles such as

prox and argmin can be easily written in terms of (sub)gradients: for example,

prox f (x) = (I − ∂ f )−1(x) and argmin as eq. (2.33).

To use the functional approach, users must define and add functions to the

algorithm first using add function and then declare and add oracles. The

following code shows how to use the functional approach to declare and add

oracles ∇ f and prox f .

# add function f

f = algo1.add_function("f")

# gradient of f with repect to x1

lin.grad(f)(x1)
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# prox of f with repect to x2 and parameter t

lin.prox(f,t)(x2)

2.10.3 Black-box vs functional oracles

Are two algorithms equivalent with respect to black-box oracles if and only if

they are equivalent with respect to functional oracles? Intuitively, when ora-

cles are defined in terms of (sub)gradients, it might be possible to identify more

relations with other algorithms. However, as stated in proposition 2.10.1, for

algorithms that use only proximal operators, argmins, and (sub)gradients as or-

acles, equivalence is preserved under both black-box and functional definitions

of oracles.

Proposition 2.10.1. Suppose two algorithms use only proximal operators,

argmins, and (sub)gradients as oracles. Then the two algorithms are equiva-

lent with respect to black-box oracles if and only if they are also equivalent with

respect to functional oracles.

Proof. Since for any function g and any t, proxtg(x) = argminy{tg(y) + 1
2∥x − y∥2},

we can treat proximal operator as a special case of argmin. Without loss of

generality, any argmin oracle in a linear algorithm has the form

z = argminx

λg(x) +
1
2

 x

y


T  Q11 Q12

Q21 Q22


 x

y


 .

Here z is the value of the oracle and y can be regarded as the argument, which

means from the perspective of a linear system, z is the input and y is the output.
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The parameter λ can be a scalar or matrix, g is a function, and Q11, Q12, Q21, Q22

are parameter matrices. Specifically, Q11 Q12

Q21 Q22


is a symmetric matrix and

1
2

 x

y


T  Q11 Q12

Q21 Q22


 x

y


is a quadratic term with respect to x and y. The matrix Q11 must be invertible if

the argmin oracle is single-valued. To recover the proximal operator, choose a

scalar λ and set  Q11 Q12

Q21 Q22

 =
 I −I

−I I

 .
If g is a convex function, the argmin oracle can be written in terms of the sub-

gradient oracle ∂g as follows,

z ∈ −Q−1
11λ∂g(z) − Q−1

11 Q12y. (2.33)

Suppose we have an algorithm with n + m oracles in total, consisting

of n argmins and m (sub)gradients. We can group the argmins and the

(sub)gradients together respectively and partition the state-space realization ac-

cordingly as 
A B1 B2

C1 D11 D12

C2 D21 D22

 , (2.34)

where C1, B1 correspond to the argmins, C2, B2 correspond to the (sub)gradients,

and D is partitioned accordingly into D11, D12, D21, and D22. The transfer func-
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tion can be represented accordingly as

Ĥ(z) =

 Ĥ11(z) Ĥ12(z)

Ĥ21(z) Ĥ22(z)

 =
 C1(zI − A)−1B1 + D11 C1(zI − A)−1B2 + D12

C2(zI − A)−1B1 + D21 C2(zI − A)−1B2 + D22

 .
The input and output are partitioned as (ū1, ū2) and (ȳ1, ȳ2), where

ȳ1 = (y1, . . . , yn), ȳ2 = (yn+1, . . . , yn+m), ū1 = (z1, . . . , zn), and ū2 =

(∇ fn+1(yn+1), . . . ,∇ fn+m(yn+m)). For each i ∈ {1, . . . , n}we have

zi = argminx

λi fi(x) +
1
2

 x

yi


T  Qi

11 Qi
12

Qi
21 Qi

22


 x

yi


 (2.35)

where Qi
11 is invertible for any i ∈ {1, . . . , n}.

Now we rewrite the linear system so that the nonlinearities correspond-

ing to the argmins for the new linear system are (sub)gradients. Let λ =

diag(λ1, . . . , λn), Q1 = diag(Q1
11, . . . ,Q

n
11), Q2 = diag(Q1

12, . . . ,Q
n
12), and M1 =

Q−1
1 Q2, and M2 = Q−1

1 λ. The new state-space realization in terms of the

(sub)gradient oracles is
A − B1(I + M1D11)−1M1C1 −B1(I + M1D11)−1M2 B2 − B1(I + M1D11)−1M1D12

−(I + M1D11)−1M1C1 −(I + M1D11)−1M2 −(I + M1D11)−1M1D12

C2 − D21(I + M1D11)−1M1C1 −D21(I + M1D11)−1M2 D22 − D21(I + M1D11)−1M1D12

 .
(2.36)

We can compute the transfer function as

Ĥ′(z) =

 Ĥ′11(z) Ĥ′12(z)

Ĥ′21(z) Ĥ′22(z)

 =
 −(I + M1Ĥ11(z))−1M2 −(I + M1Ĥ11(z))−1M1Ĥ12(z)

−Ĥ21(z)(I + M1Ĥ11(z))−1M2 Ĥ22(z) − Ĥ21(z)(I + M1Ĥ11(z))−1M1Ĥ12(z)

 .
(2.37)

Note that I + M1D11 is invertible (otherwise the algorithm is not causal) and

consequently I + M1Ĥ11(z) is invertible. The matrix Q1 is also invertible, since

Qi
11 is invertible for any i ∈ {1, . . . , n}. A detailed proof of eq. (2.36) and eq. (2.37)

is provided in appendix A.12. Therefore, we know that if Ĥ(z) is fixed then Ĥ′(z)

is also fixed. □
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2.11 Conclusion and future work

In this chapter, we have presented a framework for reasoning about equivalence

between a broad class of iterative algorithms by using ideas from control theory

to represent optimization algorithms. The main insight is that by representing

an algorithm as a linear dynamical system in feedback with a static nonlinear-

ity, we can recognize equivalent algorithms by detecting algebraic relations be-

tween the transfer functions of the associated linear systems. This framework

can identify algorithms that result in the same sequence of oracle calls, or al-

gorithms that are the same up to shifts of the update equations, repetition of

the updates with the same unit block, and conjugation of the function oracles.

These ideas are implemented in the software package LINNAEUS, which allows

researchers to search for algorithms that are related to a given input and identify

parameter settings that make the algorithms equivalent. Our goal is to allow

researchers add new algorithms to LINNAEUS as they are developed, so that

LINNAEUS can remain a valuable resource for algorithm designers seeking to

understand connections (if any) to previous methods.

Our framework requires that the algorithm is linear in the state and oracle

outputs, but not necessarily in the parameters. This constraint still allows us

to handle a surprisingly large class of algorithms. There are several interesting

directions for future work.

Can we detect equivalence between stochastic or randomized algorithms?

Our framework applies to such algorithms with almost no modifations, simply

by allowing random oracles. For example, we can accept oracles like random

search argmin{ f (x + ωi) : i = 1, . . . , k}, stochastic gradient ∇ f (x) + ω, or noisy
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gradient ∇ f (x + ω). The definition of oracle equivalence would need a slight

modification: for algorithms that use (pseudo-)randomized oracles, two algo-

rithms are oracle-equivalent if they generate identical sequences of oracle calls

given the same random seed.

Can we detect equivalence between parallel or distributed algorithms? Sur-

prisingly, our framework still works for parallel or distributed algorithms. No-

tice that in a parallel algorithm, many oracle calls may be independently exe-

cuted on different processors at about the same time. The precise ordering of

these calls is not determined by the algorithm, and so different runs of the algo-

rithm can generate different oracle sequences. However, all the possible oracle

sequences generated by the same algorithm share the same dependence graph.

Using the formalism defined in section 2.7.1, we can see that our framework can

identify equivalence between parallel or distributed algorithms using the ex-

panded definition of oracle equivalence: two algorithms are oracle-equivalent

if there exists a way of writing each algorithm as a sequence of updates so that

they generate identical sequences of oracle calls.

Can we detect equivalence between adaptive or nonlinear algorithms?

Transfer functions are only defined for linear time-invariant (LTI) systems, so

the LTI assumption in our framework is critical. Nevertheless, many of the

other concepts from section 2.4.3 do extend to systems that are almost LTI. For

example, an algorithm with parameters that change on a fixed schedule but is

otherwise linear, such as gradient descent with a diminishing stepsize, can be

regarded as a linear time-varying (LTV) system [5], and the notion of a transfer

function has been generalized to LTV systems [55]. If, instead, the parameters

change adaptively based on the other state variables, the system can be regarded
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as a linear parameter varying (LPV) system [72] or a switched system [98]. Ex-

amples of such algorithms include nonlinear conjugate gradient methods and

quasi-Newton methods.

For these more complicated cases, it is still reasonable to ask whether two al-

gorithms invoke the same sequence of oracle calls. Discovering representations

for nonlinear or time-varying algorithms that suffice to check equivalence is an

interesting direction for future research.
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CHAPTER 3

NYSADMM: FASTER COMPOSITE CONVEX OPTIMIZATION VIA

LOW-RANK APPROXIMATION

This chapter introduces NysADMM for faster composite convex optimization

aimed to address the scalability issue in large-scale optimization. The contents

are mainly based on [112]. Section 3.2 introduces the NysADMM algorithm

and necessary background from RandNLA. Section 3.3 lists a variety of applied

problems that can be solved by NysADMM. Section 3.4 states the theoretical

guarantees for NysADMM. Section 3.5 compares NysADMM and standard op-

timization solvers numerically on several applied problems.

3.1 Introduction

Consider the composite convex optimization problem

minimizex∈Rd ℓ(Ax; b) + r(x). (3.1)

We assume that ℓ and r are convex and ℓ is smooth. In machine learning, gener-

ally ℓ is a loss function, r is a regularizer, A ∈ Rn×d is a feature matrix, and b ∈ Rn

is the label or response. Throughout this chapter we assume that a solution to

(3.1) exists. A canonical example of (3.1) is the lasso problem,

minimize
1
2
∥Ax − b∥22 + γ∥x∥1, (3.2)

where ℓ(Ax; b) = 1
2∥Ax − b∥22 and r(x) = γ∥x∥1. We discuss more applications of

(3.1) in section 3.3.

The alternating directions method of multipliers (ADMM) is a popular al-

gorithm to solve optimization problems of the form (3.1). However, as we dis-
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cussed in chapter 1, when the matrix A is large, ADMM suffers from scalability

issue, that is each iteration of ADMM requires solving a large subproblem. For

example, consider the lasso where the loss ℓ is quadratic. At each iteration,

ADMM solves a regularized least-squares problem at a cost of O(nd2) flops. On

the other hand, it is not necessary to solve each subproblem exactly to ensure

convergence: ADMM strategies that solve the subproblems inexactly are called

inexact ADMM, and can be shown to converge when the sequence of errors is

summable [35]. Unfortunately, it can be challenging even to satisfy this relaxed

criterion. Consider again the lasso problem. At each iteration, inexact ADMM

solves the regularized least-squares subproblem (3.4) approximately, for exam-

ple, using the iterative method of conjugate gradients (CG). We call this method

inexact ADMM with CG. The number of CG iterations required to achieve ac-

curacy ϵ increases with the square root of the condition number κ2 of the regu-

larized Hessian, O
(√
κ2 log( κ2

ϵ
)
)
. Alas, the condition number of large-scale data

matrices is generally high, and later iterations of inexact ADMM require high

accuracy, so inexact ADMM with CG still converges too slowly to be practical.

In this work we show how to speed up inexact ADMM using precondi-

tioned conjugate gradients (PCG) as a subproblem solver. We precondition

with randomized Nyström preconditioning [41], a technique inspired by re-

cent developments in randomized numerical linear algebra (RandNLA). We call

the resulting algorithm NysADMM (“nice ADMM”): inexact ADMM with PCG

using randomized Nyström preconditioning. The Nyström preconditioner re-

duces the number of iterations required to solve the subproblem to ϵ-accuracy

to O
(
log( 1

ϵ
)
)
, independent of the condition number. For non-quadratic loss func-

tions, NysADMM uses linearized inexact ADMM and accelerates the linear sub-

problem solve similarly.
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3.1.1 Contributions

1. We provide a general algorithmic framework for solving large scale lasso,

ℓ1-regularized logistic regression, and SVM problems.

2. Our theory shows that at each iteration only a constant number of matrix

vector products (matvecs) are required to solve the ADMM subproblem,

provided we have constructed the preconditioner appropriately. If the loss

function is quadratic, only a constant number of matvecs are required to

achieve convergence.

3. We develop a practical adaptive algorithm that increases the rank until the

conditions of our theory are met, which ensures the theoretical benefits of

the method can be realized in practice.

4. Even a preconditioner with lower rank often succeeds in speeding up

inexact ADMM with PCG. Our analysis is also able to explain this phe-

nomenon.

5. Our algorithm beats standard solvers such as glmnet, SAGA, and LIB-

SVM on large dense problems like lasso, logistic regression, and kernal-

ized SVMs: it yields equally accurate solutions and often runs 2–4 times

faster.

3.1.2 Related work

Our work relies on recent advancements in RandNLA for solving regularized

least squares problems (AT A + µI)x = AT b for x, given a design matrix A ∈ Rn×d,

righthand side b ∈ Rn, and regularization µ ∈ R, using a sketch of the design ma-

trix A [57]. NysADMM adapts the randomized Nyström preconditioner of [41].
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These algorithms begin by forming a sketch Y = AΩ of A (or AT ) with a random

dimension reduction map Ω ∈ Rd×s [68, 109]. For example, Ω may be chosen

to have iid Gaussian entries. These algorithms obtain significant computational

speedups by using a sketch size s ≪ min{n, d} and working with the sketch in

place of the original matrix to construct a preconditioner for the linear system.

[41] and [57] show that these randomized preconditioners work well when the

sketch size grows with the effective dimension (eq. (3.7)) of the Gram matrix (as-

suming, for [57] that we have access to a matrix square root). As the effective

dimension is never larger than d and often significantly smaller, these results

substantially improve on prior work in randomized preconditioning [70, 89]

that requires a sketch size s ≳ d. Many applications require even smaller sketch

sizes: for example, for NysADMM, a fixed sketch size s = 50 suffices even for

extremely large problems.

We are not the first to use RandNLA to accelerate iterative optimization.

[47, 83] both use iterative sketching to accelerate Newton’s method, while [23]

use randomized preconditioning to accelerate interior point methods for linear

programmming. The approach taken here is closest in spirit to [23], as we also

use randomized preconditioning. However, the preconditioner used in [23] re-

quires the data matrix to have many more columns than rows, while ours can

handle any (sufficiently large) dimensions.

NysADMM can solve many traditional machine learning problems, such as

lasso, regularized logistic regression, and support vector machines (SVMs). In

contrast, standard solvers for these problems use a wider variety of convex op-

timization techniques. For example, one popular lasso solver, glmnet [43], relies

on coordinate descent (CD), while solvers for SVMs, such as LIBSVM [21], more
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often use sequential minimal optimization [84], a kind of pairwise CD on the

dual problem. For regularized logistic regression, especially for ℓ1 regulariza-

tion, stochastic gradient algorithms are most commonly used [26, 92]. Other

authors propose to solve lasso with ADMM [12, 111]. Our work, motivated

by the ADMM quadratic programming framework of [97], is the first to ac-

celerate ADMM with randomized preconditioning, thereby improving on the

performance of standard CD or stochastic gradient solvers for each of these im-

portant classes of machine learning problems on large-scale dense data. Unlike

[97], our work relies on inexact ADMM and can handle non-quadratic loss func-

tions, which allows NysADMM to solve problems such as regularized logistic

regression.

3.1.3 Notation and preliminaries

We call a matrix psd if it is positive semidefinite. The notation a ≳ b means that

a ≥ Cb for some absolute constant C. Given a matrix H, we denote its spectral

norm by ∥H∥. We denote the Moore-Penrose pseudoinverse of a matrix M by

M†. For ρ > 0 and a symmetric psd matrix H, we define Hρ = H + ρI. We say

a positive sequence {εk}∞k=1 is summable if
∑∞

k=1 ε
k < ∞. We denote the Loewner

ordering on the cone of symmetric psd matrices by ⪯, that is A ⪯ B if and only if

B − A is psd.
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3.2 Algorithm

3.2.1 Inexact linearized ADMM

To solve problem (3.1), we apply the ADMM framework. Algorithm 3.2.1 shows

the standard ADMM updates, where the regularizer r = g + h is split into a

smooth part g and a nonsmooth part h.

Algorithm 3.2.1 ADMM

input: feature matrix A, response b, loss function ℓ, regularization g and h, step-
size ρ
repeat

xk+1 = argminx{ℓ(Ax; b) + g(x) + ρ2∥x − zk + uk∥22}

zk+1 = argminz{h(z) + ρ2∥x
k+1 − z + uk∥22}

uk+1 = uk + xk+1 − zk+1

until convergence
output: solution x⋆ of problem (3.1)

In each iteration, two subproblems are solved sequentially to update vari-

ables x and z. The z-subproblem often has a closed-form solution. For example,

if h(x) = ∥x∥1, the z-subproblem is the soft thresholding, and if h is the indicator

function of a convex set C, the z-subproblem is projection onto the set C.

There is usually no closed-form solution for the x-subproblem. Instead, it

is usually solved inaccurately by an iterative scheme, especially for large-scale

applications. To simplify the subproblem, inspired by linearized ADMM, we

assume ℓ and g are twice differentiable and notice that the x update is close to

the minimum of a quadratic function given by the Taylor expansion of ℓ and g
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at the current iterate:

x̃k+1 = argminx{ℓ(Ax̃k; b) + (x − x̃k)T AT∇ℓ(Ax̃k; b) +
1
2

(x − x̃k)T AT Hℓ(Ax̃k; b)A(x − x̃k) + g(x̃k)

+ (x − x̃k)T∇g(x̃k) +
1
2

(x − x̃k)T Hg(x̃k)(x − x̃k) +
ρ

2
∥x − z̃k + ũk∥22}.

(3.3)

Here Hℓ and Hg are the Hessian of ℓ and g respectively. We assume throughout

the chapter that Hℓ and Hg are psd matrices, this is a very minor assumption,

and is satisfied by all the applications we consider. The solution to this quadratic

minimization may be obtained by solving the linear system

(AT Hℓ(Ax̃k; b)A + Hg(x̃k) + ρI)x = rk (3.4)

where rk = ρz̃k − ρũk + AT Hℓ(Ax̃k; b)Ax̃k + Hg(x̃k)x̃k − AT∇ℓ(Ax̃k; b) − ∇g(x̃k).

The inexact ADMM algorithm we propose solves (3.4) approximately at each

iteration.

Algorithm 3.2.2 Inexact ADMM

input: feature matrix A, response b, loss function ℓ, regularization g and h, step-
size ρ, positive summable sequence {εk}∞k=0
repeat

find x̃k+1 that solves (3.4) within tolerance εk

z̃k+1 = argminz{h(z) + ρ2∥x̃
k+1 − z + ũk∥22}

ũk+1 = ũk + x̃k+1 − z̃k+1

until convergence
output: solution x⋆ of problem (3.1)

For a quadratic loss ℓ, when
∑∞

k=0 ε
k < ∞ and under various other condi-

tions, if optimization problem (3.1) has an optimal solution, the {x̃k}∞k=0 sequence

generated by algorithm 3.2.2 converges to the optimal solution of (3.1) [35, 37].

From [12], quantity rk+1
d = ρ(z̃k − z̃k+1) can be regarded as the dual residual

and rk+1
p = x̃k+1 − z̃k+1 can be viewed as the primal residual at iteration k + 1. This

suggests that we can terminate the ADMM iterations when the primal and dual
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residuals become very small. The primal and dual tolerances can be chosen

based on an absolute and relative criterion, such as

∥rk
p∥2 ≤ ϵ

abs + ϵrelmax{∥x̃k∥2, ∥z̃k∥2}

∥rk
d∥2 ≤ ϵ

abs + ϵrel∥ρũk∥2.

The relative criteria ϵrel might be 10−3 or 10−4 in practice. The choice of absolute

criteria ϵabs depends on the scale of the variable values. More details can be

found in [12].

3.2.2 Randomized Nyström approximation and PCG

Nyström approximation constructs a low-rank approximation of a symmetric

psd matrix H. Let Ω ∈ Rd×s be a test matrix (often, random Gaussian [41, 101])

with sketch size s ≥ 1. The Nyström approximation with respect to Ω is given

by

H⟨Ω⟩ = (HΩ)(ΩT HΩ)†(HΩ)T . (3.5)

The Nyström approximation H⟨Ω⟩ is symmetric, psd, and has rank at most s

(lemma B.1.1). Naive implementation of the Nyström approximation based on

(3.5) is numerically unstable. Algorithm B.2.1 in appendix B.2 states a stable

procedure to compute a randomized Nyström approximation from [101].

Algorithm B.2.1 returns the randomized Nyström approximation of matrix

H in the form of an eigendecomposition: Hnys = UΛ̂UT . Let λ̂s be the sth eigen-

value. The randomized Nyström preconditioner and its inverse take the form

P =
1
λ̂s + ρ

U(Λ̂ + ρI)UT + (I − UUT ),

P−1 = (λ̂s + ρ)U(Λ̂ + ρI)−1UT + (I − UUT )

(3.6)
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[41]. In a slight abuse of terminology, we sometimes refer to the sketch size

s as the rank of the Nyström preconditioner. We will use the the term sketch

size and rank interchangeably throughout this chapter. The Nyström precondi-

tioner may be applied to vectors in O(ds) time and only requires O(ds) floating

point numbers to store. The details of how to implement PCG with (3.6) are pro-

vided in appendix B.2 in algorithm B.2.2. We now provide some background on

Nyström PCG and motivation for why we have paired it with ADMM.

Nyström PCG improves on standard CG both in theory and in practice for

matrices with a small effective dimension [41], which we now define. Given a

symmetric psd matrix H ∈ Rd×d and regularization ρ > 0, the effective dimension

of H is

deff(ρ) = tr(H(H + ρI)−1). (3.7)

The effective dimension may be viewed as smoothed count of the eigenvalues

of H greater than or equal to ρ. We always have deff(ρ) ≤ d, and we expect

deff(ρ) ≪ d whenever H exhibits spectral decay.

In machine learning, most feature matrices naturally exhibit polynomial or

exponential spectral decay [29], thus we expect that deff ≪ d. The random-

ized Nyström preconditioner in [41] exploits the smallness of deff(ρ) to build

an highly effective preconditioner. [41] show that if (3.6) is constructed with a

sketch size s ≳ deff(ρ), then the condition number of the preconditioned system

is constant with high probability. An immediate consequence is that PCG solves

the preconditioned system to ϵ-accuracy in O
(
log(1

ϵ
)
)

iterations, independent of

the condition number of H.

Observe the Hessian AT HℓA + Hg in the inexact ADMM subproblem (3.4) is

formed from the feature matrix A. Based on the preceding discussion, we expect
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the Hessian to exhibit spectral decay and for the effective dimension to be small

to moderate in size. Hence we should expect Nyström PCG to accelerate the

solution of (3.4) significantly.

3.2.3 NysADMM

Integrating Nyström PCG with inexact ADMM, we obtain NysADMM, pre-

sented in algorithm 3.2.3.

Algorithm 3.2.3 NysADMM

input: feature matrix A, response b, loss function ℓ, regularization g and h, step-
size ρ, positive summable sequence {εk}∞k=0
[U, Λ̂] = RandNyströmApprox(AT HℓA + Hg, s) ▷ use algorithm B.2.1 in
appendix B.2
repeat

use Nyström PCG (algorithm B.2.2 in appendix B.2) to find x̃k+1 that solves
(3.4) within tolerance εk

z̃k+1 = argminz{h(z) + ρ2∥x̃
k+1 − z + ũk∥22}

ũk+1 = ũk + x̃k+1 − z̃k+1

until convergence
output: solution x⋆ of problem (3.1)

Our theory for algorithm 3.2.3, shows that if the sketch size s ≳ deff(ρ),

then with high probability subproblem (3.4) will be solved to ϵ-accuracy in

O
(
log(1

ϵ
)
)

iterations (corollary 3.4.1). When the loss ℓ is quadratic and the se-

quence of tolerances {εk}∞k=0 is decreasing with
∑∞

k=0 ε
k < ∞, NysADMM is guar-

anteed to converge as k → ∞ with only a constant number of matvecs per it-

eration (theorem 3.4.2). Table 3.1 compares the complexity of inexact ADMM

with CG vs. NysADMM for K iterations under the hypotheses of theorem 3.4.2.

NysADMM achieves a significant decrease in runtime over inexact ADMM with

CG, as the iteration complexity no longer depends on the condition number κ2.
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Table 3.1: Complexity comparison, for a quadratic loss with Hessian H. Here
Tmv is the time to compute a matrix vector product with H, κ2 is the condition
number of H, and εk is the precision of the kth subproblem solve (3.4).

Method Complexity
Inexact ADMM with CG O

(∑K
k=1 Tmv

√
κ2 log

(
κ2
εk

))
NysADMM O (Tmvdeff(ρ)) +

∑K
k=1 Tmv

(
4 +

⌈
2 log

(
R
εkρ

) ⌉)

3.2.4 AdaNysADMM

Two practical problems remain in realizing the success predicted by the theo-

retical analysis of table 3.1. These bounds are achieved by selecting the sketch

size to be deff(ρ), but the effective dimension is 1) seldom known in practice,

and 2) often larger than required to achieve good convergence of NysADMM.

Fortunately, a simple adaptive strategy for choosing the sketch size, inspired by

[41], can achieve the same guarantees as in table 3.1. This strategy chooses a

tolerance ϵ and doubles the sketch size s until the empirical condition number
λ̂s+ρ

ρ
satisfies

λ̂s + ρ

ρ
≤ 1 + ϵ. (3.8)

Theorem 3.4.3 guarantees that (3.8) holds when s ≥ deff(ρ) and that when (3.8)

holds, the true condition number is on the order of 1 + ϵ with high probability.

We refer to (3.8) as the empirical condition number as it provides an estimate of

the true condition number of the preconditoned system (theorem 3.4.3).

Thus, to enjoy the guarantees of theorem 3.4.3 in practice, we may employ

the adaptive version of NysADMM, which we call AdaNysADMM. We provide

the pseudocode for AdaNysADMM in algorithm B.3.2 in appendix B.2. Fur-

thermore, as we use a Gaussian test matrix, it is possible to construct a larger

sketch from a smaller one. Hence the total computational work needed by the
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adaptive strategy is not much larger than if the effective dimension were known

in advance. Indeed, AdaNysADMM differs from NysADMM only in the con-

struction of the preconditioner. The dominant cost in forming the precondition

is computing the sketch is HΩ, which costs O(Tmvdeff(ρ)). As AdaNysADMM

reuses computation, the dominant complexity for constructing the Nyström

preconditioner remains O(Tmvdeff(ρ)). Consequently, the overall complexity of

AdaNysADMM is the same as NysADMM in table 3.1.

3.3 Applications

Here we discuss various applications that can be reformulated as instances of

(3.1) and solved by algorithm 3.2.3.

3.3.1 Elastic net

Elastic net generalizes lasso and ridge regression by adding both the ℓ1 and ℓ2

penalty to the least squares problem:

minimize
1
2
∥Ax − b∥22 +

1
2

(1 − γ)∥x∥22 + γ∥x∥1 (3.9)

Parameter γ > 0 interpolates between the ℓ1 and ℓ2 penalties. NysADMM ap-

plies with ℓ(Ax; b) = 1
2∥Ax− b∥22, g(x) = 1

2 (1− γ)∥x∥22, and h(x) = γ∥x∥1. The Hessian

matrices for ℓ and g are AT A and (1 − γ)I respectively.
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3.3.2 Regularized logistic regression

Regularized logistic regression minimizes a logistic loss function together with

an ℓ1 regularizer:

minimize −
∑

i

(bi(Ax)i − log(1 + exp((Ax)i))) + γ∥x∥1 (3.10)

NysADMM applies with ℓ(Ax; b) = −
∑

i (bi(Ax)i − log(1 + exp((Ax)i))) and h(x) =

γ∥x∥1. The inexact ADMM update chooses xk+1 to minimize a quadratic approx-

imation of the log-likelihood,

minimize
1
2

∑
i

wk
i (qk

i − (Ax)i)2 +
ρ

2
∥x − z̃k + ũk∥22,

where wk
i and qk

i depend on the current estimate x̃k as

wk
i =

1
2 + exp(−(Ax̃k)i) + exp((Ax̃k)i)

qk
i =(Ax̃k)i +

bi −
1

1+exp(−(Ax̃k)i)

wk
i

.

Therefore, the solution of the x-subproblem can be approximated by solving the

linear system

(AT diag(wk)A + ρI)x = ρz̃k − ρũk + AT diag(wk)qk.

Here wk and qk are the vectors for wk
i and qk

i . The Hessian matrix of ℓ is given by

AT diag(wk)A.

3.3.3 Support vector machine

To reformulate the SVM problem for solution with NysADMM, consider the

dual SVM problem

minimize
1
2

xT diag(b)Kdiag(b)x − 1T x

subject to xT b = 0

0 ≤ x ≤ C.

(3.11)
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Variable x is the dual variable, b is the label or response, and C is the penalty

parameter for misclassification. For linear SVM, K = AT A where A is a feature

matrix; and for nonlinear SVM, K is the corresponding kernel matrix. The SVM

problem can be reformulated as (3.1) by setting ℓ(Ax; b) = 1
2 xT diag(b)Kdiag(b)x,

g(x) = −1T x, and h is the indicator function for convex constraint set xT b = 0, 0 ≤

x ≤ C. The Hessian matrix for ℓ is diag(b)Kdiag(b).

3.4 Convergence analysis

This section provides a convergence analysis for NysADMM. All proofs for the

results in this section may be found in appendix B.1. First we show Nyström

PCG can solve any quadratic problem in a constant number of iterations.

Theorem 3.4.1. Let H be a symmetric positive semidefinite matrix, ρ > 0 and

set Hρ = H + ρI. Suppose we construct the randomized Nyström preconditioner

with sketch size s ≥ 8
( √

deff(ρ) +
√

8 log(16
δ

)
)2

. Then

κ2(P−1/2HρP−1/2) ≤ 8 (3.12)

with probability at least 1 − δ.

Theorem 3.4.1 strengthens results in [41], which provides sharp expectation

bounds on the condition number of the preconditioned system, but gives loose

high probability bounds based on Markov’s inequality. Our result tightens these

bounds, showing that Nyström PCG enjoys an exponentially small failure prob-

ability.

As an immediate corollary, we can solve (3.4) with a few iterations of PCG

using the Nyström preconditioner.
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Corollary 3.4.1. Instate the hypotheses of theorem 3.4.1 and let x̃⋆ denote the

solution of (3.4). Then with probability at least 1− δ, the iterates {xt}t≥1 produced

by Nyström PCG on problem (3.4) satisfy

∥xt − x̃⋆∥2
∥x̃⋆∥2

≤

(
1
2

)t−4

. (3.13)

Thus, after t ≥
⌈ log

(
16∥x̃⋆∥2
ϵ

)
log(2)

⌉
iterations,

∥xt − x̃⋆∥2 ≤ ϵ. (3.14)

Corollary 3.4.1 ensures that we can efficiently solve the sub-problem to the

necessary accuracy at each iteration. This result allows us to prove convergence

of NysADMM.

Theorem 3.4.2. Consider the problem in (3.1) with quadratic loss ℓ(Ax; b) =

1
2∥Ax − b∥22 and the smooth part g of regularizer r has constant Hessian. De-

fine initial iterates x̃0, z̃0 and ũ0 ∈ Rd, stepsize ρ > 0, and summable tolerance

sequence {εk}∞k=0 ⊂ R+. Assume at kth ADMM iteration, the norm of the right-

hand side of the linear system rk is bounded by constant R for all k. Construct

the Nyström preconditioner with sketch size

s ≥ 8

√deff(ρ) +

√
8 log

(
16
δ

)
2

and solve problem (3.1) with NysADMM, using T k = 4 +
⌈
2 log

(
R
εkρ

) ⌉
iterations

for PCG at the kth ADMM iteration. Then with probability at least 1 − δ,

1. For all k ≥ 0, each iterate x̃k+1 satisfies

∥x̃k+1 − xk+1∥2 ≤ ε
k, (3.15)

where xk+1 is the exact solution of (3.4).
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2. As k → ∞, {x̃k}∞k=0 converges to a solution of the primal (3.1) and {ρũk}∞k=0

converges to a solution of the dual problem of (3.1).

Theorem 3.4.2 establishes convergence of NysADMM for a quadratic loss.

The quadratic loss already covers many applications of interest including the

lasso, elastic-net, and SVMs. We conjecture that a modification of our argument

can show that NysADMM converges linearly for any strongly convex loss, but

we leave this extension to future work.

The next result makes rigorous the claims made in section 3.2.4: it shows

we can determine whether or not we have reached the effective dimension by

monitoring the empirical condition number (λ̂s + ρ)/ρ.

Theorem 3.4.3. Suppose, for some user defined tolerance ϵ > 0, the sketch size

satisfies

s ≥ 8


√

deff

(
ϵρ

6

)
+

√
8 log

(
16
δ

)
2

.

Then the empirical condition number of the Nyström preconditioned system

P−1/2HrP−1/2 satisfies
λ̂s + ρ

ρ
≤ 1 +

ϵ

42
. (3.16)

Furthermore, with probability at least 1 − δ,∣∣∣∣∣∣κ2(P−1/2HρP−1/2) −
λ̂s + ρ

ρ

∣∣∣∣∣∣ ≤ ϵ. (3.17)

Theorem 3.4.3 shows that once the empirical condition number is sufficiently

close to 1, so too is the condition number of the preconditioned system. Hence

it is possible to reach the effective dimension by doubling the sketch size of the

Nyström approximation until the empirical condition number falls below the
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desired tolerance. Theorem 3.4.3 ensures the true condition number is close to

this empirical estimate with high probability.

Theorem 3.4.3 also helps explain why sketch sizes much smaller than the

effective dimension can succeed in practice. The point is best illustrated by

instantiating an explicit parameter selection in theorem 3.4.3, which yields the

following corollary.

Corollary 3.4.2. Instate the hypotheses of theorem 3.4.3 with ϵ = 100. Then with

a sketch size of s ≳ deff(16ρ) the following holds

1. (λ̂s + ρ)/ρ ≤ 1 + 100
42 .

2. With probability at least 1 − δ,∣∣∣∣∣κ2(P−1/2HρP−1/2) − 1 −
100
42

∣∣∣∣∣ ≤ 100.

Corollary 3.4.2 shows that for a coarse tolerance of ϵ = 100, a sketch size

of s ≳ deff(16ρ) suffices to ensure that the condition number of P−1/2HρP−1/2 is no

more than around 100. Two practical observations cement the importance of this

corollary. First, deff(16ρ) is often significantly smaller than deff(ρ), possibly by an

order of magnitude or more. Second, with a condition number around 100, PCG

is likely to converge very quickly. In fact, for modest condition numbers, PCG

is known to converge much faster in practice than the theory would suggest

[100]. It is only when the condition number reaches around 103, that conver-

gence starts to slow. Thus, corollary 3.4.2 helps explain why it is not necessary

for the sketch size to equal the effective dimension in order for NysADMM to

obtain significant accelerations.
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3.5 Numerical experiments

Table 3.2: Statistics of experiment datasets.

Name instances n features d nonzero %

STL-10 13000 27648 96.3
CIFAR-10 60000 3073 99.7
CIFAR-10-rf 60000 60000 100.0
smallNorb-rf 24300 30000 100.0
E2006.train 16087 150348 0.8
sector 6412 55197 0.3
p53-rf 16592 20000 100.0
connect-4-rf 16087 30000 100.0
realsim-rf 72309 50000 100.0
rcv1-rf 20242 30000 100.0
cod-rna-rf 59535 60000 100.0

In this section, we evaluate the performance of NysADMM on different

large-scale applications: lasso, ℓ1-regularized logistic regression, and SVM. For

each type of problems, we compare NysADMM with popular standard solvers.

We run all experiments on a server with 128 Intel Xeon E7-4850 v4 2.10GHz

CPU cores and 1056GB. We repeat every numerical experiment ten times and

report the mean solution time. We highlight the best-performing method in

bold. The tolerance of NysADMM at each iteration is chosen as the geomet-

ric mean εk+1 =

√
rk

prk
d of the ADMM primal residual rp and dual residual rd at

the previous iteration, as in [97]. See [12] for more motivation and details. An

alternative is to choose the tolerance sequence as any decaying sequence with

respect to the righthand side norm as the number of NysADMM iteration in-

creases, e.g., εk = ∥rk∥2/kβ, where β is a predefined factor. These two strategies

perform similarly; our experiments use the first strategy.

We choose a sketch size s = 50 to compute the Nyström approximation

throughout our experiments. Inspired by theorem 3.4.3 and corollary 3.4.2, even
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if the sketch size is much smaller than the effective dimension, NysADMM can

still achieve significant acceleration in practice.

To support experiments with standard solvers, for each problem class we

use the same stopping criterion and other parameter settings as the standard

solver. These experiments use datasets with n > 10, 000 or d > 10, 000 from

LIBSVM [21], UCI [32], and OpenML [105], with statistics summarized in ta-

ble 3.2. We use a random feature map [86, 87] to generate features for the data

sets CIFAR-10, smallnorb, realsim, rcv1, and cod-rna, which increases both pre-

dictive performance and problem dimension.

3.5.1 Lasso

This subsection demonstrates the performance of NysADMM to solve the stan-

dard lasso problem (3.2). Here we compare NysADMM with three standard

lasso solvers, SSNAL [62], mfIPM [40], and glmnet [43]. SSNAL is a Newton

method based solver; mfIPM is an interior point method based solver and glm-

net is a coordinate descent based solver. In practice, these three solvers and

NysADMM rely on different stopping criteria. In order to make a fair compari-

son, in our experiments, the accuracy of a solution x for (3.2) is measured by the

following relative Karush–Kuhn–Tucker (KKT) residual [62]:

η =
∥x − proxγ∥·∥1(x − AT (Ax − b))∥

1 + ∥x∥ + ∥Ax − b∥
. (3.18)

For a given tolerance ϵ, we stop the tested algorithms when η < ϵ. Note that

stopping criterion (3.18) is rather strong: if η ≤ 10−2 for NysADMM, then the pri-

mal and dual gaps for ADMM are ≲ 10−4, which suffices for most applications.

Indeed, for many machine learning problems, lower bounds on the statistical
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performance of the estimator [65] imply an unavoidable level of statistical error

that is greater than this optimization error for most applications. Optimizing

the objective beyond the level of statistical error [3, 66] does not improve gener-

alization. For standard lasso experiments, we fix the regularization parameter

at γ = 1.

Table 3.3: Results for low precision lasso experiment.

Task Time for ϵ = 10−1 (s)
NysADMM mfIPM SSNAL glmnet

STL-10 165 573 467 278
CIFAR-10-rf 251 655 692 391
smallNorb-rf 219 552 515 293
E2006.train 313 875 903 554
sector 235 678 608 396
realsim-rf 193 – 765 292
rcv1-rf 226 563 595 273
cod-rna-rf 208 976 865 324

Table 3.4: Results for high precision lasso experiment.

Task Time for ϵ = 10−2 (s)
NysADMM mfIPM SSNAL glmnet

STL-10 406 812 656 831
CIFAR-10-rf 715 1317 1126 1169
smallNorb-rf 596 896 768 732
E2006.train 1657 1965 1446 2135
sector 957 1066 875 1124
realsim-rf 732 – 1035 922
rcv1-rf 593 853 715 736
cod-rna-rf 715 1409 1167 997

Table 3.3 and Table 3.4 show results for lasso experiments. The average so-

lution time for NysADMM, mfIPM, SSNAL, and glmnet with ϵ = 10−1, 10−2 on

different tasks are provided. Here mfIPM fails to solve the realsim-rf instance
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since it requires n < d. For precision of ϵ = 10−1, NysADMM is faster than all

other solvers and at least 3 times faster than both mfIPM and SSNAL. For preci-

sion of ϵ = 10−2, NysADMM is still faster than all other solvers for all instances

except E2006.train and sector. The results are fair since both SSNAL and mfIPM

are second-order solvers and can reach high precision. NysADMM and glmnet

are first-order solvers; they reach low precision quickly, but improve accuracy

more slowly than a second order method. In practice, for large-scale machine

learning problems, a low precision solution usually suffices, as decreasing op-

timization error beyond the statistical noise in the problem does not improve

generalization. Further, our algorithm achieves bigger improvements on dense

datasets compared with sparse datasets, as the factors of the Nyström approxi-

mation are dense even for sparse problems. To further illustrate the results, we

Figure 3.1: Solution times for varying tolerance ϵ on STL-10.

vary the value of ϵ from 1.0 to 10−3 on STL-10 task and plot the average solution
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time for four methods in fig. 3.1. We can see NysADMM is as least as fast as

other solvers when ϵ > 10−3, and often twice as fast for many practical values of

ϵ.

3.5.2 ℓ1-regularized logistic regression

This subsection demonstrates the performance of NysADMM on ℓ1-regularized

logistic regression, (3.10) from section 3.3.2. We test the method on binary clas-

sification problems using the same random feature map as in section 3.5.1.

The ℓ1-regularized logistic regression experiments compare NysADMM

with the SAGA algorithm, a stochastic average gradient like algorithm [26] im-

plemented in sklearn, and the accelerated proximal gradient (APG) algorithm

[9, 75, 81]. For the purpose of fair comparison, all the algorithms are stopped

when the maximum relative change in the problem variable (that is, the regres-

sion coefficients) ∥xk−xk+1∥∞
∥xk∥∞

is less than the tolerance. The tolerance is set to 10−3;

other settings match the default settings of the sklearn logistic regression solver.

An overview of ℓ1-regularized logistic regression experiment results are pro-

vided in table 3.5. NysADMM uniformly out performs SAGA, solving each

problem at least twice as fast. Similarly, NysADMM is at least twice as fast as

APG on all datasets except STL-10, where it performs comparably. In the cases

of p53-rf and connect-4-rf, NysADMM runs significantly faster than its com-

petitors, being four times faster than SAGA and three times faster than APG.

These large performance gains are due to the size of the problem instances and

their conditioning. From [26], the convergence speed of SAGA depends on the

problem instance size and condition number. Our test cases have large instance
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sizes and condition numbers, which lead to slow convergence of SAGA. The

situation with APG is similar. Indeed, although ADMM and proximal gradient

methods generally have the same O(1/t)-convergence rate [9, 50], NysADMM is

less sensitive ill-conditioning than APG.

Table 3.5: Results for ℓ1-regularized logistic regression experiment.

Task NysADMM (s) SAGA (s) APG (s)

STL-10 3012 6083 2635
CIFAR-10-rf 7884 21256 17292
p53-rf 528 2116 1880
connect-4-rf 866 4781 7365
smallnorb-rf 1808 6381 4408
rcv1-rf 1237 3988 2759
con-rna-rf 7528 21513 16361

3.5.3 Support vector machine

This subsection demonstrates the performance of NysADMM on kernel SVM

problem for binary classification, (3.11) from section 3.3.3. The SVM exper-

iments compare NysADMM with the LIBSVM solver [21]. LIBSVM uses se-

quential minimal optimization (SMO) to solve the dual SVM problem. We use

the same stopping criteria as the LIBSVM solver, which stops the NysADMM

method when the ADMM dual gap reaches 10−4 level. All SVM experiments

use the RBF kernel. Table 3.6 shows the results of SVM experiments. On these

problems, NysADMM is at least 3 times faster (and up to 58 times faster) than

the LIBSVM solver. Consider problem formulation (3.11), with the RBF kernel.

The Gram matrix diag(b)Kdiag(b) is dense and approximately low rank: exactly

the setting in which NysADMM should be expected to perform well. In con-

strast, the SMO-type decomposition in LIBSVM solver works better for sparse
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Table 3.6: Results of SVM experiment.

Task NysADMM time (s) LIBSVM time (s)

STL-10 208 11573
CIFAR-10 1636 8563
p53-rf 291 919
connect-4-rf 7073 42762
realsim-rf 17045 52397
rcv1-rf 564 32848
cod-rna-rf 4942 36791

problems, as it updates only two variables at each iteration.

3.6 Conclusion

In this chapter, we have developed a scalable new algorithm, NysADMM, that

combines inexact ADMM and the randomized low-rank Nyström approxima-

tion to accelerate composite convex optimization. We show that NysADMM

exhibits strong benefits both in theory and in practice. Our theory shows that

when the Nyström preconditioner is constructed with an appropriate rank,

NysADMM requires only a constant number of matvecs to solve the ADMM

subproblem. We have also provided an adaptive strategy for selecting the rank

that possesses a similar computational profile to the non-adaptive algorithm,

and allows us to realize the theoretical benefits in practice. Further, numerical

results demonstrate that NysADMM is as least twice as fast as standard meth-

ods on large dense lasso, regularized logistic regression, and kernalized SVM

problems. More broadly, this chapter shows the promise of recent advances in

RandNLA to provide practical accelerations for important large-scale optimiza-

tion algorithms.
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CHAPTER 4

ON THE (LINEAR) CONVERGENCE OF GENERALIZED NEWTON

INEXACT ADMM

This chapter introduces GeNI-ADMM, a generalized framework extended from

NysADMM for efficient theoretical analysis of approximate ADMM schemes.

This chapter comes from [42] and is our most recent work. In section 4.2, we for-

mally state the optimization problem that we focus on in this paper and briefly

introduce ADMM. In section 4.3 we introduce the Generalized Newton Inexact

ADMM framework and give a review of ADMM and its variants. Section 4.4

gives various techinical background and assumputions needed for our analysis.

Section 4.5 establishes that GeNI-ADMM converges at an O(1/t)-rate in the con-

vex setting. Section 4.6 then shows that, when the objective is strongly convex,

GeNI-ADMM converges linearly. In Section 4.7, we apply our theory to estab-

lish convergence rates for two methods that naturally fall out of our framework,

and we illustrate these results numerically in Section 4.8.

4.1 Introduction

Recall our discussion in chapters 1 and 3. ADMM provides a unified way to

solve various convex machine learning problems. However, it suffers from

scalability issue and it is hard to scale ADMM to large problem sizes. Ran-

domized numerical linear algebra (randNLA) offers a promising set of tools to

address this issue. Recently [112] proposed the algorithm NysADMM, which

uses a randomized fast linear system solver to scale ADMM up to with tens

of thousands of samples with hundreds of thousands of features. The results
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in [112] show that ADMM combined with the randNLA primitive runs 3 to

15 times faster than state-of-the-art solvers on machine learning problems from

LASSO to SVM to logistic regression. Unfortunately, the convergence of ran-

domized or approximate ADMM solvers like NysADMM is not well under-

stood. NysADMM approximates the x-subproblem using a linearization based

on a second-order Taylor expansion, which transforms the x-subproblem into a

Newton-step, i.e., a linear system solve. It then solves this system approximately

(and quickly) using a randomized linear system solver. The convergence of this

scheme, which combines linearization and inexactness, is not covered by prior

theory for approximate ADMM; prior theory covers either linearization [79] or

inexact solves [35] but not both.

In this work, we bridge the gap between theory and practice to explain

the excellent performance of approximate linearized ADMM schemes like

NysADMM [112]. We introduce a framework called Generalized Newton In-

exact ADMM, which we refer to as GeNI-ADMM (pronounced genie-ADMM).

GeNI-ADMM includes NysADMM and many other prior approximate ADMM

schemes as special cases. The name is inspired by the fact the linearized x-

subproblem in GeNI-ADMM may be viewed as a generalized Newton-step.

GeNI-ADMM allows for inexactness in both the x-subproblem and the z-

subproblem. We show GeNI-ADMM exhibits the usual O(1/t)-convergence rate

under standard hypotheses, with linear convergence under additional hypothe-

ses. Our analysis also clarifies the value of using curvature in the generalized

Newton step: approximate ADMM schemes that take advantage of curvature

converge faster than those that do not at a rate that depends on the condition-

ing of the subproblem. As the GeNI-ADMM framework covers any approxi-

mate ADMM scheme that replaces the x-subproblem by a linear system solve,
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our convergence theory covers any ADMM scheme that uses fast linear system

solvers. Given the recent flurry of activity on fast linear system solvers within

the (randomized) numerical linear algebra community [41, 57, 69], these results

will help realize these benefits for optimization problems as well. To demon-

strate the power of the GeNI-ADMM framework, we establish convergence of

NysADMM and another randNLA-inspired scheme, sketch-and-solve ADMM,

whose convergence was left as an open problem in [16].

4.1.1 Contributions

Our contributions maybe summarized concisely as follows:

1. We provide a general ADMM framework GeNI-ADMM, that encompasses

prior approximate ADMM schemes as well as new ones. It can take ad-

vantage of second-order information and allows for inexact subproblem-

solves.

2. We show that GeNI-ADMM converges at the usual O(1/t)-rate, despite all

the approximations it makes. Further, it enjoys a linear convergence rate

under additional hypotheses.

3. We apply our framework to show some randNLA-based approximate

ADMM schemes converge at the same rate as vanilla ADMM, answering

some open questions in the literature.
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4.1.2 Notation and preliminaries

We call a matrix psd if it is positive semidefinite. We denote the convex cone of

n × n real symmetric psd matrices by Sn
+. We denote the Loewner ordering on

Sn
+ by ⪯, that is A ⪯ B if and only if B − A is psd. Given a matrix H, we denote

its spectral norm by ∥H∥. If f is a smooth function we denote its smoothness

constant by L f . We say a positive sequence {εk}k≥1 is summable if
∑∞

k=1 ε
k < ∞.

4.2 Problem statement and ADMM

Let X andZ be finite-dimensional inner-product spaces with inner-product ⟨·, ·⟩

and norm ∥ · ∥. We wish to solve the convex constrained optimization problem

minimize f (x) + g(z)

subject to Mx = z

x ∈ X, z ∈ Z,

(4.1)

with variables x and z, where X ⊂ X and Z ⊂ Z are closed convex sets, f is a

smooth convex function, g is a convex proper lower-semicontinuous (lsc) func-

tion, and M : X 7→ Z is a bounded linear operator. We can write problem (4.1)

as the saddle point problem

maximize
y∈Y

minimize
x∈X,z∈Z

f (x) + g(z) + ⟨y,Mx − z⟩, (4.2)

where Y ⊂ Z is a closed convex set. The saddle-point formulation will play

an important role in our analysis. Perform the change of variables u = y/ρ and

define the Lagrangian

Lρ(x, z, u) B f (x) + g(z) + ⟨ρu,Mx − z⟩.
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Then (4.2) may be written concisely as

maximize
u∈U

minimize
x∈X,z∈Z

Lρ(x, z, u). (4.3)

One important algorithm to solve (4.1) is the ADMM algorithm (algo-

rithm 4.2.1). Our presentation uses the scaled form of ADMM, using the change

of variables u = y/ρ, and we maintain this convention throughout this chap-

ter. In fact, ADMM (algorithm 4.2.1) does not require f to be smooth, but just a

convex proper lsc function, like g.

Algorithm 4.2.1 ADMM

input: convex proper lsc functions f and g, constraint matrix M, stepsize ρ
repeat

xk+1 = argmin
x∈X

{ f (x) + ρ2∥Mx − zk + uk∥2}

zk+1 = argmin
z∈Z

{g(z) + ρ2∥Mxk+1 − z + uk∥2}

uk+1 = uk + Mxk+1 − zk+1

until convergence
output: solution (x⋆, z⋆) of problem (4.1)

4.3 Generalized Newton Inexact ADMM

As shown in algorithm 4.2.1, at each iteration of ADMM, two subproblems are

solved sequentially to update variables x and z. ADMM is often the method

of choice when the z-subproblem has a closed-form solution. For example, if

g(x) = ∥x∥1, the z-subproblem is the soft thresholding, and if g is the indicator

function of a convex set S, the z-subproblem is projection onto set S [82, Chap-

ter 6]. However, even when there is a closed-form solution it may be expensive

to compute. For example, the solution of the z-subproblem in ADMM may re-

quire projecting onto a convex set lacking a computationally efficient projection

oracle, like the psd cone.

104



Let us consider the x-subproblem

xk+1 = argmin
x∈X

{
f (x) +

ρ

2
∥Mx − zk + uk∥2

}
. (4.4)

In contrast to the z-subproblem, there is usually no closed-form solution for the

x-subproblem. Instead, it is often solved inaccurately by an iterative scheme, es-

pecially for large-scale applications. This solve can be very expensive when the

problem is large. To reduce computational effort, many authors have suggested

to replace this problem with a simplified subproblem that is easier to solve. We

highlight several strategies to do so below.

Augmented Lagrangian linearization. One strategy is to linearize the aug-

mented Lagrangian term ρ

2∥Mx− zk+uk∥2 in the ADMM subproblem and replace

it by the quadratic penalty 1
2∥x − xk∥2P for some (carefully chosen) positive defi-

nite matrix P. More formally, the strategy adds a quadratic term to form a new

subproblem

xk+1 = argmin
x∈X

{
f (x) +

ρ

2
∥Mx − zk + uk∥2 +

1
2
∥x − xk∥2P

}
,

which is substantially easier to solve for an appropriate choice of P. One canon-

ical choice is P = ηI − ρMT M, where η > 0 is a constant. For this choice, the

quadratic terms involving M cancel, and we may omit constants with respect to

x, resulting in the subproblem

xk+1 = argmin
x∈X

{
f (x) + ρ⟨Mx,Mxk − zk + uk⟩ +

η

2
∥x − xk∥2

}
.

We see that the augmented Lagrangian term in (4.4) is replaced by an isotropic

quadratic penalty. This strategy allows the subproblem solve to be replaced by a

proximal operator with a (possibly) closed-form solution. This strategy has been

variously called preconditioned ADMM, proximal ADMM, and (confusingly) lin-

earized ADMM [27, 50, 79].
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Function approximation. The second strategy to simplify the x-subproblem is

to approximate the function f by a first- or second-order approximation [52, 79,

91, 112], forming the new subproblem

xk+1 = argmin
x∈X

{
f (xk) + ⟨∇ f (xk), x − xk⟩ +

η

2
∥x − xk∥2H +

ρ

2
∥Mx − zk + uk∥2

}
(4.5)

where H is the Hessian of f at xk. The resulting subproblem is quadratic and

may be solved by solving a linear system or (for M = I) performing a linear

update, as detailed below in section 4.3.2.

Inexact subproblem solve. The third strategy is to solve the ADMM subprob-

lems inexactly to achieve some target accuracy, either in absolute error or rel-

ative error. An absolute-error criterion chooses the subproblem error a priori

[35], while a relative-error criterion requires the subproblem error to decrease

as the algorithm nears convergence, for example, by setting the error target at

each iteration proportional to ∥uk+1 − uk − ρ(zk+1 − zk)∥ [38].

Approximations used by GeNI-ADMM. The GeNI-ADMM framework al-

lows for any combination of the three strategies: augmented Lagrangian lin-

earization, function approximation, and inexact subproblem solve. Consider

the generalized second-order approximation to f

f (x) ≈ f (x̃k) + ⟨x − x̃k,∇ f (x̃k)⟩ +
ηk

2
∥x − x̃k∥2

Θk , (4.6)

where {Θk}k≥1 is a sequence of psd matrices that approximate the Hessian of

f . GeNI-ADMM uses this approximation in the x-subproblem, resulting in the

new subproblem

x̃k+1 = argmin
x∈X

{ f (x̃k) + ⟨x − x̃k,∇ f (x̃k)⟩ +
ηk

2
∥x − x̃k∥2

Θk

+ αρ⟨Mx,Mx̃k − z̃k + ũk⟩ +
(1 − α)ρ

2
∥Mx − z̃k + ũk∥2},

(4.7)
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where α ∈ {0, 1} controls whether the augmented Lagrangian term ρ

2∥Mx−z̃k+ũk∥2

is linearized.

We refer to (4.7) as a generalized Newton step. The intuition for the name is

made plain when X = Rd, in which case the update becomes(
ηkΘk + (1 − α)ρMT M

)
x̃k+1 = ηkΘk x̃k − ∇ f (x̃k) − ρMT (αMx̃k − z̃k + ũk). (4.8)

Equation (4.8) shows that the x-subproblem reduces to a linear system solve,

just like the Newton update. We can also interpret GeNI-ADMM as a linearized

proximal augmented Langrangian (P-ALM) method [51, 52]. From this point of

view, GeNI-ADMM replaces f in the P-ALM step by its linearization and adds

a specialized penalty defined by the Θk-norm.

The z-subproblem in GeNI-ADMM remains unchanged, however we allow

it to be solved inexactly to account for when exact solves are prohibitively ex-

pensive. Similarly, it is unreasonable to assume that (4.7) is solved exactly at

each iteration. Indeed, the hallmark of the NysADMM scheme from [112] is that

it solves (4.7) inexactly in a highly efficient manner by using a randomized linear

system solver. Thus we allow for inexactness in both the x and z-subproblems

in our generalized ADMM template, which we present in algorithm 4.3.1.

Algorithm 4.3.1 Generalized Newton Inexact ADMM (GeNI-ADMM)

input: stepsize ρ, α ∈ {0, 1}, sequence of psd matrices {Θk}k≥1, step-size sequence
{ηk}k≥1, forcing sequences {εk

x}k≥1, {ε
k
z}k≥1,

repeat

x̃k+1 ε
k
x
≈ argmin

x∈X
{ f (x̃k) + ⟨x − x̃k,∇ f (x̃k)⟩ + η

k

2 ∥x − x̃k∥2
Θk + αρ⟨Mx,Mx̃k − z̃k + ũk⟩ +

(1−α)ρ
2 ∥Mx − z̃k + ũk∥2}

z̃k+1
εkz
≊ argmin

z∈Z
{g(z) + ρ2∥Mx̃k+1 − z + ũk∥2}

ũk+1 = ũk + Mx̃k+1 − z̃k+1

until convergence
output: solution (x⋆, z⋆) of problem (4.1)
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The primary features that differentiates Algorithm 4.3.1 from ADMM (algo-

rithm 4.2.1), is that the x-subproblem is now a generalized-Newton step, and

both subproblems may be solved inexactly. Given the inexactness and the use

of the generalized Newton step in place of the original x-subproblem, we refer

to algorithm 4.3.1 as Generalized Newton Inexact ADMM (GeNI-ADMM). The

inexactness schedule is controlled by the forcing sequences {εk
x}k≥1, {ε

k
z}k≥1, which

specify how accurately the x and z-subproblems are solved at each iteration. We

note the inexactness used for the x and z-subproblems are not the same; to easily

distinguish between them we make the following definition.

Definition 4.3.1 (ε-minimizer and ε-minimum). Let h : T 7→ R be strongly-

convex and let t⋆ = argmint′∈T h(t′).

• (ε-minimizer) Given t ∈ T , we say t is an ε-minimizer of minimizet∈Th(t)

and write

t
ε
≈ argmin

t′∈T
h(t′) if and only if ∥t − t⋆∥ ≤ ε.

In words, t is nearly equal to the argmin of h(t) in set T .

• (ε-minimum) Given t ∈ T , we say t gives an ε-minimum of minimizet∈Th(t)

and write

t
ε
≊ argmin

t′∈T
h(t′) if and only if h(t) − h(t⋆) ≤ ε.

In words, t produces nearly the same objective value as the argmin of h(t)

in set T .

Thus, from definition 4.3.1 and algorithm 4.3.1, we see for each iteration k

that x̃k+1 is an εk
x-minimizer of the x-subproblem, while z̃k+1 gives an εk

z-minimum

of the z-subproblem.
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4.3.1 Related work

The literature on the convergence of ADMM and its variants is vast, so we focus

on prior work most relevant to our setting and provide a review in table 4.1.

GeNI-ADMM is distinguished from all prior works in table 4.1 that it allows

(almost) all these approximations and more, and provides explicit rates of con-

vergence to support choices between algorithms.

The “x” (“z”) in table 4.1 denotes that a paper uses the corresponding strat-

egy of the column to simplify the x-subproblem (z-subproblem). “AL” is the

abbreviation of augmented Lagrangian. In the “Function approximation” col-

umn, the “ f ” (“g”) indicates that a paper approximates function “ f ” (“g”) in the

x-subproblem (z-subproblem). “Stochastic gradient” means a paper uses first-

order function approximation but replace the gradient term with a stochastic

gradient. “Generalized second-order” means a paper uses second-order func-

tion approximation as (4.5), but H is not necessarily the Hessian.

4.3.2 Algorithms recovered from GeNI-ADMM

Various ADMM schemes in the literature can be recovered by selecting the pa-

rameters in algorithm 4.3.1 appropriately. Here we mention a few of the most

important special cases to show the breadth of GeNI-ADMM and so the reader

may develop concrete intuition for the general framework provided by algo-

rithm 4.3.1.
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Table 4.1: A structured comparison of related work on the convergence of
ADMM and its variants.
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NysADMM We start with the recent NysADMM scheme from [112]. The orig-

inal NysADMM scheme assumes the unconstrained case M = I. We shall main-

tain this for simplicity of presentation, even though it is not strictly necessary.

Having noted this, NysADMM is recovered by taking α = 0 and Θk = Hk, the

Hessian of f at the kth iteration. Substituting this information into (4.7) leads to

the following update for the x-subproblem.

(
ηkHk

f + ρI
)

x̃k+1 = ηkHk
f x̃k − ∇ f (x̃k) + ρ(z̃k − ũk). (4.9)

Gradient descent ADMM We next consider the two linearization schemes

from [79]. The first scheme we call gradient descent ADMM (GD-ADMM) and

is appropriate to use when it is inexpensive to solve a least-squares problem

with M. GD-ADMM is obtained from GeNI-ADMM by setting α = 0 and Θk = I

for all k. The x̃k+1 update (4.8) for GD-ADMM simplifies to

x̃k+1 = x̃k − (ρMT M + ηkI)−1
(
∇ f (x̃k) + ρMT (Mx̃k − z̃k + ũk)

)
. (4.10)

The second scheme, linearized-gradient descent ADMM (LGD-ADMM), is useful

when M is not simple, so that the update (4.10) no longer inexpensive. It lin-

earizes the augmented Lagrangian term in the x-subproblem by setting α = 1 in

(4.8) yields the x̃k+1 update

x̃k+1 = x̃k −
1
ηk

(
∇ f (x̃k) + ρMT (Mx̃k − z̃k + ũk)

)
. (4.11)

Observe in the unconstrained case, when M = I, the updates (4.10) and (4.11) are

equivalent and thus they generate the same iterate sequences when initialized at

the same point [113]. Indeed, they are both generated by performing a gradient

step on the augmented Lagrangian (4.7), for suitable choices of the parameters.

Notably, this terminology differs from [79], who refer to (4.10) as “linearized
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ADMM” (L-ADMM) and (4.11) as “linearized preconditioned ADMM” (LP-

ADMM). We choose our terminology to emphasize that GD-ADMM accesses

f via its gradient, as in the literature the term “linearized ADMM” is usually

reserved for methods that access f through its prox operator [27, 50, 82].

Sketch-and-solve ADMM If M = I, and we select Θk to be matrix such that

Θk + ρI is cheap to factor, we call the resulting scheme sketch-and-solve ADMM.

The name sketch-and-solve ADMM is motivated by the fact that suchΘk can often

be obtained via sketching techniques. However, the method works for any Θk,

not only ones constructed by sketching methods. We provide the full details of

sketch-and-solve ADMM in section 4.7.2. To our knowledge sketch-and-solve

ADMM has not been formally proposed or previously analyzed.

The main goal of the rest of this chapter is to prove conver-

gence of algorithm 4.3.1 under appropriate hypotheses on the sequences

{Θk}k≥1, {ε
k
x}k≥1, {ε

k
z}k≥1.

4.4 Technical preliminaries and assumptions

We start by introducing some important concepts that will play a central role in

our analysis. The first is Θ-relative smoothness, which is crucial to establish that

GeNI-ADMM benefits from curvature information provided by the Hessian.

Definition 4.4.1 (Θ-relative smoothness). We say f : D → R is Θ-relatively

smooth with respect to the bounded function Θ : D → Sn
+ if there exists L̂Θ > 0

such that for all x, y ∈ D

f (x) ≤ f (y) + ⟨∇ f (y), x − y⟩ +
L̂Θ
2
∥x − y∥2Θ(y). (4.12)
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That is, the function f is smooth with respect to the Θ-norm. Definition 4.4.1

generalizes relative smoothness, introduced in [47] to analyze Newton’s method.

The definition in [47] takes Θ to be the Hessian of f , H f . When f belongs to the

popular family of generalized linear models, then (4.12) holds with a value of

L̂H f that is independent of the conditioning of the problem [47]. For instance,

if f is quadratic and Θ(y) = H f , then (4.12) holds with equality for L̂H f = 1.

Conversely, if we take Θ = I, which corresponds to GD-ADMM, then L̂Θ = L f .

Here, L f denotes the smoothness constant of f . Our theory will rely on the

fact that L̂Θ is much smaller than the smoothness constant L f of f for methods

that take advantage of curvature, and will rely on L̂Θ to characterize the faster

convergence speed of these methods.

The other important idea we shall need is the notion of an ε-subgradient [10,

53].

Definition 4.4.2 (ε-subgradient). Let r : D → R be a convex function and ε > 0.

We say that s ∈ D∗ is an ε-subgradient for r at z ∈ D if, for every z′ ∈ D, we have

r(z′) − r(z) ≥ ⟨s, z′ − z⟩ − ε.

We denote the set of ε-subgradients for r at z by ∂εr(z).

Clearly any subgradient is an ε-subgradient, so definition 4.4.2 provides a

natural weakening of a subgradient. The ε-subgradient is critical for analyzing

z-subproblem inexactness, and our usage in this context is inspired by the con-

vergence analysis of inexact proximal gradient methods [93]. We shall need the

following proposition whose proof may be found in [10, Proposition 4.3.1].

Proposition 4.4.1. Let r, r1, and r2 be convex functions. Then for any z, the

following holds:
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1. 0 ∈ ∂εr(z) if and only if r(z)
ε
≊ argminz′ r(z′), that is z gives an ε-minimum of

minimizez′r(z′).

2. ∂ε(r1 + r2)(z) ⊂ ∂εr1(z) + ∂εr2(z).

With proposition 4.4.1 established, we prove the following lemma in ap-

pendix C.2, which will play a critical role in establishing the convergence of

GeNI-ADMM.

Lemma 4.4.1. Let z̃k+1 give an εk
z-minimum of the z-subproblem. Then there

exists a ∥s̃∥ ≤
√

2εkz
ρ

such that

ρ(Mx̃k+1 − z̃k+1 + ũk − s̃) ∈ ∂εkz g(z̃k+1).

4.4.1 Assumptions

In this section we present the main assumptions required by our analysis.

Assumption 4.4.1 (Existence of saddle point). There exists an optimal primal

solution (x⋆, z⋆) ∈ X × Z for (4.1) and an optimal dual solution u⋆ ∈ U such that

(x⋆, z⋆, u⋆) is a saddle point of (4.2). Here U ⊂ Z is a closed convex set and

ρU = Y . We denote the optimal objective value of (4.1) as p⋆.

Assumption 4.4.2. The sequence {Θk}k≥1 satisfies

(1 − ζk−1)Θk−1 ⪯ Θk ⪯ (1 + ζk−1)Θk−1, ∀k ≥ 2, (4.13)

where {ζk}k≥1 is a summable sequence, that is,
∑∞

k=1 ζ
k < ∞.

Intuitively, this assumption requires that the Θk’s does not change too much

between iterations. Note this assumption may always be enforced by changing

Θk only finitely many times.
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We also define the following constants which shall be useful in our analysis,

τζ B
∏
k≥2

(1 + ζk),

Eζ = τζ

 ∞∑
k=0

ζk

 < ∞.
Note assumption 4.4.2 implies τζ < ∞ and for any v ∈ Rp that ∥v∥Θk ≤ τζ∥v∥Θ1 for

all k ≥ 1.

Assumption 4.4.3 (Summability of the forcing sequences). The forcing se-

quences {εk
x}k≥1 and {εk

z}k≥1 satisfy

Ex =

∞∑
k=1

εk
x < ∞, Ez =

∞∑
k=1

√
εk

z < ∞.

Further we define the constants Kεx B supk≥1 ε
k
x, Kεz B supk≥1

√
εk

z . Observe Kεx

and Kεz are finite owing to the summability hypotheses.

Assumption 4.4.3 seems to require a more accurate solution of the z-

subproblem than the x-subproblem. While it is true that the sequence {εk
z}k≥1

must decay faster than {εk
x}k≥1, the z-subproblem needs only a εk

z-minimum,

which is much weaker than the εk
x-minimizer required for the x-subproblem.

Assumption 4.4.4 (x-Subproblem oracle). We assume algorithm 4.3.1 is

equipped with an oracle for solving the x-subproblem that each iteration pro-

duces an approximate solution x̃k+1 satisfying:

max{∥x̃k+1 − xk+1∥ηkΘk+ρMT M, ∥x̃k+1 − xk+1∥} ≤ εk
x,

where xk+1 denotes the exact solution of the x-subproblem at iteration k + 1.

Assumption 4.4.4 is motivated by the fact in practical applications where

X = Rd, the x-subproblem reduces to (4.7), which is a linear system solve. If
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we have a fast linear system oracle like in NysADMM, then the condition of

assumption 4.4.4 is always met. In addition, if we compute the solution to (4.7)

exactly, as in GD-ADMM and LGD-ADMM, then the condition is trivially satis-

fied.

Assumption 4.4.5 (Regularity of f and g). The function f is β f -Lipschitz twice-

continuously differentiable and is relatively smooth with respect toΘ. The func-

tion g is finite-valued, convex, and lower semi-continuous.

Assumption 4.4.6 (Boundedness of the iterates). We make the following bound-

edness hypotheses on the iterates {x̃k}k≥1, {z̃k}k≥1, {ũk}k≥1 :

Rx⋆,Θ1 B sup
k≥1
∥x̃k − x⋆∥Θ1 < ∞, Rx⋆,M B sup

k≥1
∥x̃k − x⋆∥MT M < ∞

sup
k≥1
∥x̃k − x⋆∥, sup

k≥1
∥ũk − u⋆∥, sup

k≥1
∥z̃k − z⋆∥ ≤ Rx⋆,u⋆,z⋆ < ∞.

Assumptions 4.4.1, 4.4.5, and 4.4.6 are all standard. Assumption 4.4.5 en-

sures that it makes sense to talk about the Hessian of f and that f is relatively

smooth.

4.5 Sublinear convergence of GeNI-ADMM

This section establishes our main theorem, theorem 4.5.1, which shows that al-

gorithm 4.3.1 enjoys the same O(1/t)-convergence rate as standard ADMM.

Theorem 4.5.1 (Ergodic convergence). Define constants R⋆ = max{Rx⋆,Θ1 ,Rx⋆,M,Rx⋆,u⋆,z⋆ , ∥u⋆∥},

dx⋆,Θ1 = ∥x̃1 − x⋆∥Θ1 , du⋆ = ∥ũ1 − u⋆∥, dz⋆ = ∥z̃1 − z⋆∥. Let p⋆ denote the optimum

of (4.1) and ηk = η = L̂Θ +
αρ∥M∥2

θ
such that Θk ⪰ θI for all k. For each t ≥ 1,

denote x̄t+1 = 1
t

∑t+1
k=2 x̃k, and z̄t+1 = 1

t

∑t+1
k=2 z̃k, where {x̃k}k≥1 and {z̃k}k≥1 are the iter-

ates produced by algorithm 4.3.1 with forcing sequences {εk
x}k≥1 and {εk

z}k≥1 with

116



ũ1 = 0 and z̃1 = Mx̃1. Instate Assumptions 4.4.1-4.4.6. Then the suboptimality

gap satisfies

f (x̄t+1) + g(z̄t+1) − p⋆ ≤
1
t

(
η

2
d2

x⋆,Θ1 +
ρ(1 − α)

2
d2

z⋆ +CxEx +CzEz +
η

2
EζR2

⋆

)
=:

1
t
Γ,

where Cx and Cz are constants that depend linearly upon β f ,Kεx ,Kεz , and R⋆. Further-

more, the feasiblity gap satisfies

∥Mx̄t+1 − z̄t+1∥ ≤
2
t

√
Γ

ρ
+ d2

u⋆ ,

Consequently, after O(1/ϵ) iterations,

f (x̄t+1) + g(z̄t+1) − p⋆ ≤ ϵ, and ∥Mx̄t+1 − z̄t+1∥ ≤ ϵ.

Theorem 4.5.1 shows with a constant value of η and appropriate forcing se-

quences, the suboptimality gap and the feasibility residuals both go to zero at

a rate of O(1/t). Hence the overall convergence rate of ADMM is preserved de-

spite all the approximations involved in GeNI-ADMM. However, some schemes

yield better constants than others.

To see this difference, consider the case when f is a convex quadratic func-

tion and M = I. Let H f be the Hessian of f . Consider two special cases with

α = 0: (1) NysADMM Θk = H f (4.9) and (2) GD-ADMM Θk = I (4.10). Further,

suppose that NysADMM and GD-ADMM are initialized at 0. The rates of con-

vergence guaranteed by theorem 4.5.1 for algorithm 4.3.1 for both methods are

outlined in table 4.2. In the first case, the relative smoothness constant satisfies

L̂Θ = 1, while in the second, L̂Θ = λ1

(
H f

)
, which is the largest eigenvalue of H f .

Hence by Cauchy-Schwarz, we always have

λ1

(
H f

)
∥x⋆∥2 ≥ ∥x⋆∥2H f

.

Thus, NysADMM always improves over GD-ADMM, and improves signifi-

cantly when H f exhibits a decaying spectrum, provided x⋆ is not concentrated
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Table 4.2: Convergence rate comparison of GeNI-ADMM with α = 0 when ini-
tialized at 0 for quadratic f .

Method NysADMM
(
Θk = H f

)
GD-ADMM

(
Θk = I

)
Feasibility gap O

(
1
t

(√
2
ρ∥x
⋆∥2H f

))
O

(
1
t

(√
2
ρλ1

(
H f

)
∥x⋆∥2

))
Suboptimality gap O

(
1
2t ∥x

⋆∥2H f

)
O

(
1
2tλ1

(
H f

)
∥x⋆∥2

)

on the top eigenvector of H f . We formalize the latter property in the following

definition.

Definition 4.5.1 (µv-incoherence). Let (λ1(H f ), v) be the largest eigenpair of H f .

We say x⋆ is µv-incoherent if there exists 0 ≤ µv < 1 such that:

|⟨v, x⋆⟩|2 ≤ µv∥x⋆∥2. (4.14)

Definition 4.5.1 is a weak form of the incoherence condition from com-

pressed sensing and matrix completion, which plays a key role in signal and

low-rank matrix recovery [17, 18]. In words, x⋆ is µv-incoherent if its energy

is not solely concentrated on the top eigenvector of H f and can be expected to

hold generically. The parameter µv controls the allowable concentration. When

µv = 0, x⋆ is orthogonal to v, so its energy is distributed amongst the other

eigenvectors. Conversely, the closer µv is to 1, the more concentrated x⋆ is on v.

Using µv-incoherence, we can say more about how NysADMM improves on

GD-ADMM.

Proposition 4.5.1. Suppose x⋆ is µV-incoherent. Then the following bound holds

λ1(H f )∥x⋆∥2

∥x⋆∥2H f

≥ max

 1
λ2(H f )
λ1(H f ) + µv

, 1

 .
Hence if λ1(H f ) ≫ 1 and µv ≤ C−1/2 and λ1(H f )/λ2(H f ) ≤ C−1/2, where C ≥ 1,
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then
λ1(H f )∥x⋆∥2

∥x⋆∥2H f

≥ C.

Proposition 4.5.1 shows when x⋆ is µv-incoherent and H f has decaying spec-

trum, NysADMM yields a significant improvement over GD-ADMM. As a con-

crete example, consider when C = 2, i.e. no more than 25% of the energy in

x⋆ concentrates on v and λ2(H f ) ≤ 0.25λ1(H f ), then proposition 4.5.1 implies the

ergodic convergence of NysADMM is about twice as fast as GD-ADMM. In fact,

we observe this performance improvement in practice (see section 3.5 for cor-

roborating numerical evidence). We see that just as Newton’s method improves

on gradient descent for ill-conditioned problems, NysADMM is less sensitive to

ill-conditioning than GD-ADMM.

We now move to proving theorem 4.5.1.

4.5.1 Our approach

To prove theorem 4.5.1, we take the gap function approach proposed in [79]. Let

W = X × Z × U, ŵ = (x̂, ẑ, û), and w = (x, z, u), where w, ŵ ∈ W. Define the gap

function

Q(ŵ,w) B [ f (x) + g(z) + ⟨ρû,Mx − z⟩] − [ f (x̂) + g(ẑ) + ⟨ρu,Mx̂ − ẑ⟩]. (4.15)

The gap function is motivated by the saddle-point formulation eq. (4.2) of

eq. (4.1), and by construction, it is concave in its first argument and convex in

the second. Observe the important inequality

Q(w⋆,w) = Lρ(x, z, u⋆) − Lρ(x⋆, z⋆, u) ≥ 0,
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where the inequality follows by definition of (x⋆, z⋆, u⋆) being a saddle-point.

Hence the gap function may be viewed as measuring the distance to the saddle

w⋆.

Further, given a closed set U ⊂ Z and v ∈ Zwe define

ℓU(v,w) B sup
û∈U
{Q(ŵ,w) + ⟨v, ρû⟩ | ŵ = (x̂, ẑ, û), x̂ = x⋆, ẑ = z⋆} (4.16)

= f (x) + g(z) − p⋆ + sup
û∈U
⟨ρû, v − (Mx − z)⟩.

The appropriateness of the name gap function becomes clear when we consider

the following result from [79]. As the proof is elementary, we provide it in ap-

pendix C.2 for the reader’s leisure.

Lemma 4.5.1. For any U ⊆ Z, suppose ℓU(Mx − z,w) ≤ ϵ < ∞ and ∥Mx − z∥ ≤ δ,

where w = (x, z, u) ∈ W. Then

f (x) + g(z) − p⋆ ≤ ϵ. (4.17)

In other words, (x, z) is an approximate solution of (4.1) with suboptimality gap

ϵ and feasibility gap δ. Further, if U = Z, for any v such that ℓU(v,w) ≤ ϵ < ∞

and ∥v∥ ≤ δ, we have v = Mx − z.

Lemma 4.5.1 shows that if we can find w such that ℓU(Mx − z,w) ≤ ϵ and

∥Mx − z∥ ≤ δ, then we have an approximate optimal solution to (4.1) with gaps ϵ

and δ, that is, ℓU(Mx − z,w) controls the suboptimality and feasibility gaps.

Proof sketch for theorem 4.5.1 Lemma 4.5.1 provides a natural path for prov-

ing theorem 4.5.1. If we can find points w̄ = (x̄, z̄, ū) ∈ W, v̄ ∈ Z such that

ℓU(v̄, w̄) ≤ O(1/t),
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then lemma 4.5.1 ensures the suboptimality and feasibility gaps are O(1/t), and

so theorem 4.5.1 is proved. In order to see how we may find such a w̄, let us

suppose that algorithm 4.3.1 has been run for t + 1 iterations, and the following

bound has been established
t+1∑
k=2

Q(x⋆, z⋆, u; w̃k) ≤ O(1) +
ρ

2

(
∥ũt − u∥2 − ∥ũt+1 − u∥2

)
. (4.18)

We shall now sketch the construction of w̄, and hence the proof of theorem 4.5.1,

under the preceding hypotheses.

We start by setting w̄ = 1
t

∑t+1
k=2 w̃k. Then by convexity of the gap function (in

its second argument), ũ1 = 0, and (4.18), we reach

Q(x⋆, z⋆, u; w̄) ≤ O(1/t) +
ρ

2t

(
∥ũ1 − u∥2 − ∥ũt+1 − u∥2

)
≤ O(1/t) −

ρ

t
⟨ũ1 − ũt+1, u⟩.

Next we set ṽt+1 = 1
t (ũ1 − ũt+1) and observe that

ṽt+1 =
−1
t

t∑
k=1

(
ũk+1 − ũk

)
=
−1
t

k∑
k=1

(
Mx̃k+1 − z̃k+1

)
= z̄ − Mx̄.

Now setting u = u⋆ into our bound on Q(x⋆, z⋆, u; w̄), using Q(w⋆, w̄) ≥ 0, and

performing some algebra, we find

∥ṽt+1∥2 ≤ 2
(
∥ũt+1 − u⋆∥2 + ∥ũ1 − u⋆∥2

)
≤ O(1/t2).

Hence the infeasibility is bounded as ∥Mx̄ − z̄∥ ≤ O(1/t).

Returning to our bound on Q(x⋆, z⋆, u; w̄), we see for any w that the following

inequality holds

Q(w, w̄) + ⟨ṽt+1, ρu⟩ ≤ O(1/t).

Hence setting w = (x⋆, z⋆, u), we conclude

ℓU(ṽt+1, w̄) ≤ O(1/t),

which, by lemma 4.5.1, yields the theorem.
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4.5.2 Controlling the gap function

The proof sketch shows, the key step in establishing convergence of GeNI-

ADMM is the inequality (4.18). It is clear that in order to establish (4.18), we

must achieve appropriate control over the gap function. To accomplish this, we

make use of the optimality conditions of the x and z-subproblems. However,

as the subproblems are only solved approximately, the inexact solutions satisfy

perturbed optimality conditions. The precise form of these perturbed optimal-

ity conditions provide the content of lemmas 4.5.2 and 4.5.3. Detailed proofs

establishing these lemmas are given in appendix C.2.

Lemma 4.5.2 (Inexact x-optimality condition). Suppose x̃k+1 is an εk
x-minimizer

of the x-subproblem under assumption 4.4.4 and define the constant

χ1 B
(
2τζRx⋆,Θ1 +

√
ρ(3Rx⋆,u⋆,z⋆ + ∥u⋆∥) + β f + 2αρRx⋆,M

)
.

Then for any x ∈ X, we have

⟨∇ f (x̃k), x̃k+1 − x⟩ ≤ ⟨ηkΘk(x̃k+1 − x̃k), x − x̃k+1⟩ + ρ⟨Mx̃k+1 − z̃k + ũk,M(x − x̃k+1)⟩

+ αρ⟨M(x̃k − x̃k+1),M(x − x̃k+1)⟩

+
(
χ1 + τζ∥x − x̃k+1∥ηΘ1 + (1 + α)∥x − x̃k+1∥ρMT M

)
εk

x + α(εk
x)

2.

(4.19)

Lemma 4.5.3 (Inexact z-optimality condition). Suppose z̃k+1 is an εk
z-minimum of

the z-subproblem under definition 4.3.1. Then for any z ∈ Z, we have

g(z̃k+1) − g(z) ≤ ρ⟨ũk+1, z̃k+1 − z⟩ + (1 + 2ρ)εk
z +

(
2(Rx⋆,u⋆,z⋆ + ∥u⋆∥) + ∥z̃k+1 − z∥

) √
2ρεk

z .

(4.20)

We note while lemma 4.5.2 (lemma 4.5.3) necessarily holds when x̃k+1 (z̃k+1) is

an εk
x-approximate minimizer (εk

z-minimum), the converse does not hold. With
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lemmas 4.5.2 and 4.5.3 in hand, we can establish control of the gap function for

one iteration.

Lemma 4.5.4. Let w̃k+1 = (x̃k+1, z̃k+1, ũk+1) denote the iterates generated by algo-

rithm 4.3.1 at iteration k + 1. Then the gap function Q satisfies

Q(w, w̃k+1) ≤
η

2

(
∥x − x̃k∥2

Θk − ∥x − x̃k+1∥2
Θk

)
+
ρ

2

(
∥ũk − u∥2 − ∥ũk+1 − u∥2

)
+
ρ

2

(
∥z̃k − Mx∥2 − ∥z̃k+1 − Mx∥2 − ∥z̃k − Mx̃k+1∥2

)
−
αρ

2

(
∥M(x̃k − x)∥2 − ∥M(x̃k+1 − x)∥2

)
−

1
2

(
ηk∥x̃k − x̃k+1∥2

Θk − L̂Θ∥x̃k − x̃k+1∥2
Θk − αρ∥M∥2∥x̃k − x̃k+1∥2

)
+

(
χ1 + τζ∥x − x̃k+1∥ηΘ1 + (1 + α)∥x − x̃k+1∥ρMT M

)
εk

x + α(εk
x)

2

+ (1 + 2ρ)εk
z +

(
2(Rx⋆,u⋆,z⋆ + ∥u⋆∥) + ∥z̃k+1 − z∥

) √
2ρεk

z .

Proof. From the definition of Q,

Q(w, w̃k+1) = f (x̃k+1) − f (x) + g(z̃k+1) − g(z) + ⟨ρu,Mx̃k+1 − z̃k+1⟩ − ⟨ρũk+1,Mx − z⟩.

Our goal is to upper bound Q(w, w̃k+1). We start by bounding f (x̃k+1) − f (x) as

follows:

f (x̃k+1) − f (x) = f (x̃k+1) − f (x̃k) + f (x̃k) − f (x)

(1)
≤ ⟨∇ f (x̃k), x̃k+1 − x̃k⟩ +

L̂Θ
2
∥x̃k+1 − x̃k∥2Θk

+ f (x̃k) − f (x)

(2)
≤ ⟨∇ f (x̃k), x̃k+1 − x̃k⟩ +

L̂Θ
2
∥x̃k+1 − x̃k∥2Θk

+ ⟨∇ f (x̃k), x̃k − x⟩

= ⟨∇ f (x̃k), x̃k+1 − x⟩ +
L̂Θ
2
∥x̃k+1 − x̃k∥2

Θk ,

where (1) uses relative smoothness and (2) uses convexity of f . Inserting the

upper bound on f (x̃k+1) − f (x) into the expression for Q(w, w̃k+1), we find

Q(w, w̃k+1) ≤⟨∇ f (x̃k), x̃k+1 − x⟩ +
L̂Θ
2
∥x̃k+1 − x̃k∥2

Θk + g(z̃k+1) − g(z)

+ ⟨ρu,Mx̃k+1 − z̃k+1⟩ − ⟨ρũk+1,Mx − z⟩.
(4.21)
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Using approximate optimality of the iterates, we may insert the bounds of (4.19)

and (4.20) from lemmas 4.5.2 and 4.5.3 into (4.21), which yields

Q(w, w̃k+1) ≤ ⟨ηkΘk(x̃k+1 − x̃k), x − x̃k+1⟩ + ρ⟨Mx̃k+1 − z̃k + ũk,M(x − x̃k+1)⟩

+ ρ⟨ũk+1, z̃k+1 − z⟩ + ⟨ρu,Mx̃k+1 − z̃k+1⟩ − ⟨ρũk+1,Mx − z⟩

+ αρ⟨M(x̃k − x̃k+1),M(x − x̃k+1) +
L̂Θ
2
∥x̃k+1 − x̃k∥2

Θk

+
(
χ1 + τζ∥x − x̃k+1∥ηΘ1 + (1 + α)∥x − x̃k+1∥ρMT M

)
εk

x + α(εk
x)

2

+ (1 + 2ρ)εk
z +

(
2(Rx⋆,u⋆,z⋆ + ∥u⋆∥) + ∥z̃k+1 − z∥

) √
2ρεk

z .

(4.22)

We now simplify (4.22) by combining terms. Some basic manipulations show

the terms on line 2 of (4.22) may be rewritten as

ρ⟨ũk+1, z̃k+1 − z⟩ + ρ⟨u,Mx̃k+1 − z̃k+1⟩ − ρ⟨ũk+1,Mx − z⟩

= ρ⟨ũk+1 − u, z̃k+1 − Mx̃k+1⟩ − ρ⟨ũk+1,M(x − x̃k+1)⟩.

We can combine the preceding display with the second term of line 1 in (4.22)

to reach

ρ⟨Mx̃k+1 − z̃k + ũk,M(x − x̃k+1)⟩ − ρ⟨ũk+1,M(x − x̃k+1)⟩ + ρ⟨ũk+1 − u, z̃k+1 − Mx̃k+1⟩

= ⟨ũk+1 + z̃k+1 − z̃k,M(x − x̃k+1)⟩ − ρ⟨ũk+1,M(x − x̃k+1)⟩ + ρ⟨ũk+1 − u, z̃k+1 − Mx̃k+1⟩

= ⟨z̃k+1 − z̃k,M(x − x̃k+1)⟩ + ρ⟨ũk+1 − u, z̃k+1 − Mx̃k+1⟩.

Inserting the preceding simplification into (4.22), we reach

Q(w, w̃k+1) ≤ ⟨ηkΘk(x̃k+1 − x̃k), x − x̃k+1⟩ + ρ⟨ũk+1 − u, z̃k+1 − Mx̃k+1⟩ + ρ⟨z̃k+1 − z̃k,M(x − x̃k+1)⟩

+ αρ⟨M(x̃k − x̃k+1),M(x − x̃k+1)⟩ +
L̂Θ
2
∥x̃k+1 − x̃k∥2

Θk

+
(
χ1 + τζ∥x − x̃k+1∥ηΘ1 + (1 + α)∥x − x̃k+1∥ρMT M

)
εk

x + α(εk
x)

2

+ (1 + 2ρ)εk
z +

(
2(Rx⋆,u⋆,z⋆ + ∥u⋆∥) + ∥z̃k+1 − z∥

) √
2ρεk

z .

(4.23)
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Now, we bound the first two leading terms in line 1 of (4.23) by invoking the

identity (a − b)TΥ(c − d) = 1/2
(
∥a − d∥2

Υ
− ∥a − c∥2

Υ

)
+ 1/2

(
∥c − b∥2

Υ
− ∥d − b∥2

Υ

)
to

obtain

ηk⟨Θk(x̃k+1 − x̃k), x − x̃k+1⟩ + ρ⟨ũk+1 − u, z̃k+1 − Mx̃k+1⟩ ≤

ηk

2

(
∥x − x̃k∥2

Θk − ∥x − x̃k+1∥2
Θk

)
−
ηk

2
∥x̃k+1 − x̃k∥2

Θk +
ρ

2

(
∥ũk − u∥2 − ∥ũk+1 − u∥2 − ∥ũk − ũk+1∥2

)
.

Similarly, to bound the third and fourth terms in (4.23), we again invoke (a −

b)TΥ(c − d) = 1/2
(
∥a − d∥2

Υ
− ∥a − c∥2

Υ

)
+ 1/2

(
∥c − b∥2

Υ
− ∥d − b∥2

Υ

)
which yields

ρ⟨z̃k+1 − z̃k,M(x − x̃k+1)⟩ =
ρ

2

(
∥z̃k − Mx∥2 − ∥z̃k+1 − Mx∥2 + ∥z̃k+1 − Mx̃k+1∥2 − ∥z̃k − Mx̃k+1∥2

)
=
ρ

2

(
∥z̃k − Mx∥2 − ∥z̃k+1 − Mx∥2 − ∥z̃k − Mx̃k+1∥2

)
+
ρ

2
∥ũk − ũk+1∥2,

αρ⟨M(x̃k − x̃k+1),M(x − x̃k+1)⟩ = −
αρ

2

(
∥M(x̃k − x)∥2 − ∥M(x̃k+1 − x)∥2

)
+
αρ

2
∥M(x̃k − x̃k+1)∥2

≤ −
αρ

2

(
∥M(x̃k − x)∥2 − ∥M(x̃k+1 − x)∥2

)
+
αρ

2
∥M∥2∥x̃k − x̃k+1∥2.

Putting everything together, we conclude

Q(w, w̃k+1) ≤
ηk

2

(
∥x̃k − x∥2

Θk − ∥x̃k+1 − x∥2
Θk

)
+
ρ

2

(
∥ũk − u∥2 − ∥ũk+1 − u∥2

)
+
ρ

2

(
∥z̃k − Mx∥2 − ∥z̃k+1 − Mx∥2 − ∥z̃k − Mx̃k+1∥2

)
−
αρ

2

(
∥M(x̃k − x)∥2 − ∥M(x̃k+1 − x)∥2

)
−

1
2

(
ηk∥x̃k − x̃k+1∥2

Θk − L̂Θ∥x̃k − x̃k+1∥2
Θk − αρ∥M∥2∥x̃k − x̃k+1∥2

)
+

(
χ1 + τζ∥x − x̃k+1∥ηΘ1 + (1 + α)∥x − x̃k+1∥ρMT M

)
εk

x + α(εk
x)

2

+ (1 + 2ρ)εk
z +

(
2(Rx⋆,u⋆,z⋆ + ∥u⋆∥) + ∥z̃k+1 − z∥

) √
2ρεk

z .

as desired. □ □

4.5.3 Proof of theorem 4.5.1

With lemma 4.5.4 in hand, we are ready to prove theorem 4.5.1.
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Proof. Let w̄t+1 = 1
t

∑t+1
k=2 w̃k, where {w̃k}k≥1 are the iterates produced by algo-

rithm 4.3.1. From lemma 4.5.4, we have for each k that

Q(w, w̃k+1) ≤
ηk

2

(
∥x̃k − x∥2

Θk − ∥x̃k+1 − x∥2
Θk

)
+
ρ

2

(
∥ũk − u∥2 − ∥ũk+1 − u∥2

)
+
ρ

2

(
∥z̃k − Mx∥2 − ∥z̃k+1 − Mx∥2 − ∥z̃k − Mx̃k+1∥2

)
−
αρ

2

(
∥M(x̃k − x)∥2 − ∥M(x̃k+1 − x)∥2

)
−

1
2

(
ηk∥x̃k − x̃k+1∥2

Θk − L̂Θ∥x̃k − x̃k+1∥2
Θk − αρ∥M∥2∥x̃k − x̃k+1∥2

)
+

(
χ1 + τζ∥x − x̃k+1∥ηΘ1 + (1 + α)∥x − x̃k+1∥ρMT M

)
εk

x + α(εk
x)

2

+ (1 + 2ρ)εk
z +

(
2(Rx⋆,u⋆,z⋆ + ∥u⋆∥) + ∥z̃k+1 − z∥

) √
2ρεk

z .

Now, summing up the preceding display from k = 1 to t and setting w =

(x⋆, z⋆, u), we obtain
t+1∑
k=2

Q(x⋆, z⋆, u; w̃k) ≤
ηk

2

t∑
k=1

(
∥x̃k − x⋆∥2

Θk − ∥x̃k+1 − x⋆∥2
Θk

)
︸                                     ︷︷                                     ︸

T1

+
ρ

2

t∑
k=1

(
∥ũk − u∥2 − ∥ũk+1 − u∥2

)
︸                                  ︷︷                                  ︸

T2

+
ρ

2

t∑
k=1

(
∥z̃k − Mx⋆∥2 − ∥z̃k+1 − Mx⋆∥2 − ∥z̃k − Mx̃k+1∥2

)
︸                                                                 ︷︷                                                                 ︸

T3

−
αρ

2

t∑
k=1

(
∥M(x̃k − x⋆)∥ − ∥M(x̃k+1 − x⋆)∥

)
︸                                               ︷︷                                               ︸

T4

−
1
2

t∑
k=1

(
(ηk − L̂Θ)∥x̃k − x̃k+1∥2

Θk − αρ∥M∥2∥x̃k − x̃k+1∥2
)

︸                                                                ︷︷                                                                ︸
T5

+

t∑
k=1

((
χ1 + τζ∥x⋆ − x̃k+1∥ηΘ1 + (1 + α)∥x⋆ − x̃k+1∥ρMT M

)
εk

x + α(εk
x)

2
)

︸                                                                                   ︷︷                                                                                   ︸
T6

+

t∑
k=1

(
(1 + 2ρ)εk

z +
(
2(Rx⋆,u⋆,z⋆ + ∥u⋆∥) + ∥z̃k+1 − z⋆∥

) √
2ρεk

z

)
︸                                                                         ︷︷                                                                         ︸

T7

.

We start by bounding T6 and T7. For T6, we have by summability of the
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forcing sequences (assumption 4.4.3) that

T6 ≤
(
αKεx + χ1 + τζRx⋆,Θ1 + ρ(1 + α)Rx⋆,M

)
Ex

≤
(
αKεx + χ1 + (ρ + ρα + τζ)R⋆

)
Ex

≤
(
αKεx + β f +

(
ρ + 3ρα + 3τζ + 4

√
ρ
)

R⋆
)
Ex

= (αKεx + β f + χR⋆)Ex.

Here we define constant χ B ρ + 3ρα + 3τζ + 4
√
ρ to simplify the notation. By

analogous reasoning, we find for T7 that

T7 ≤
(
(1 + 2ρ)Kεz + 5R⋆

√
2ρ

)
Ez.

Thus we reach

T6 + T7 ≤ (αKεx + β f + χR⋆)Ex +
(
(1 + 2ρ)Kεz + 5R⋆

√
2ρ

)
Ez.

Next we bound T5. As Θk ⪰ θI for all k and η = L̂Θ +
αρ∥M∥2

θ
, we always have

T5 ≥ 0 and thus we can drop this term from the analysis.

We now turn to bounding T1. Using the definition of T1, we find

T1 =
η

2

t∑
k=1

(
∥x̃k − x⋆∥2

Θk − ∥x̃k+1 − x⋆∥2
Θk

)
=
η

2

(
∥x̃1 − x⋆∥2

Θ1 − ∥x̃t+1 − x⋆∥2Θt

)
+
η

2

t∑
k=2

(
∥x̃k − x⋆∥2

Θk − ∥x̃k − x⋆∥2
Θk−1

)
.

Now using our hypotheses on the sequence {Θk}k in (4.13), we obtain

∥x̃k − x⋆∥2
Θk − ∥x̃k − x⋆∥2

Θk−1 = (x̃k − x⋆)T (Θk − Θk−1)(x̃k − x⋆) ≤ ζk−1∥x̃k − x⋆∥2
Θk−1

≤ τζζ
k−1∥x̃k − x⋆∥2

Θ1 .
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Inserting the previous bound into T1, we reach

T1 ≤
η

2
∥x̃1 − x⋆∥2

Θ1 +
η

2
τζ

t∑
k=1

ζk−1∥x̃k − x⋆∥2
Θ1 −
η

2
∥x̃t+1 − x⋆∥2Θt

≤
η

2

(
∥x̃1 − x⋆∥2

Θ1 + EζR2
x⋆,Θ1

)
−
η

2
∥x̃t+1 − x⋆∥2Θt

≤
η

2

(
∥x̃1 − x⋆∥2

Θ1 + EζR2
⋆

)
−
η

2
∥x̃t+1 − x⋆∥2Θt =

η

2

(
d2

x⋆,Θ1 + EζR2
⋆

)
−
η

2
∥x̃t+1 − x⋆∥2Θt .

Next we bound T3. As we can ignore the last term in the summand, we

obtain a telescoping sum. This yields the following bound for T3:

T3 ≤
ρ

2

t∑
k=1

(
∥z̃k − Mx⋆∥2 − ∥z̃k+1 − Mx⋆∥2

)
=
ρ

2

t∑
i=1

(
∥z̃k − z⋆∥2 − ∥z̃k+1 − z⋆∥2

)
≤
ρ

2
∥z̃1 − z⋆∥2 =

ρ

2
d2

z⋆ .

Next, we observe T4 is a telescoping sum, so

T4 =
αρ

2

t∑
k=1

(
∥M(x̃k − x⋆)∥ − ∥M(x̃k+1 − x⋆)∥

)
=
αρ

2

(
∥M(x̃1 − x⋆)∥2 − ∥M(x̃t+1 − x⋆)∥2

)
.

Last, T2 is also a telescoping sum, hence

T2 =
ρ

2

t∑
k=1

(
∥ũk − u∥2 − ∥ũk+1 − u∥2

)
=
ρ

2

(
∥ũ1 − u∥2 − ∥ũt+1 − u∥2

)
.

By the definition of η, we have

η

2
∥x̃t+1 − x⋆∥2Θt ≥

αρ

2
∥M(x̃t+1 − x⋆)∥2.

Thus,

T1 + T3 − T4 ≤
η

2
EζR2

⋆ +
η

2
d2

x⋆,Θ1 −

(
η

2
∥x̃t+1 − x⋆∥2Θt −

αρ

2
∥M(x̃t+1 − x⋆)∥2

)
+

(
ρ

2
d2

z⋆ −
αρ

2
∥M(x̃1 − x⋆)∥2

)
≤
η

2

(
d2

x⋆,Θ1 + EζR2
⋆

)
+
ρ(1 − α)

2
d2

z⋆ .
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The second inequality follows from the relation Mx̃1 = z̃1. Using our bounds on

T1 through T7, we find

t+1∑
k=2

Q(x⋆, z⋆, u; w̃k) ≤
η

2

(
d2

x⋆,Θ1 + EζR2
⋆

)
+
ρ(1 − α)

2
d2

z⋆ + (αKεx + β f + χR⋆)Ex

+
(
(1 + 2ρ)Kεz + 5R⋆

√
2ρ

)
Ez +

ρ

2

(
∥ũ1 − u∥2 − ∥ũt+1 − u∥2

)
=
η

2
d2

x⋆,Θ1 +
ρ(1 − α)

2
d2

z⋆ +CxEx +CzEz +
η

2
EζR2

⋆ +
ρ

2

(
∥ũ1 − u∥2 − ∥ũt+1 − u∥2

)
,

where Cx B αKεx+β f+χR⋆ and Cz B (1+2ρ)Kεz+5R⋆
√

2ρ.Now, as w̄t+1 = 1
t

∑t+1
k=2 w̃k,

the convexity of Q in its second argument yields

Q(x⋆, z⋆, u; w̄t+1) ≤
1
t

t+1∑
k=2

Q(x⋆, z⋆, u; w̃k)

≤
1
t

(
η

2
d2

x⋆,Θ1 +
ρ(1 − α)

2
d2

z⋆ +CxEx +CzEz +
η

2
EζR2

⋆ +
ρ

2

(
∥ũ1 − u∥2 − ∥ũt+1 − u∥2

))
.

(4.24)

Define Γ B η

2d2
x⋆,Θ1 +

ρ(1−α)
2 d2

z⋆ +CxEx+CzEz+
η

2EζR
2
⋆. Since Q(w⋆, w̄t+1) ≥ 0, by (4.24)

we reach

∥ũt+1 − u⋆∥2 ≤
2
ρ
Γ + d2

u⋆ .

Let ṽt+1 = 1
t

(
ũ1 − ũt+1

)
. Then we can bound ∥ṽt+1∥

2 as

∥ṽt+1∥2 ≤
2
t2

(
∥ũ1 − u⋆∥2 + ∥ũt+1 − u⋆∥2

)
≤

4
t2

(
Γ

ρ
+ d2

u⋆

)
.

By (4.24), given the fact ũ1 = 0, we also have

Q(x⋆, z⋆, u; w̄t+1) ≤
Γ − ρ⟨ũ1 − ũt+1, u⟩

t
=
Γ

t
− ρ⟨ṽt+1, u⟩,

where the equality follows from the definition of ṽt+1. Hence for any u

Q(x⋆, z⋆, u; w̄t+1) + ⟨ṽt+1, ρu⟩ ≤
Γ

t
,

and therefore

ℓU(ṽt+1, w̄t+1) ≤
1
t

(
η

2
d2

x⋆,Θ1 +
ρ(1 − α)

2
d2

z⋆ +CxEx +CzEz +
η

2
EζR2

⋆

)
.

We now finish the proof by invoking lemma 4.5.1. □ □
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4.6 Linear convergence of GeNI-ADMM

In this section, we seek to establish linear convergence results for algo-

rithm 4.3.1. In general, the linear convergence of ADMM relies on strong con-

vexity of the objective function [12, 77, 82]. Consistently, the linear convergence

of GeNI-ADMM also requires strong convexity. Many applications of GeNI-

ADMM fit into this setting, such as elastic net [43]. However, linear conver-

gence is not restricted to strongly convex problems. It has been shown that local

linear convergence of ADMM can be guaranteed even without strong convexity

[110]. Experiments in section 3.5 show the same phenomenon for GeNI-ADMM:

it converges linearly after a couple of iterations when it reaches some neighbor-

hood of the solution. The linear convergence theory of GeNI-ADMM provides

a way to understand this phenomenon. We first list the assumptions required

for linear convergence:

Assumption 4.6.1 (Regularity of f and g). The function f is finite valued,

strongly convex with parameter σ f , and smooth with parameter L f . The func-

tion g is finite valued, convex, and lower semi-continuous.

Assumption 4.6.1 modifies assumption 4.4.5 by measuring strong convexity

and smoothness of f in the standard way rather than relative to {Θk}k≥1.

Assumption 4.6.2 (Gradient estimation error of f ). There exists a forcing se-

quence {εk
∇
}k≥1 such that

∥∇ f (x̃k+1) − (∇ f (x̃k) + ηkΘk(x̃k+1 − x̃k))∥ ≤ εk
∇. (4.25)

Recall that GeNI-ADMM approximates f at iteration k by a generalized

second-order Taylor expansion, as in (4.6). Assumption 4.6.2 shows the

130



first-order generalized Taylor expansion of ∇ f (x) about x̃k well approximates

∇ f (x̃k+1). Note, when f is quadratic eq. (4.25) holds with εk
∇
= 0.

Assumption 4.6.3. The linear operator M has full row rank.

Assumption 4.6.4 (Geometric decay of the forcing sequences). There exists a

constant q > 0 such that the forcing sequences {εk
∇
}k≥1, {εk

x}k≥1, and {εk
z}k≥1 satisfy

εk+1
∇ ≤ εk

∇/(1 + q), εk+1
x ≤ εk

x/(1 + q), and εk+1
z ≤ εk

z/(1 + q)2. (4.26)

Assumption 4.6.4 requires the gradient estimation error and inexactness se-

quences to decay geometrically. Compared with the sublinear convergence

result, linear convergence requires more accurate approximations of f by its

penalized linearization and solutions of the subproblems. Again, since the z-

subproblem inexactness is weaker than the x-subproblem inexactness, {εk
z}k≥1

should have faster decay rate ((1 + q)2) than the decay rate (1 + q) of {εk
x}k≥1.

Inspired by [27], let y = (z, u), ỹ = (z̃, ũ), and y⋆ = (z⋆, u⋆). We define term

∥ỹk − y⋆∥2 = ∥z̃k − z⋆∥2 + ∥ũk − u⋆∥2, which can be viewed as a Lyapunov function

[91, 99]. We show that ∥ỹk − y⋆∥2 decreases geometrically, which guarantees the

linear convergence of algorithm 4.3.1.

Theorem 4.6.1. Instate Assumptions 4.4.1, 4.4.4, and 4.4.6-4.6.4. There exist con-

stants δ and S > 0 such that if q > δ,

(1 + δ)k−1∥ỹk+1 − y⋆∥2 ≤ ∥ỹ2 − y⋆∥2 + S . (4.27)

Furthermore, for appropriate choice of stepsize ρ =
√

L fσ f

∥M∥2λmin(MMT ) , the decay

rate satisfies δ = 1
κM
√
κ f

, where κ f =
L f

σ f
is the condition number of f and κM is the

condition number of M.
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4.6.1 Sufficient descent

From theorem 4.6.1, to establish linear convergence of GeNI-ADMM, it suffices

to show ∥ỹk − y⋆∥2 decreases geometrically. We take two steps to achieve this.

First, we show that ∥ỹk − y⋆∥2 decreases for every iteration k. Second, we bound

the decrease ∥ỹk−y⋆∥2−∥ỹk+1−y⋆∥2 below by δ∥ỹk+1−y⋆∥2 for some δ > 0. Since the

subproblems are only solved approximately, we should also consider the inex-

actness of the solutions in these two steps. For the first step, we use strong con-

vexity of f and convexity of g with appropriate perturbations to account for the

inexactness. We call these conditions perturbed convexity conditions, as outlined

in lemma 4.6.1. A detailed proof of lemma 4.6.1 is presented in appendix C.3.

Lemma 4.6.1. Let x̃k+1 and z̃k+1 be the inexact solutions of x and z-subproblems

under definition 4.3.1. Recall (x⋆, z⋆, u⋆) is a saddle point of (4.1). Then the

following inequalities are satisfied:

1. (Semi-inexact f -strong convexity)
⟨M(x̃k+1 − x⋆), u⋆ − ũk+1 + z̃k − z̃k+1⟩ +

Rx⋆,u⋆,z⋆

ρ
εk
∇+√

ηk∥Θk∥Rx⋆,u⋆,z⋆ +
√
ρRx⋆,M

ρ
εk

x ≥
σ f

ρ
∥x̃k+1 − x⋆∥2,

(4.28)

2. (Semi-inexact g-convexity)

⟨z̃k+1 − z⋆, ũk+1 − u⋆⟩ + 2

√
2
ρ

Rx⋆,u⋆,z⋆

√
εk

z ≥ 0, (4.29)

3. (Inexact g-convexity)

⟨z̃k − z̃k+1, ũk − ũk+1⟩ + 8

√
2
ρ

Rx⋆,u⋆,z⋆

√
εk−1

z +
4
ρ
εk−1

z ≥ 0. (4.30)

In lemma 4.6.1, we call (4.28) and (4.29) semi-inexact (strong) convexity be-

cause z⋆ (x⋆) is part of the exact saddle point but z̃k+1 (x̃k+1) is an inexact subprob-

lem solution. While in (4.30), both z̃k and z̃k+1 are inexact subproblem solutions.
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With lemma 4.6.1, we are able to show that ∥ỹk−y⋆∥2 decreases for every iteration

k considering inexactness as the following lemma.

Lemma 4.6.2. Define constants C1 =
2Rx⋆,u⋆,z⋆

ρ
, C2 ≥

2(
√
ηk∥Θk∥Rx⋆,u⋆,z⋆+

√
ρRx⋆,M)

ρ
for all k,

and C3 = 20
√

2
ρ
Rx⋆,u⋆,z⋆ . The sufficient descent condition holds:

∥ỹk−y⋆∥2−∥ỹk+1−y⋆∥2+C1ε
k
∇+C2ε

k
x+C3

√
εk−1

z +
8
ρ
εk−1

z ≥ ∥ỹk− ỹk+1∥2+
2σ f

ρ
∥x̃k+1− x⋆∥2.

(4.31)

Proof. Proof. By adding the inequalities (4.28) and (4.29) together, using the

relation M(x̃k+1 − x⋆) − (z̃k+1 − z⋆) = ũk+1 − ũk, and rearranging, we have

⟨ũk+1 − ũk, u⋆ − ũk+1⟩ + ⟨z̃k+1 − z⋆, z̃k − z̃k+1⟩+

Rx⋆,u⋆,z⋆

ρ
εk
∇ +

√
ηk∥Θk∥Rx⋆,u⋆,z⋆ +

√
ρRx⋆,M

ρ
εk

x + 2

√
2
ρ

Rx⋆,u⋆,z⋆

√
εk

z ≥

σ f

ρ
∥x̃k+1 − x⋆∥2 + ⟨ũk − ũk+1, z̃k − z̃k+1⟩.

Recall y = (z, u) and definitions of constants C1, C2, and C3. Using the identity

(a − b)TΥ(c − d) = 1/2
(
∥a − d∥2

Υ
− ∥a − c∥2

Υ

)
+ 1/2

(
∥c − b∥2

Υ
− ∥d − b∥2

Υ

)
, we arrive at

∥ỹk − y⋆∥2 − ∥ỹk+1 − y⋆∥2 +C1ε
k
∇ +C2ε

k
x +

C3

5

√
εk

z ≥

∥ỹk − ỹk+1∥2 + 2⟨z̃k − z̃k+1, ũk − ũk+1⟩ +
2σ f

ρ
∥x̃k+1 − x⋆∥2

(4.32)

Inserting the lower bound (4.30) into (4.32) to remove the cross-term 2⟨z̃k −

z̃k+1, ũk − ũk+1⟩, noticing the fact εk−1
z ≥ εk

z , and rearranging, we arrive at the suffi-

cient descent condition as desired. □ □

Given the sufficient descent condition (4.31), the next step to show linear

convergence is to show the righthand side in (4.31) bounds ∥ỹk+1 − y⋆∥2 and

thereby to show this distance decays geometrically.
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Lemma 4.6.3. Define C4 ≥
2∥ηkΘk+ρMT M∥

ρL f
for all k. There exists a constant δ > 0 such

that

∥ỹk−y⋆∥2−∥ỹk+1−y⋆∥2+C1ε
k
∇+

2
ρL f

(εk
∇)2+C2ε

k
x+C4(εk

x)
2+C3

√
εk−1

z +
8
ρ
εk−1

z ≥ δ∥ỹk+1−y⋆∥2.

(4.33)

As in theorem 4.6.1, the constant δ can be regarded as the rate of linear con-

vergence. It depends on the condition numbers κ f and κM. For appropriate

choice of stepsize ρ, it satisfies δ = 1
κM
√
κ f

. The proof of lemma 4.6.3, and an

explicit expression for δ, appears in appendix C.3.

4.6.2 Proof of theorem 4.6.1

Proof. Proof. By induction on (4.33), we have

∥ỹ2 − y⋆∥2 +C1

k∑
υ=2

(1 + δ)υ−2ευ∇ +
2
ρL f

k∑
υ=2

(1 + δ)υ−2(ευ∇)2 +C2

k∑
υ=2

(1 + δ)υ−2ευx+

C4

k∑
υ=2

(1 + δ)υ−2(ευx)2 +C3

k−1∑
υ=1

(1 + δ)υ−1 √
ευz +

8
ρ

k−1∑
υ=1

(1 + δ)υ−1ευz ≥ (1 + δ)k−1∥ỹk+1 − y⋆∥2.

(4.34)

From assumption 4.6.4, sequence {εk
∇
}k≥1 has geometric decay as εk+1

∇
≤ εk

∇
/(1+q).

The x-inexactness summation term in (4.34) can be further simplified as

C1

k∑
υ=2

(1 + δ)υ−2ευ∇ ≤ C1ε
2
∇

k−2∑
υ=0

(
1 + δ
1 + q

)υ
B S 1,

2
ρL f

k∑
υ=2

(1 + δ)υ−2(ευ∇)2 ≤
2
ρL f

(ε2
∇)2

k−2∑
υ=0

(
1 + δ

(1 + q)2

)υ
B S 2.
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Similarly, we can simplify the x and z-inexactness summation terms as

C2

k∑
υ=2

(1 + δ)υ−2ευx ≤ C2ε
2
x

k−2∑
υ=0

(
1 + δ
1 + q

)υ
B S 3,

C4

k∑
υ=2

(1 + δ)υ−2(ευx)2 ≤ C4(ε2
x)

2
k−2∑
υ=0

(
1 + δ

(1 + q)2

)υ
B S 4,

C3

k−1∑
υ=1

(1 + δ)υ−1 √
ευz ≤ C3

√
ε1

z

k−2∑
υ=0

(
1 + δ
1 + q

)υ
B S 5,

8
ρ

k−1∑
υ=1

(1 + δ)υ−1ευz ≤
8
ρ
ε1

z

k−2∑
υ=0

(
1 + δ

(1 + q)2

)υ
B S 6.

Since q > δ > 0, terms S 1 to S 6 are all bounded for any k > 1. Define constant

S B
∑6

i=1 S i. We know S is finite and

(1 + δ)k−1∥ỹk+1 − y⋆∥2 ≤ ∥ỹ2 − y⋆∥2 + S ,

as desired. □ □

4.7 Applications

In this section we apply our theory to establish convergence rates for

NysADMM and sketch-and-solve ADMM.
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4.7.1 Convergence of NysADMM

Algorithm 4.7.1 NysADMM

input: penalty parameter ρ, step-size η, forcing sequences {εk
x}k≥1, {εk

z}k≥1

repeat
Find εk

x-approximate solution x̃k+1 of

(ηHk
f + ρI)x = ηHk

f x̃k − ∇ f (x̃k) + ρ(z̃k − ũk)

z̃k+1
εkz
≊ argmin

z∈Z
{g(z) + ρ2∥Mx̃k+1 − z + ũk∥2}

ũk+1 = ũk + Mx̃k+1 − z̃k+1

until convergence
output: solution (x⋆, z⋆) of problem (4.1)

We begin with the NysADMM scheme from [112]. As discussed above,

NysADMM is obtained from algorithm 4.3.1 by setting α = 0 and using the ex-

act Hessian Θk = H f (x̃k) = Hk
f . Instantiating these selections into algorithm 4.3.1,

we obtain NysADMM, presented as algorithm 4.7.1. The x-subproblem for

NysADMM is the linear system (4.9). NysADMM solves this system using the

Nyström PCG method from [41]. The general convergence of NysADMM was

left open in [112], which established convergence only for quadratic f . More-

over, the result in [112] does not provide an explicit rate of convergence. We

shall now rectify this state of affairs using theorem 4.5.1. Substituting the pa-

rameters defining NysADMM into theorem 4.5.1, we obtain the following con-

vergence guarantee.

Corollary 4.7.1. Instate the hypotheses of theorem 4.5.1. Set α = 0, η = L̂ f , and

Θk = H f (x̃k) = Hk
f in algorithm 4.3.1. Then

f (x̄t+1) + g(z̄t+1) − p⋆ ≤
Γ

t
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and

∥Mx̄t+1 − z̄t+1∥ ≤
2
t

√
Γ

ρ
+ d2

u⋆ .

Here Γ and d2
u⋆ are the same as in theorem 4.5.1.

NysADMM converges at the same O(1/t)-rate as standard ADMM, despite

all the approximations it makes. Thus, NysADMM offers the same level of per-

formance as ADMM, but is much faster due to its use of inexactness. corol-

lary 4.7.1 supports the empirical choice of a constant step-size η = 1, which was

shown to have excellent performance uniformly across tasks in [112]: the theo-

rem sets η = L̂ f , and L̂ f = 1 for quadratic functions and satisfies L̂ f = O(1) for

loss functions such as the logistic loss. More generally, we recommend setting

η = 1 as the default value for GeNI-ADMM. Given NysADMM’s superb em-

pirical performance in [112] and the firm theoretical grounding given by corol-

lary 4.7.1, we conclude that NysADMM provides a reliable framework for solv-

ing large-scale machine learning problems.

4.7.2 Convergence of sketch-and-solve ADMM

Algorithm 4.7.2 Sketch-and-solve ADMM

input: penalty parameter ρ, step-size η, {εk
z}k≥1

repeat
Find solution x̃k+1 of

(ηĤk + ρI)x = η
(
Ĥk + γkI

)
x̃k − ∇ f (x̃k) + ρ(z̃k − ũk)

z̃k+1
εkz
≊ argmin

z∈Z
{g(z) + ρ2∥Mx̃k+1 − z + ũk∥2}

ũk+1 = ũk + Mx̃k+1 − z̃k+1

until convergence
output: solution (x⋆, z⋆) of problem (4.1)
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Sketch-and-solve ADMM is obtained from GeNI-ADMM by setting Θk to be an

approximate Hessian computed by a sketching procedure. The two most popu-

lar sketch-and-solve methods are the Newton sketch- [28, 59, 83] and Nyström

sketch-and-solve [4, 7, 41]. Both methods use an approximate Hessian that is

cheap to compute and yield a linear system that is fast to solve. ADMM to-

gether with sketching techniques provide a compelling means to handle mas-

sive problem instances. The recent survey [16] suggests using sketching to solve

a linear ADMM subproblem to efficiently solve large-scale inverse-problems.

However, it was previously unknown whether the resulting method would con-

verge. Here, we formally describe the sketch-and-solve ADMM method and

prove convergence.

Sketch-and-solve ADMM is obtained from algorithm 4.3.1 by setting

Θk = Ĥk + γkI, (4.35)

where Ĥk is an approximation to the Hessian H f (x̃k) at the kth iteration, and

γk ≥ 0 is a constant chosen to ensure convergence. The term γkI ensures that the

approximate linearization satisfies theΘ-relative smoothness condition when γk

is chosen appropriately, as in the following lemma:

Lemma 4.7.1. Suppose f is L̂ f -relatively smooth with respect to its Hessian H f .

Construct {Θk}k≥1 as in (4.35) and select γk > 0 such that γk ≥ ∥Ek∥ = ∥H f (x̃k)− Ĥk∥

for every k. Then

f (x) ≤ f (x̃k) + ⟨∇ f (x̃k), x − x̃k⟩ +
L̂ f

2
∥x − x̃k∥2

Θk .

Proof. By L̂ f relative smoothness we have,

f (x) ≤ f (x̃k) + ⟨∇ f (x̃k), x − x̃k⟩ +
L̂ f

2
∥x − x̃k∥2H f (x̃k).
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Now,

∥x − x̃k∥2H f (x̃k) = ∥x − x̃k∥2Ĥk + (x − x̃k)T (H f (x̃k) − Ĥk)(x − x̃k)

≤ ∥x − x̃k∥2Ĥk + ∥E
k∥∥x − x̃k∥2 ≤ ∥x − x̃k∥2Ĥk + γ

k∥x − x̃k∥2

= ∥x − x̃k∥2
Θk .

The desired claim now immediately follows. □

Lemma 4.7.1 shows we can ensure relative smoothness by selecting γk > 0

appropriately. Assuming relative smoothness, we may invoke theorem 4.5.1 to

guarantee that sketch-and-solve ADMM converges.

Corollary 4.7.2. Suppose f is L̂ f -relatively smooth with respect to its Hessian H f .

In algorithm 4.3.1, select α = 0 and for each k, set Θk = Ĥk + γkI with γk = ∥Ek∥ =

∥Ĥk − H f (x̃k)∥ and ηk = L̂ f . Instate assumptions 4.4.1-4.4.6. (Assumption 4.4.5 is

slightly modified here as f is relatively smooth with respect to its Hessian H f

instead of Θ.) Then

f (x̄t+1)+g(z̄t+1)−p⋆ ≤
1
t

L̂ f

(
d2

x⋆,H f (x̃1) + ∥E
1∥∥x̃1 − x⋆∥2

)
+
ρ

2
d2

z⋆ +CxEx +CzEz +
L̂ f

2
EζR2

⋆

 =:
1
t
Γ̂

and

∥Mx̄t+1 − z̄t+1∥ ≤
2
t

√
Γ̂

ρ
+ d2

u⋆ .

Here variables x̄t+1 and z̄t+1, diameters d2
x⋆,H f (x̃1), d2

z⋆ , and d2
u⋆ , and constants Cx, Cz,

Ex, Ez, Eζ , R⋆, and p⋆ are all defined as in theorem 4.5.1.

Remark 4.7.1. It is not hard to see that corollary 4.7.2 also holds for any γ > 0 if

the {Θk}k≥1 satisfy

(1 − τ)(Hk
f + γI) ⪯ Θk ⪯ (1 + τ)(Hk

f + γI),

for some τ ∈ (0, 1), and η ≥ L̂ f

1−τ . Many sketching methods can ensure this relative

error condition with high probability [56] by choosing the sketch size propor-

tional to the effective dimension of H f + γI [41, 59].
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Corollary 4.7.2 shows sketch-and-solve ADMM obtains an O(1/t)-

convergence rate. The main difference between NysADMM and sketch-and-

solve is the additional error term due to the use of the approximate Hessian,

which results in a slightly slower convergence rate. In this sense, sketch-and-

solve ADMM can be regarded as a compromise between NysADMM (Θk =

H f (x̃k)) and gradient descent ADMM (Θk = I). A more accurate Hessian approx-

imation generally yields faster convergence. Moreover, with sketch-and-solve

methods, it is usually cheap to compute Θk and its inverse, so the x-subproblem

of sketch-and-solve ADMM is easy to solve accurately and Ex ≈ 0.

4.8 Numerical experiments

We include two numerical experiments where we apply our method to solve a

machine learning problem with real-world data. In this section, we numerically

illustrate the convergence results highlighted in section 4.7 for the several meth-

ods highlighted in section 4.3.2 that fit into our framework: sketch-and-solve

ADMM (algorithm 4.7.2), NysADMM (algorithm 4.7.1), and “gradient descent”

ADMM, obtained by setting α = 0 in (4.7). In general, we will see that curvature

information, used in (exact) ADMM and NysADMM, speeds up convergence,

and NysADMM enjoys the same convergence rate as ADMM with exact sub-

problem solves. In fact, NysADMM often linearly convergences to very high

accuracy, as illustrated in Figure 4.1 and Figure 4.2.

For both experiments, we use 10, 000 random samples from the realsim

dataset from LIBSVM [21], accessed through OpenML [105], which has 72, 309

samples and 20, 958 features. For NysADMM, we choose a sketch size s = 50,
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Figure 4.1: Linear convergence of NysADMM applied to lasso.

Figure 4.2: Linear convergence of NysADMM applied to logistic regression.

and for sketch-and-solve ADMM, we choose a sketch size s = 500. For sketch-

and-solve ADMM, the parameter γk in (4.35) is chosen by estimating the error

of the Nyström sketch using power iteration. For NysADMM, the linear system
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Figure 4.3: Convergence (in objective function value) of lasso regression for
NysADMM, sketch-and-solve ADMM, and gradient descent ADMM.

solve tolerance at each iteration is set to be the geometric mean of the primal

and dual residuals at the previous iteration, i.e., εk+1
x =

√
rk

prk
d, as in [112]. We use

a bound on the duality gap as a stopping criterion, and stop when this bound

(see ?? of the appendix) is under a tolerance ϵ or when the maximum number

of iterations has been reached. All experiments are performed in the Julia pro-

gramming language [11] on a MacBook Pro with a M1 Max processor and 64GB

of RAM. To compute the “true” optimal values, we use the commercial solver

Mosek [6] (with tolerances set low for high accuracy and presolve turned off to

preserve the problem scaling) and the modeling language JuMP [33, 60].
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4.8.1 Lasso regression

The lasso regression problem is to minimize the ℓ2 error of a linear model with

an ℓ1 penalty on the weights:

minimize (1/2)∥Ax − b∥22 + γ∥x∥1.

This can be easily transformed into the form (4.1) by taking f (x) = (1/2)∥Ax−b∥22,

g(z) = γ∥z∥1, M = I, and X = Z = Rn. We set γ = 0.05 · γmax, where γmax = ∥AT b∥∞

is the value above which the all zeros vector is optimal. (This can be seen from

the optimality conditions, which we state in ?? of the appendix.) We stop the

algorithm when the gap is less than 10−4, or after 500 iterations.

The results of lasso regression are illustrated in Figure 4.3. We see that all

methods enjoy a linear convergence rate; however, curvature information, used

by (exact) ADMM and NysADMM, greatly speeds up convergence. The dif-

ference in convergence between NysADMM and (exact) ADMM is negligible,

despite the former having a much cheaper iteration complexity due to the use

of inexact linear system solves.

We also examine our method applied to the closely related but strongly con-

vex elastic net problem,

minimize (1/2)∥Ax − b∥22 + γ∥x∥1 + (µ/2)∥x∥22.

We use the same problem data and parameter as the Lasso experiment (and set

µ = 1), and we show the results in Figure 4.4. Comparing Figures 4.3 and 4.4, we

clearly see the linear convergence we expect (section 4.6) for both NysADMM

and exact ADMM. However, strong convexity clearly leads to an improvement

in the number of iterations required to reach convergence.
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Figure 4.4: Convergence (in objective function value) of elastic net regression
for NysADMM, sketch-and-solve ADMM, and gradient descent ADMM.

4.8.2 Logistic Regression

For the logistic regression problem, with data (ãi, b̃i), where b̃i ∈ {±1}. We define

P
(
b̃i | ãi

)
=

1

1 + exp
(
b̃i(ãT

i x)
) = 1

1 + exp(aT
i x)
,

where we define ai = b̃iãi. The loss is the negative of the log likelihood,

− log
(∏m

i=1 P(b̃i | ãi)
)
. Thus, the optimization problem is

minimize
m∑

i=1

log
(
1 + exp(aT

i x)
)
+ γ∥x∥1.

This problem can be similarly transformed into the form of (4.1) (see more de-

tails in ?? of the appendix). We set γ = 0.05 · γmax, where γmax = (1/2)∥AT 1∥∞ is

the value above which the all zeros vector is optimal. We stop the algorithm

when the gap is less than 10−4, or after 500 iterations. For NysADMM, the

preconditioner is re-constructed after every 20 iterations. For sketch-and-solve
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Figure 4.5: Convergence (in objective function value) of logistic regression for
NysADMM, sketch-and-solve ADMM, and gradient descent ADMM.

ADMM, we re-construct the approximate Hessian at every iteration. Since the x-

subproblem is not a quadratic program, we use the LBFGS [64] implementation

from the Optim.jl package [71] to solve the x-subproblem.

The results of logistic regression are illustrated in Figure 4.5. We see that

all methods enjoy a linear convergence rate; however, curvature information,

used by (exact) ADMM and NysADMM, greatly speeds up convergence. The

difference in convergence between NysADMM and standard ADMM is negli-

gible, despite the former having a much cheaper iteration complexity due to the

approximation of the x subproblem and use of inexact linear system solves.
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4.9 Conclusion and future work

In this chapter, we have developed a novel framework, GeNI-ADMM, that al-

lows for efficient theoretical analysis of approximate ADMM schemes and in-

spires the design of new practical approximate ADMM schemes. GeNI-ADMM

generalizes many existing prior approximate ADMM schemes as special cases.

It replaces the x-subproblem by a generalized second-order Taylor expansion

in which the Hessian is replaced by a sequence of psd matrices {Θk}k≥1. The

solution to this subproblem yields a generalized Newton step. Both the x and z-

subproblems of GeNI-ADMM may be solved inexactly. We have established the

usualO(1/t)-convergence for GeNI-ADMM under standard hypotheses, and lin-

ear convergence under additional hypotheses such as strong convexity. We have

shown how to derive explicit rates of convergence for ADMM variants that ex-

ploit randomized numerical linear algebra using the GeNI-ADMM framework,

and have provided convergence results for NysADMM and sketch-and-solve

ADMM as special cases. Numerical experiments on real-world data generally

show an initial sublinear phase followed by linear convergence, validating the

theory and providing an interesting direction for future research.

There are several interesting directions for future work. Our analysis shows

that in approximate ADMM schemes, a better approximation usually leads to

a faster convergence. However, a better approximation usually makes {Θk}∞k=0

more complex and the resulting subproblem is hard to solve. A comprehen-

sive study of the trade-off between theoretical convergence speed and subprob-

lem complexity depending on the choice of {Θk}∞k=0 will be an important fu-

ture research direction. Our numerical experiments show that GeNI-ADMM

can achieve linear convergence locally in the neighborhood of the optimal so-
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lution even for problems that are not strongly convex. Existing studies have

proved that exact ADMM exhibits local linear convergence without strong con-

vexity [110]. It would be interesting to establish local linear convergence for

approximate ADMM schemes without strong convexity. Our theoretical anal-

ysis shows that curvature information provides an advantage in approximate

ADMM schemes. This observation inspires the design of efficient ADMM-type

methods for a broader range of applications, including stochastic optimization

and nonconvex optimization.
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APPENDIX A

APPENDIX OF CHAPTER 2

A.1 Proof of (2.14)

Since u and y are partitioned as u = (u1,u2) and y = (y1, y2), the state-space

realization can be partitioned accordingly as
A B1 B2

C1 D11 D12

C2 D21 D22

 .
We can express the transfer function Ĥ(z) as

Ĥ(z) =

 Ĥ11(z) Ĥ12(z)

Ĥ21(z) Ĥ22(z)

 =
 C1(zI − A)−1B1 + D11 C1(zI − A)−1B2 + D12

C2(zI − A)−1B1 + D21 C2(zI − A)−1B2 + D22

 .
The system equations show as

xk+1 = Axk + B1uk
1 + B2uk

2

yk
1 = C1xk + D11uk

1 + D12uk
2

yk
2 = C2xk + D21uk

1 + D22uk
2.

(A.1)

As we invert the input-output map corresponding to y1 and u1, the input of this

system becomes (yk
1, u

k
2) and the output is (uk

1, y
k
2) at time k. From eq. (A.1), as D11

is invertibe, we have

uk
1 = −D−1

11 C1xk + D−1
11 yk

1 − D−1
11 D12uk

2.

The new system equations change to

xk+1 = (A − B1D−1
11 C1)xk + B1D−1

11 yk
1 + (B2 − B1D−1

11 D12)uk
2

uk
1 = −D−1

11 C1xk + D−1
11 yk

1 − D−1
11 D12uk

2

yk
2 = (C2 − D21D−1

11 C1)xk + D21D−1
11 yk

1 + (D22 − D21D−1
11 D12)uk

2,
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which correspond to state-space realization
A − B1D−1

11 C1 B1D−1
11 B2 − B1D−1

11 D12

−D−1
11 C1 D−1

11 −D−1
11 D12

(C2 − D21D−1
11 C1) D21D−1

11 D22 − D21D−1
11 D12

 . (A.2)

To calculate the transfer function, note that

(zI − A + B1D−1
11 C1)−1 = (zI − A)−1 + (zI − A)−1B1(−D11 −C1(zI − A)−1B1)−1C1(zI − A)−1

= (zI − A)−1 − (zI − A)−1B1Ĥ−1
11 (z)C1(zI − A)−1.
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We have

Ĥ′11(z) = −D−1
11 C1((zI − A)−1 − (zI − A)−1B1Ĥ−1

11 (z)C1(zI − A)−1)B1D−1
11 + D−1

11

= −D−1
11 (Ĥ11(z) − D11 − (Ĥ11(z) − D11)Ĥ−1

11 (z)(Ĥ11(z) − D11))D−1
11 + D−1

11

= −D−1
11 (Ĥ11(z) − D11)(I − Ĥ−1

11 (z)(Ĥ11(z) − D11))D−1
11 + D−1

11

= −D−1
11 (Ĥ11(z) − D11)Ĥ−1

11 (z) + D−1
11

= Ĥ−1
11 (z)

Ĥ′12(z) = −D−1
11 C1((zI − A)−1 − (zI − A)−1B1Ĥ−1

11 (z)C1(zI − A)−1)B2 − Ĥ−1
11 (z)D12

= −D−1
11 (Ĥ12(z) − D12 − (Ĥ11(z) − D11)Ĥ−1

11 (z)(Ĥ12(z) − D12)) − Ĥ−1
11 (z)D12

= −D−1
11 (I − (Ĥ11(z) − D11)Ĥ−1

11 (z))(Ĥ12(z) − D12) − Ĥ−1
11 (z)D12

= −Ĥ−1
11 (z)(Ĥ12(z) − D12) − Ĥ−1

11 (z)D12

= −Ĥ−1
11 (z)Ĥ12(z)

Ĥ′21(z) = C2((zI − A)−1 − (zI − A)−1B1Ĥ−1
11 (z)C1(zI − A)−1)B1D−1

11 + D21Ĥ−1
11 (z)

= (Ĥ21(z) − D21 − (Ĥ21(z) − D21)Ĥ−1
11 (z)(Ĥ11(z) − D11))D−1

11 + D21Ĥ−1
11 (z)

= (Ĥ21(z) − D21)(I − Ĥ−1
11 (z)(Ĥ11(z) − D11))D−1

11 + D21Ĥ−1
11 (z)

= (Ĥ21(z) − D21)Ĥ−1
11 (z) + D21Ĥ−1

11 (z)

= Ĥ21(z)Ĥ−1
11 (z)

Ĥ′22(z) = Ĥ22(z) − (Ĥ21(z) − D21)Ĥ−1
11 (z)(Ĥ12(z) − D12) − D21Ĥ−1

11 (z)(Ĥ12(z) − D12)

− (Ĥ21(z) − D21)Ĥ−1
11 (z)D12 − D21Ĥ−1

11 (z)D12

= Ĥ22(z) − Ĥ21(z)Ĥ−1
11 (z)Ĥ12(z).

Thus, we get the desired results as eq. (2.14).
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A.2 Proof of proposition 2.6.1

Given an algorithm A with state-space realization (A, B,C,D), the relation be-

tween the input u and output y can be expressed as

yk = C(A)kx0 +

k−1∑
j=0

C(A)k−( j+1)Bu j + Duk. (A.3)

Relation eq. (A.3) is obtained by eq. (2.5), without the assumption that x0 = 0.

The output yk is the sum of C(A)kx0, which is due to the initial condition x0, and∑k−1
j=0 C(A)k−( j+1)Bu j+Duk, which is due to the inputs {u0, . . . , uk}. The linearity ofA

(A is treated as a linear system) allows the decomposition of two contributions

and they can be studied separately:

(total response) = (zero input response)︸                        ︷︷                        ︸
set uk = 0 for k ≥ 0

+ (zero state response)︸                       ︷︷                       ︸
set x0 = 0

.

Since we would like to characterize A with its input-output map, we can only

focus on the zero state response, which allows us to avoid details about initial-

ization. With the definition of impulse response,

Hk =


D k = 0

C(A)k−1B k ≥ 1
,

we can express the zero state response as

yk = Hku0 + Hk−1u1 + · · · + H1uk−1 + H0uk.

Transfer function provides a compact form to represent the Hk series by tak-

ing the z-transform. The transfer function H(z) shows as follows,

Ĥ(z) =

 A B

C D

 = D +
∞∑

k=1

C(A)k−1Bz−k = C(zI − A)−1B + D.
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Therefore, we know that algorithm A is uniquely characterized by its input-

output map, and thus uniquely characterized by its impulse response and trans-

fer function.

From the definition of oracle equivalence, oracle-equivalent algorithms have

identical sequences of output y for each possible sequence of input u if initial-

ized properly. Here y = {uk}∞k=0 and u = {yk}∞k=0. Thus, they must have identi-

cal impulse responses and consequently identical transfer functions. This com-

pletes the proof.

A.3 Proof of proposition 2.7.1

Algorithm A.3.1 General form of algorithmA

for k = 0, 1, 2, . . . do
xk+1

1 = L1(xk
1, . . . , x

k
m)

xk+1
2 = L2(xk+1

1 , x
k
2, . . . , x

k
m)

...
xk+1

i = Li(xk+1
1 , . . . , x

k+1
i−1 , x

k
i , . . . , x

k
m, u

k+1
1 )

...
xk+1

ĩ
= Lĩ(xk+1

1 , . . . , x
k+1
ĩ−1
, xk

ĩ
, . . . , xk

m, u
k+1
n )

...
xk+1

m = Lm(xk+1
1 , . . . , x

k+1
m−1, x

k
m)

end for

First, we prove that cyclic permutation implies shift equivalence. Without loss

of generality, we can express algorithmA in the general form as algorithm A.3.1.

Since A is an linear algorithm, L1, . . . , Lm are linear functions. Given an ini-

tialization {x0
1, . . . , x

0
m},A generates state sequence (xk

1, . . . , x
k
m)k≥0, input sequence

(uk
1, . . . , u

k
n)k≥1, and output sequence (yk

1, . . . , y
k
n)k≥1. The ith update equation is the
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first update equation that contains an oracle call, corresponding to uk
1 and yk

1.

The ĩth update equation is the last update equation that contains an oracle call,

corresponding to uk
n and yk

n. The outputs are also linear functions of the states.

Specifically, we have

yk
1 =Y1(xk+1

1 , . . . , x
k+1
i−1 , x

k
i , . . . , x

k
m), uk

1 = ϕ1(yk
1)

...

yk
n =Yn(xk+1

1 , . . . , x
k+1
ĩ−1 , x

k
ĩ , . . . , x

k
m), uk

n = ϕn(yk
n).

Functions Y1, . . . ,Yn are linear functions and ϕ1, . . . , ϕn denote the oracle calls.

Without loss of generality, suppose permutation π̃ = (l̃ + 1, . . . ,m, 1, . . . , l̃) with

1 < l̃ < m.

First case. Suppose the new order of oracle calls within one iteration is a

cyclic permutation π of (n) (not identical to (n)). Without loss of generality, sup-

pose π = ( j + 1, . . . , n, 1, . . . , j) with 1 < j < n, the jth oracle call corresponds to

the j̃th update equation, and the j+1th oracle call corresponds to the p̃th update

equation. By definition, we have i ≤ j̃ < l̃ + 1 ≤ p̃ ≤ ĩ. At the first time step k = 1,

the first input is u1
1 and the first output is y1

1, and the j+1th input and output are

u1
j+1 and y1

j+1. We have

y1
1 = Y1(x1

1, . . . , x
1
i−1, x

0
i , . . . , x

0
m)

x1
l̃+1 = Ll̃+1(x1

1, . . . , x
1
l̃ , x

0
l̃+1, . . . , x

0
m)

y1
j+1 = Y1(x1

1, . . . , x
1
p̃−1, x

0
p̃, . . . , x

0
m).

Here without loss of generality, suppose the l̃ + 1th update equation does not

contain an oracle call. In other words, j̃ < l̃ + 1 < p̃. By definition, B calls the

update equations in the order π̃. At the first time step, the l̃ + 1th update equa-

tion is first called. If B is suitably initialized with states {x1
1, . . . , x

1
l̃
, x0

l̃+1
, . . . , x0

m},

it will generate state sequence (xk
l̃+1
, . . . , xk

m, x
k+1
1 , . . . , x

k+1
l̃

)k≥0, input sequence

153



(uk
j+1, . . . , u

k
n, u

k+1
1 , . . . , u

k+1
j )k≥1, and output sequence (yk

j+1, . . . , y
k
n, y

k+1
1 , . . . , y

k+1
j )k≥1.

The input and output sequences of A and B match up to prefixes (u1
1, . . . , u

1
j)

and (y1
1, . . . , y

1
j) respectively. Therefore,A and B are shift-equivalent.

Second case. Suppose the order of oracle calls within one iteration remain

unchanged (identical to (n)). By definition, we have 1 < l̃ + 1 ≤ i. We have

x1
l̃+1 = Ll̃+1(x1

1, . . . , x
1
l̃ , x

0
l̃+1, . . . , x

0
m)

y1
1 = Y1(x1

1, . . . , x
1
i−1, x

0
i , . . . , x

0
m).

Here without loss of generality, suppose the l̃ + 1th update equation does not

contain an oracle call. In other words, l̃ + 1 < i. By definition, B calls the update

equations in the order π̃. At the first time step, the l̃+1th update equation is first

called. If B is suitably initialized with states {x1
1, . . . , x

1
l̃
, x0

l̃+1
, . . . , x0

m}, it will gener-

ate state sequence (xk
l̃+1
, . . . , xk

m, x
k+1
1 , . . . , x

k+1
l̃

)k≥0. The input and output sequences

remain unchanged. Therefore,A andB are oracle-equivalent. Meanwhile, since

oracle equivalence can be regarded as a special case of shift equivalence,A and

B are also shift-equivalent.

Next, we prove that shift equivalence implies cyclic permutation. Suppose

algorithmsA and B are shift-equivalent. If they are also oracle-equivalent, then

they can be written using the same set of update equations, which is trivially

related by a cyclic permutation (where the permutation is the identity). Now

suppose they are not oracle-equivalent. Let (uk
1, . . . , u

k
m)k≥0 and (ũk

1, . . . , ũ
k
m)k≥0 be

the input sequences for A and B. The input sequences match up to a non-

empty prefix. Without loss of generality, suppose the length of this prefix is q:

that is, if we remove a prefix of length q from the input sequence of A, then

A and B have the same input sequence. Recall we only need to consider the

case q < m. If q > m, it is equivalent to consider q = q mod m. Comparing
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the input sequences of A and B, and using the prefix length q, we can write

(uk−1
q+1, . . . , u

k−1
m , u

k
1, . . . , u

k
q) = (ũk

1, . . . , ũ
k
m) for k ≥ 1. The output sequences of A and

B have the same relation. Therefore, B and this shifted version of A are oracle

equivalent, and so we can write B and this shifted version of A using the same

set of update equations. To undo the shift of A, we simply move the first q

update equations to the end of the algorithm.

A.4 Proof of proposition 2.7.3

The state-space realization ofA corresponds to the state update equations

xk+1 = Axk + B1ūk
1 + B2ūk

2

ȳk
1 = C1xk + D11ūk

1 + D12ūk
2

ȳk
2 = C2xk + D21ūk

1 + D22ūk
2.

(A.4)

Sufficiency. We will derive the state-space realization of PπA:

A B1 0 B2

0 0 I 0

C1A C1B1 D11 C1B2

C2 D21 0 D22


.

To verify this realization is correct, we can write the system equations of this

state-space realization as

xk+1 = Axk + B1ūk
1 + B2ūk

2

ūk+1
1 = ūk+1

1

ȳk+1
1 = C1Axk +C1B1ūk

1 + D11ūk+1
1 +C1B2ūk

2

ȳk
2 = C2xk + D21ūk

1 + D12ūk
2.

(A.5)
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Note that equations eq. (A.5) are the results of equations eq. (A.4) after apply-

ing permutation π. As we perform cyclic permutation π, within each iteration,

the update order of the oracles is shifted as ( j + 1, . . . , n, 1, . . . , j), indicating ora-

cles ( j + 1, . . . , n) are updated before (1, . . . , j). Further, the input and output se-

quences within one iteration at time step k become (ūk
2, ū

k+1
1 ) and (ȳk

2, ȳ
k+1
1 ). From

the state-space realization, we may compute the transfer function as

ĤB(z) =

 C1(zI − A)−1B1 + D11 zC1(zI − A)−1B2

C2(zI − A)−1B1/z + D21/z C2(zI − A)−1B2 + D22

 =
 Ĥ11(z) zĤ12(z)

Ĥ21(z)/z Ĥ22(z)

 .
(A.6)

To arrive at eq. (A.6), we have used the fact that D12 = 0 by assumption, andzI −

 A B1

0 0



−1

=

 (zI − A)−1 1
z (zI − A)−1B1

0 1
z I

 .
Necessity is provided by proposition 2.6.1. Equivalent algorithms must have

identical transfer functions. Thus, if we find an algorithm and its transfer func-

tion is the same as eq. (2.21), it must be equivalent to B.

A.5 Discussions on permutation and its generalization

To take a revisit of proposition 2.7.3, it can be found that as algorithm A

is permuted to make the order of oracle calls within one iteration as ( j +

1, . . . , n, 1, . . . , j) from (1, . . . , n), the resulting transfer function is exactly the same

as adding a one-step time delay to channels (oracles) (1, . . . , j) according to re-

sults in control theory. Another interpretation of adding a one-step time delay

comes from the system equations eq. (A.5). We can see that the input and out-

put corresponding to channels (oracles) (1, . . . , j) are the input and output for
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the next time step ūk+1
1 and ȳk+1

1 , however, the input and output of channels (ora-

cles) ( j+1, . . . , n) are still the ones for the current time step ūk
2 and ȳk

2. Intrinsically,

after cyclic permutation, the intrinsic update order of oracles does not change,

but a one-step time delay is added to the oracles that we would like to update

latterly.

Using the idea of time delay, we can generalize algorithm permutation as

adding any step of time delay to any channel (oracle) of an algorithm. Suppose

we add time delay to oracle i of algorithm A by di for any i ∈ (n), where di can

be any integer, the resulting algorithm B has transfer function ĤB(z) as

ĤB(z) =



zd1

zd2

. . .

zdn


ĤA(z)



z−d1

z−d2

. . .

z−dn


, (A.7)

where ĤA(z) is the transfer function ofA.

To be more specific, suppose we add time delay di to oracle i for algorithm

A, hkl
A

(z) with 1 ≤ k ≤ n and 1 ≤ l ≤ n denotes the entry of ĤA(z). The transfer

function of the resulting algorithm B can be expressed entrywise as

hkl
B(z) =



hii
A

(z) k = i l = i

hil
A

(z)zdi k = i l , i

hki
A

(z)z−di k , i l = i

hkl
A

(z) k , i l , i

(A.8)

In this way, we know that proposition 2.7.3 is a special case of eq. (A.7) with

d1 = · · · = d j = 1.

However, there are restrictions so that we cannot add any arbitrary step of

time delay to any oracle. From section 2.4.3, transfer functions are rational (ma-
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trix) functions with respect to z. Further, the rational functions must be proper

in order to make the transfer function realizable. From eq. (A.8), as we add

time delay di to oracle i for A, the off-diagonal entries in the ith row of ĤA(z)

are multiplied by zdi and the off-diagonal entries in the ith column of ĤA(z) are

multiplied by z−di while the ith diagonal entry remains unchanged. From the

perspective of relative degrees, as relative degree is the difference between the

degree of denominator and the degree of numerator, the relative degrees of the

off-diagonal entries in the ith row are decreased by di but the relative degrees

of the off-diagonal entries in the ith column are increased by di. Suppose the

smallest relative degree among the off-diagonal entries in the ith row is ri, then

di must satisfy di ≤ ri to maintain properness of the resulting off-diagonal en-

tries in the ith row. Similarly, suppose the smallest relative degree among the

off-diagonal entries of the ith column is ci, then di must satisfy −di ≤ ci to main-

tain properness of the resulting off-diagonal entries in the ith column. In other

words, we can add time delay di to oracle i only if −ci ≤ di ≤ ri. Otherwise, at

least one off-diagonal entry in the ith row or the ith column is no longer proper,

leading to an invalid transfer function.

For any algorithm with state-space realization (A, B,C,D), the transfer func-

tion is calculated by C(zI−A)−1B+D. Term C(zI−A)−1B is a strictly proper (matrix)

function, where strictly proper means that the degree of z in the numerator poly-

nomial is strictly less than the degree of z in the denominator polynomial. Thus,

for any nonzero entry of D, the corresponding entry in the transfer function has

relative degree zero. Take a revisit of cyclic permutation, for any causal algo-

rithm, the entries above diagonal of the D matrix must be zero, especially after

necessary reordering. Thus, the entries above diagonal in the transfer function

have strictly positive relative degrees. This implies that any cyclic permutation
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of an algorithm always exists. Note that before performing cyclic permutation,

we are required to reorder the state-space realization if needed.

Reconsider algorithms 2.7.5 and 2.7.6, in eq. (2.24) and eq. (2.25), comparing

Ĥ10(z) to Ĥ11(z), we add a one-step time delay to the first channel. Term 1
z−1

in Ĥ10(z) is multiplied by z and term 2z−1
z−1 is multiplied by z−1. Further, the off-

diagonal entry in the first row of Ĥ10(z) has relative degree 1 and the off-diagonal

entry in the first column of Ĥ10(z) has relative degree 0. Thus, we can only add

time delay d1 = 1 to the first oracle of algorithm 2.7.5, as 0 ≤ d1 ≤ 1 to maintain

properness.

A.6 Proof of proposition 2.7.4

Partition the oracle calls of algorithmA : X → X into two (nonlinear) oracles ϕ1

and ϕ2. Formally, write the update equations as

x⋆ = Ax⋆ + B1ū⋆1 + B2ū⋆2

ȳ⋆1 = C1x⋆ + D11ū⋆1 + D12ū⋆2

ȳ⋆2 = C2x⋆ + D21ū⋆1 + D22ū⋆2

u⋆1 = ϕ1(y⋆1 )

u⋆2 = ϕ2(y⋆2 ).

(A.9)

Here the cyclic permutation π swaps the first and second set of oracle calls. Then

the cyclic permutation PπA converges to fixed point (ȳ⋆2 , ȳ
⋆
1 , ū

⋆
2 , ū

⋆
1 , x

⋆). To verify

this, since D12 = 0, plugging in the fixed point conditions eq. (A.9) to the system
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equations of the shifted algorithm eq. (A.5), we have

x⋆ = Ax⋆ + B1ū⋆1 + B2ū⋆2

ū⋆1 = ū⋆1

ȳ⋆1 = C1Ax⋆ +C1B1ū⋆1 + D11ū⋆1 +C1B2ū⋆2 = C1x⋆ + D11ū⋆1

ȳ⋆2 = C2x⋆ + D21ū⋆1 + D12ū⋆2

u⋆1 = ϕ1(y⋆1 )

u⋆2 = ϕ2(y⋆2 ).

This completes the proof.

A.7 Proof of shift-equivalence of DR and ADMM continued

Suppose the oracles for both DR (algorithm 2.7.5) and ADMM (algorithm 2.7.6)

are subgradients of f and g. Oracles prox and argmin can be expanded as inclu-

sions involving subgradients. The update equations of DR and ADMM can be

rewritten into formations of algorithms A.7.1 and A.7.2 respectively. Note that

the update equations involving subgradients are inclusions.

Algorithm A.7.1 DR

for k = 0, 1, 2, . . . do
xk+1

1 ∈ xk
3 − t∂ f (xk+1

1 )
xk+1

2 ∈ 2xk+1
1 − xk

3 − tLT∂g(Lxk+1
2 )

xk+1
3 = xk

3 + xk+1
2 − xk+1

1
end for

Algorithm A.7.2 ADMM

for k = 0, 1, 2, . . . do
ξk+1

1 ∈ Lξk
2 − Lξk

3 −
1
ρ
LLT∂g(Lξk+1

1 )
ξk+1

2 ∈ L−1ξk+1
1 + ξk

3 −
1
ρ
∂ f (ξk+1

2 )
ξk+1

3 = ξk
3 + L−1ξk+1

1 − ξk+1
2

end for

We still assume ρ = 1/t in ADMM. The transfer functions are computed as
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Ĥ18(z) and Ĥ19(z) respectively. Note that Ĥ19(z) is not written in the causal order.

Ĥ18(z) =



0 0 I −tI 0

0 0 I −2tI −tLT

0 0 I −tI −tLT

0 0 I −tI 0

0 0 L −2tL −tLLT


=

 −
tz

z−1 I − t
z−1 LT

t−2tz
z−1 L − tz

z−1 LLT



Ĥ19(z) =



0 L −L 0 −tLLT

0 I 0 −tI −tLT

0 0 0 tI 0

0 I 0 −tI −tLT

0 L −L 0 −tLLT


=

 −
tz

z−1 I − tz
z−1 LT

t−2tz
z(z−1) L − tz

z−1 LLT



From propositions 2.7.1 and 2.7.3, we know that they are still shift-equivalent.

A.8 Proof of proposition 2.8.1

Sufficiency. The update equations of B can be written as

xk
1 = Axk

B + Buk
1

yk
1 = Cxk

B + Duk
1

xk+1
B = Axk

1 + Buk
2

yk
2 = Cxk

1 + Duk
2,

where xk
1 is an intermediate state. Eliminating the intermediate state xk

1, we ar-

rive at the new update equations:

xk+1
B = A2xk

B + ABuk
1 + Buk

2

yk
1 = Cxk

B + Duk
1

yk
2 = CAxk

B +CBuk
1 + Duk

2.
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The corresponding state-space realization has transfer function
A2 AB B

C D 0

CA CB D

 =
 C(zI − A2)−1AB + D C(zI − A2)−1B

CA(zI − A2)−1AB +CB CA(zI − A2)−1B + D

 .

Necessity is provided by proposition 2.6.1 since the transfer function

uniquely characterizes an equivalence class of algorithms.

A.9 Proof of proposition 2.8.3

Suppose the oracles of algorithm A : X → X can be represented as ϕ : X → X.

SinceA converges to fixed point (y⋆, u⋆, x⋆), it satisfies

x⋆ = Ax⋆ + Bu⋆

y⋆ = Cx⋆ + Du⋆

u⋆ = ϕ(y⋆).
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Therefore, we have

x⋆ = Ax⋆ + Bu⋆

= A(Ax⋆ + Bu⋆) + Bu⋆

= A2x⋆ + ABu⋆ + Bu⋆

= . . .

= An−1x⋆ + An−2Bu⋆ + · · · + ABu⋆ + Bu⋆

= Anx⋆ + An−1Bu⋆ + · · · + ABu⋆ + Bu⋆

y⋆ = Cx⋆ + Du⋆

= C(Ax⋆ + Bu⋆) + Du⋆

= CAx⋆ +CBu⋆ + Du⋆

= . . .

= CAn−1x⋆ +CAn−2Bu⋆ + · · · +CBu⋆ + Du⋆.

With eq. (2.27), we have

x⋆ = Anx⋆ + An−1Bu⋆ + · · · + ABu⋆ + Bu⋆

y⋆ = Cx⋆ + Du⋆

y⋆ = CAx⋆ +CBu⋆ + Du⋆

...

y⋆ = CAn−1x⋆ +CAn−2Bu⋆ + . . .CBu⋆ + Du⋆,

which indicates thatAn converges to fixed point (y′, u′, x⋆) with y′ = y⋆
⊗

1
n and

u′ = u⋆
⊗

1
n.
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A.10 Proof of proposition 2.9.3

Without loss of generality, let the permutation matrix equal to the identity as

proposition 2.9.1. To simplify the notations, let
A B[[n], κ] B[[n], κ̄]

C[κ, [n]] D[κ] D[κ, κ̄]

C[κ̄, [n]] D[κ̄, κ] D[κ̄]

 =


A B1 B2

C1 D11 D12

C2 D21 D22

 ,
 Ĥ[κ](z) Ĥ[κ, κ̄](z)

Ĥ[κ̄, κ](z) Ĥ[κ̄](z)

 =
 Ĥ11(z) Ĥ12(z)

Ĥ21(z) Ĥ22(z)

 =
 C1(zI − A)−1B1 + D11 C1(zI − A)−1B2 + D12

C2(zI − A)−1B1 + D21 C2(zI − A)−1B2 + D22

 .
In this way, (y[κ]⋆, y[κ̄]⋆, u[κ]⋆, u[κ̄]⋆, x⋆) can be written as (y⋆1 , y

⋆
2 , u

⋆
1 , u

⋆
2 , x

⋆), and

(u[κ]⋆, y[κ̄]⋆, y[κ]⋆, u[κ̄]⋆, x⋆) can be written as (u⋆1 , y
⋆
2 , y

⋆
1 , u

⋆
2 , x

⋆).

Partition the oracle calls of algorithm A : X → X into two nonlinear oracles

ϕ1 and ϕ2. Oracle ϕ1 corresponds to the oracle calls in set κ, and ϕ2 corresponds

to the remaining oracle calls. SinceA converges to fixed point (y⋆1 , y
⋆
2 , u

⋆
1 , u

⋆
2 , x

⋆),

it satisfies

x⋆ = Ax⋆ + B1u⋆1 + B2u⋆2

y⋆1 = C1x⋆ + D11u⋆1 + D12u⋆2

y⋆2 = C2x⋆ + D21u⋆1 + D22u⋆2

u⋆1 = ϕ1(y⋆1 )

u⋆2 = ϕ2(y⋆2 ).

The state-space realization of CκA is the same as eq. (A.2). Note that D11 is
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invertible, we have

x⋆ = Ax⋆ + B2u⋆2 + B1u⋆1

= Ax⋆ + B2u⋆2 + B1(−D−1
11 C1x⋆ + D−1

11 y⋆1 − D−1
11 D12u⋆2 )

= (A − B1D−1
11 C1)x⋆ + B1D−1

11 y⋆1 + (B2 − B1D−1
11 D12)u⋆2

u⋆1 = −D−1
11 C1x⋆ + D−1

11 y⋆1 − D−1
11 D12u⋆2

y⋆2 = C2x⋆ + D22u⋆2 + D21u⋆2

= C2x⋆ + D22u⋆2 + D21(D−1
11 y⋆1 − D−1

11 C1x⋆ − D−1
11 D12u⋆2 )

= (C2 − D21D−1
11 C1)x⋆ + D21D−1

11 y⋆1 + (D22 − D21D−1
11 D12)u⋆2

y⋆1 = ϕ
−1
1 (u⋆1 )

u⋆2 = ϕ2(y⋆2 ).

Oracle ϕ−1
1 is the inverse oracle of oracle ϕ1. Therefore, we get the desired results

that algorithm CκA converges to fixed point (u⋆1 , y
⋆
2 , y

⋆
1 , u

⋆
2 , x

⋆).

A.11 Commutativity between conjugation and cyclic permuta-

tion

Proposition A.11.1. Conjugation and cyclic permutation commute.

Proof. Given an algorithm A with transfer function Ĥ(z). Suppose κ is a subset

of the oracles ofA, Dκ is invertible, and π = (m + 1, . . . , n, 1, . . . ,m) is an arbitrary

cyclic permutation of the oracles ofA. We will show that the transfer functions

of CκPπA and PπCκA are identical.

Suppose Ĥ⋆(z) is the transfer function of PπA, the results in proposition 2.7.3
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can be written as

Ĥ⋆(z) = QĤ(z)Q−1. (A.10)

Here Q is a diagonal matrix where the first m diagonal entries are all z and the

rest of the diagonal entries are all ones. We will use the same settings and nota-

tions as proposition 2.9.1 to express changes in transfer function of conjugation

Cκ. Without loss of generality, the transfer function Ĥ′(z) of CκA satisfies

Ĥ′(z) =

 Ĥ−1
11 (z) −Ĥ−1

11 (z)Ĥ12(z)

Ĥ21(z)Ĥ−1
11 (z) Ĥ22(z) − Ĥ21(z)Ĥ−1

11 (z)Ĥ12(z)

 . (A.11)

Thus we can partition matrix Q as diag(Q1,Q2), where Q1 corresponds to the

oracles in κ and Q2 corresponds to the rest part of oracles. Consequently, Q−1

can be written as diag(Q1
−1,Q2

−1).

From eq. (A.10) and eq. (A.11), we have

Ĥ(z)
Cκ
−→

 Ĥ−1
11 (z) −Ĥ−1

11 (z)Ĥ12(z)

Ĥ21(z)Ĥ−1
11 (z) Ĥ22(z) − Ĥ21(z)Ĥ−1

11 (z)Ĥ12(z)


Pπ
−−→

 Q1Ĥ−1
11 (z)Q−1

1 −Q1Ĥ−1
11 (z)Ĥ12(z)Q−1

2

Q2Ĥ21(z)Ĥ−1
11 (z)Q−1

1 Q2Ĥ22(z)Q−1
2 − Q2Ĥ21(z)Ĥ−1

11 (z)Ĥ12(z)Q−1
2

 ,
Ĥ(z)

Pπ
−−→

 Q1Ĥ11(z)Q−1
1 Q1Ĥ12(z)Q−1

2

Q2Ĥ21(z)Q−1
1 Q2Ĥ22(z)Q−1

2


Cκ
−→

 Q1Ĥ−1
11 (z)Q−1

1 −Q1Ĥ−1
11 (z)Ĥ12(z)Q−1

2

Q2Ĥ21(z)Ĥ−1
11 (z)Q−1

1 Q2Ĥ22(z)Q−1
2 − Q2Ĥ21(z)Ĥ−1

11 (z)Ĥ12(z)Q−1
2

 .
We get the desired results to show Cκ and Pπ commute. Therefore, conjuga-

tion and cyclic permutation commute. □
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A.12 Proof of (2.36) and (2.37)

For each i ∈ {1, . . . , n}we have

zi = argminx

λi fi(x) +
1
2

 x

yi


T  Qi

11 Qi
12

Qi
21 Qi

22


 x

yi


 .

Besides, Qi
11 is invertible for any i ∈ {1, . . . , n}. Since fi is a convex function, the

argmin oracle can be written as zi ∈ −Qi
11
−1
λ∂ fi(zi) − Qi

11
−1Qi

12yi by treating ∂ fi as

the oracle. Written into matrix form, we have

ū1 = −Q1
−1λũ1 − Q1

−1Q2ȳ1, (A.12)

where ũ1 = [∂ f1(z1), . . . , ∂ fn(zn)]T . Combine eq. (A.12) with the state-space real-

ization eq. (2.34), we get the desired results for eq. (2.36). The corresponding

system equations show as

xk+1 = (A − B1(I + M1D11)−1M1C1)xk − B1(I + M1D11)−1M2ũk
1 + (B2 − B1(I + M1D11)−1M1D12)ūk

2

ūk
1 = −(I + M1D11)−1M1C1xk − (I + M1D11)−1M2ũk

1 − (I + M1D11)−1M1D12ūk
2

ȳk
2 = (C2 − D21(I + M1D11)−1M1C1)xk − D21(I + M1D11)−1M2ũk

1 + (D22 − D21(I + M1D11)−1M1D12)ūk
2.

To calculate the transfer function, note that

(zI −A+ B1(I +M1D11)−1M1C1)−1 = (zI −A)−1 − (zI −A)−1B1(I +M1Ĥ11(z))−1M1C1(zI −A)−1.
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We have

Ĥ′11(z) = (I + M1D11)−1M1C1(zI − A + B1(I + M1D11)−1M1C1)−1B1(I + M1D11)−1M2 − (I + M1D11)−1M2

= (I + M1D11)−1(M1Ĥ11(z) − M1D11)(I − (I + M1Ĥ11(z))−1(M1Ĥ11(z) − M1D11))(I + M1D11)−1M2

− (I + M1D11)−1M2

= (I + M1D11)−1(M1Ĥ11(z) − M1D11)(I + M1Ĥ11(z))−1M2 − (I + M1D11)−1M2

= −(I + M1Ĥ11(z))−1M2

Ĥ′12(z) = −(I + M1D11)−1M1C1(zI − A + B1(I + M1D11)−1M1C1)−1B2 − (I + M1Ĥ11(z))−1M1D12

= −(I + M1D11)−1(I − (M1Ĥ11(z) − M1D11)(I + M1Ĥ11(z))−1)(M1Ĥ12(z)

− M1D12) − (I + M1Ĥ11(z))−1M1D12

= −(I + M1Ĥ11(z))−1(M1Ĥ12(z) − M1D12) − (I + M1Ĥ11(z))−1M1D12

= −(I + M1Ĥ11(z))−1M1Ĥ12(z)

Ĥ′21(z) = −C2(zI − A + B1(I + M1D11)−1M1C1)−1B1(I + M1D11)−1M2 − D21(I + M1Ĥ11(z))−1M2

= −(Ĥ21(z) − D21)(I − (I + M1Ĥ11(z))−1(M1Ĥ11(z) − M1D11))(I + M1D11)−1M2

− D21(I + M1Ĥ11(z))−1M2

= −(Ĥ21(z) − D21)(I + M1Ĥ11(z))−1M2 − D21(I + M1Ĥ11(z))−1M2

= −Ĥ21(z)(I + M1Ĥ11(z))−1M2

Ĥ′22(z) = Ĥ22(z) − (Ĥ21(z) − D21)(I + M1Ĥ11(z))−1M1(Ĥ12(z) − D12) − D21(I + M1Ĥ11(z))−1M1(Ĥ12(z) − D12)

− (Ĥ21(z) − D21)(I + M1Ĥ11(z))−1M1D12 − D21(I + M1Ĥ11(z))−1M1D12

= Ĥ22(z) − Ĥ21(z)(I + M1Ĥ11(z))−1M1Ĥ12(z).

Thus, we get the desired results as eq. (2.37).
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APPENDIX B

APPENDIX OF CHAPTER 3

B.1 Proofs of main results in chapter 3

In this section we give the proofs for the main results of the paper: theorem 3.4.1,

theorem 3.4.2, and theorem 3.4.3.

B.1.1 Preliminaries

We start by recalling some useful background information and technical results

that are useful for proving the main theorems. In order to obtain the expo-

nentially small failure probabilities in theorem 3.4.1 and theorem 3.4.3 we take

a different approach from the one in [41]. The proofs are based on regularized

Schur complements and approximate matrix multiplication. Our arguments are

inspired by the techniques used to establish statistical guarantees for approxi-

mate kernel ridge regression via column sampling schemes [4, 7].

Nyström approximation: properties

We start by recalling some important properties of the Nyström approximation

(B.2.1). We shall also need the regularized Nyström approximation. Recall that

Ω ∈ Rd×s denotes the test matrix from which we construct the Nyström approxi-

mation. Given σ > 0, the regularized Nyström approximation with respect to Ω

is defined as

H⟨Ω⟩σ = (HΩ)(ΩT HΩ + σI)−1(HΩ)T . (B.1)
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Furthermore, let H = VΛVT be the eigendecomposition of H and define Dσ =

H(H + σI)−1 = Λ(Λ + σI)−1. We shall see below that Dσ plays a crucial role in

the analysis. The following lemmas are well known in the literature and sum-

marize the properties of the Nyström and regularized Nyström approximation.

Lemma B.1.1 may be found in [41] and lemma B.1.2 in [4].

Lemma B.1.1. Let H⟨Ω⟩ be a Nyström approximation of a symmetric psd matrix

H. Then

1. The approximation H⟨Ω⟩ is psd and has rank at most s.

2. The approximation H⟨Ω⟩ depends only on range(Ω).

3. In the Loewner order, H⟨Ω⟩ ⪯ H.

4. In particular, the eigenvalues satisfy λ j(H⟨Ω⟩) ≤ λ j(H) for each 1 ≤ j ≤ d.

Lemma B.1.2. Let H be a symmetric psd matrix, σ > 0. Define E = H − H⟨Ω⟩

and Eσ = H − H⟨Ω⟩σ. Then the following hold.

1. H⟨Ω⟩σ ⪯ H⟨Ω⟩ ⪯ H.

2. 0 ⪯ E ⪯ Eσ.

3. If ∥D1/2
σ VT ( 1

sΩΩ
T )VD1/2

σ − Dσ∥ ≤ η < 1, then

0 ⪯ Eσ ⪯
σ

1 − η
I. (B.2)

Lemma B.1.2 relates H⟨Ω⟩σ to H⟨Ω⟩ and H. In particular, item 2 implies that

∥E∥ ≤ ∥Eσ∥, so controlling Eσ controls E. Item 3 shows that Eσ can be controlled

by the spectral norm of the matrix

D1/2
σ VT 1

s
ΩΩT VD1/2

σ − Dσ. (B.3)
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The spectral norm of (B.3) can be bounded by observing

E

[
D1/2
σ VT 1

s
ΩΩT VD1/2

σ

]
= D1/2

σ VTE

[
1
s
ΩΩT

]
VD1/2

σ = D1/2
σ VT VD1/2

σ = Dσ. (B.4)

Thus, D1/2
σ VT 1

sΩΩ
T VD1/2

σ is an unbiased estimator of Dσ, and may be viewed

as approximating the product of the matrices D1/2
σ VT and VD1/2

σ . Hence results

from randomized linear algebra can bound the spectral norm of this difference.

In particular, it suffices to take a sketch size that scales with the effective dimen-

sion, using results on approximate matrix multiplication in terms of stable rank

[24].

Approximate matrix multiplication in terms of the effective dimension

The condition in item 3 of lemma B.1.2 follows immediately from theorem 1 of

[24]. Unfortunately, the analysis in that paper does not yield explicit constants.

Instead we use a special case of their results due to [58] that provides explicit

constants. Theorem B.1.1 simplifies theorem 5.2 in [58].

Theorem B.1.1. Let Ψ ∈ Rs×d be a matrix with i.i.d. N(0, 1
s ) entries. Given δ > 0,

and τ ∈ (0, 1) it holds with probability at least 1 − δ that

sup
v∈Sd−1
⟨v, (D1/2

σ VTΨTΨVD1/2
σ − Dσ)v⟩ ≤ τ + 2

√
τ, (B.5)

inf
v∈Sd−1
⟨v, (D1/2

σ VTΨTΨVD1/2
σ − Dσ)v⟩ ≥ τ − 2

√
τ, (B.6)

provided s ≥

(√
deff(σ)+

√
8 log(16/δ)

)2

τ
.

Setting Ψ = 1
√

sΩ
T , where Ω ∈ Rd×s has i.i.d. N(0, 1) entries, theorem B.1.1

yields the following corollary.
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Corollary B.1.1. Let Ω ∈ Rd×s be a matrix with i.i.d. N(0, 1) entries. Given δ > 0,

and τ ∈ (0, 1) it holds with probability at least 1 − δ that∥∥∥∥∥D1/2
σ VT 1

s
ΩΩT VD1/2

σ − Dσ
∥∥∥∥∥ ≤ τ + 2

√
τ (B.7)

provided s ≥

(√
deff(ρ))+

√
8 log(16/δ)

)2

τ
.

Condition number of Nyström preconditoned linear system

The following result is a simpler version of proposition 5.2 in [41].

Proposition B.1.1. Let Ĥ = UΛ̂UT be any rank-s Nyström approximation, with

sth largest eigenvalue λ̂s, and let E = H − Ĥ be the approximation error. Con-

struct the Nyström preconditioner P as in (3.6). Then the condition number of

the preconditioned matrix P−1/2HρP−1/2 satisfies

κ2(P−1/2HρP−1/2) ≤
λ̂s + ρ + ∥E∥

ρ
. (B.8)

Proposition B.1.1 bounds the condition condition number of the Nyström

preconditioned linear system in terms of λ̂s, ρ and the approximation error ∥E∥.

We would like to emphasize that the bound in proposition B.1.1 is deterministic.

B.1.2 Proofs of theorem 3.4.1 and corollary 3.4.1

We start with two lemmas from which theorem 3.4.1 follows easily. The first

lemma and its proof appear in [41].

Lemma B.1.3. Let H ∈ S+n (R) with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd. Let ρ > 0 be

regularization parameter, and define the effective dimension as in (3.7). Then

the following statement holds.
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Fix γ > 0. If j ≥ (1 + γ−1)deff(ρ), then λ j ≤ γρ.

Lemma B.1.4. Let ϵ > 0 and E = H − H⟨Ω⟩. Suppose we construct a random-

ized Nyström approximation from a standard Gaussian random matrix Ω with

sketch size s ≥ 8
(√

deff(ϵ) +
√

8 log(16
δ

)
)2

. Then the event

E = {∥E∥ ≤ 6ϵ}, (B.9)

holds with probability at least 1 − δ.

Proof. Let Ωs =
1
√

sΩ and observe that H⟨Ωs⟩ = H⟨Ω⟩. Now the conditions of

corollary B.1.1 are satisfied with σ = ϵ and τ = 8. Consequently with probability

at least 1 − δ, ∥∥∥∥∥D1/2
ϵ VT 1

s
ΩΩT VD1/2

ϵ − Dϵ
∥∥∥∥∥ ≤ 1

8
+

√
2

2
.

Hence applying lemma B.1.2 with σ = ϵ and η = 1
8 +

√
2

2 , we obtain∥∥∥∥∥H − H⟨Ωs⟩ϵ

∥∥∥∥∥ ≤ 6ϵ,

with probability at least 1− δ. Recalling our initial observation, we conclude the

desired result. □

Proof of theorem 3.4.1

Proof. As s ≥ 8
( √

deff(ρ) +
√

8 log(16
δ

)
)2

we have that ∥E∥ ≤ 6ρwith probability at

least 1 − δ by lemma B.1.4. Furthermore, λ̂s ≤
ρ

7 by item 3 of lemma B.1.1 and

lemma B.1.3 with γ = 1/7. Combining this with proposition B.1.1, we conclude

with probability at least 1 − δ,

κ2(P−1/2HρP−1/2) ≤
λ̂s + ρ + ∥E∥

ρ
≤ 1 + 6 +

1
7
≤ 8

as desired. □
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Proof of corollary 3.4.1

Proof. Let A = P−1/2HρP−1/2 and condition on the event that κ2(A) ≤ 8, which

holds with probability at least 1− δ. The standard theory for convergence of CG

[100] guarantees after t iterations that,

∥xt − x̃⋆∥A
∥x̃⋆∥A

≤ 2
( √
κ2(A) − 1
√
κ2(A) + 1

)t

(B.10)

where ∥x∥A = xT Ax. Theorem 3.4.1 guarantees that the Nyström preconditioned

matrix satisfies κ2(A) ≤ 8, so the above display may be majorized as

∥xt − x̃⋆∥A
∥x̃⋆∥A

≤

(
1
2

)t−1

. (B.11)

Now, from the elementary inequality

λd(A)∥x∥2 ≤ ∥x∥A ≤ λ1(A)∥x∥2, (B.12)

we conclude
∥xt − x̃⋆∥2
∥x̃⋆∥2

≤ κ2(A)
(
1
2

)t−1

≤

(
1
2

)t−4

. (B.13)

To obtain the claimed result, multiply both sides by ∥x̃⋆∥2 and solve ∥x̃⋆∥2
(

1
2

)t−4
=

ϵ for t. □

B.1.3 Proof of theorem 3.4.2

This proof is a natural consequence of the following theorem from [35].

Theorem B.1.2. Consider a convex optimization problem in the primal form (P),

minimize f (x) + h(Mx), where x ∈ Rd, M ∈ Rm×d has full column rank. Pick any
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y0, z0 ∈ Rm, and ρ > 0, and summable sequences

{εk}∞k=0 ⊆ [0,∞),
∞∑

k=0

εk < ∞,

{νk}∞k=0 ⊆ [0,∞),
∞∑

k=0

νk < ∞,

{λk}∞k=0 ⊆ (0, 2), 0 < inf λk ≤ sup λk < 2.

The dual problem (D) of primal problem (P) is

maximizey∈Rm − ( f ∗(−MT y) + g∗(y)).

Suppose the primal and dual ADMM iterates {xk}∞k=0, {zk}∞k=0, and {yk}∞k=0 satisfy

the update equations to within errors given by conform, for all k to∥∥∥∥∥xk+1 − argminx

{
f (x) + ⟨yk,Mx⟩ +

1
2
ρ∥Mx − zk∥22

}∥∥∥∥∥
2
≤ εk,∥∥∥∥∥zk+1 − argminz

{
h(z) − ⟨yk, z⟩ +

1
2
ρ∥λkMxk+1 − z + (1 − λk)zk∥22

}∥∥∥∥∥
2
≤ νk,

yk+1 = yk + ρ(λkMxk+1 + (1 − λk)zk − zk+1).

(B.14)

Then if (P) has a Kuhn-Tucker pair, {xk} converges to a solution of (P) and {yk}

converges to a solution of (D).

Proof of theorem 3.4.2

Proof. Consider optimization problem (3.1) and the associated NysADMM al-

gorithm algorithm 3.2.3. Suppose {x̃k}∞k=0, {z̃k}∞k=0, and {ũk}∞k=0 are generated by

NysADMM iterations. Since ℓ(Ax, b) is quadratic with respect to x and the

smooth part g of regularizer r has constant Hessian, the x-subproblem of (3.1) is

exactly the linear system (3.4).

Let xk+1 be the exact solution for the x-subproblem at iteration k. For all

k ≥ 0, NysADMM iterate x̃k+1 satisfies ∥x̃k+1− xk+1∥2 ≤ ε
k. Let M = I, νk = 0, λk = 1,
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yk = ρũk for all k, and f (x) = ℓ(Ax, b) + g(x). By theorem B.1.2, {x̃k}∞k=0, {z̃k}∞k=0, and

{ρũk}∞k=0 satisfy condition (B.14). Therefore, if optimization problem (3.1) has a

Kuhn-Tucker pair, {x̃k} converges to a solution of (3.1) and {ρũk} converges to a

solution of the dual problem of (3.1).

Next, we derive the bound for the number of Nyström PCG iterations T k

required at NysADMM iteration k. Note that in this case the Hessians of ℓ

and g are constant. We only need to sketch once for the constant linear sys-

tem matrix AT Hℓ(Ax̃k; b)A + Hg(x̃k) and can reuse the sketch for all NysADMM

iterations. Since the Nyström preconditioner is constructed with sketch size

s ≥ 8
( √

deff(ρ) +
√

8 log(16
δ

)
)2

, by corollary 3.4.1, with probability at least 1 − δ,

after

T k ≥

⌈ log
(

16∥xk+1∥2
εk

)
log(2)

⌉
Nyström PCG iterations, we have ∥x̃k+1− xk+1∥2 ≤ ε

k. Recall the righthand side of

linear system (3.4) rk. The exact solution for the x-subproblem xk+1 at iteration k

satisfies ∥xk+1∥2 ≤
∥rk∥2
ρ

. We have

⌈ log
(

16∥xk+1∥2
εk

)
log(2)

⌉
≤

⌈ log
(

16∥rk∥2
εkρ

)
log(2)

⌉
.

Further, by assumption, as ∥rk∥2 is bounded by a constant R for all k, we have

⌈ log
(

16∥rk∥2
εkρ

)
log(2)

⌉
≤ 4 +

⌈ log
(

R
εkρ

)
log(2)

⌉
≤ 4 +

⌈
2 log

(
R
εkρ

) ⌉
.

This gives the bound for the number of Nyström PCG iterations T k required at

NysADMM iteration k □
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B.1.4 Proof of theorem 3.4.3

Proof. By hypothesis we have s > 8deff(
ϵρ

6 ), so lemma B.1.3 with γ = 7 yields

λ̂s ≤ λs ≤
1
7
ϵρ

6
=
ϵρ

42
,

Thus,
λ̂s + ρ

ρ
≤ 1 +

ϵ

42
.

This gives the first statement. For the second statement we use our hypothesis

on s to apply lemma B.1.4 with tolerance ϵρ/6. From this we conclude ∥E∥ ≤ ϵρ

with probability at least 1 − δ. Combining this with proposition B.1.1 yields

κ2(P−1/2HρP−1/2) −
λ̂s + ρ

ρ
≤ ϵ,

with probability at least 1 − δ. On the other hand, condition numbers always

satisfy

κ2(P−1/2HρP−1/2) ≥ 1.

Combining this with our upper bound on λ̂s gives

κ2(P−1/2HρP−1/2) −
λ̂s + ρ

ρ
≥ 1 − (1 + ϵ/42) = −ϵ/42.

Hence with probability at least 1 − δ∣∣∣∣∣κ2(P−1/2HρP−1/2) −
λ̂s + ρ

ρ

∣∣∣∣∣ ≤ ϵ.
□

B.2 Randomized Nyström approximation and Nyström PCG

In this section we give the algorithms from [41] for the randomized Nyström

approximation and Nyström PCG.
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Algorithm B.2.2 Nyström PCG

input: psd matrix H, righthand side r, initial guess x0, regularization parameter
ρ, sketch size s, tolerance ε
[U, Λ̂] = RandomizedNyströmApproximation(H, s)
w0 = r − (H + ρI)x0

y0 = P−1w0

p0 = y0

while ∥w∥2 > ε do
v = (H + ρI)p0

α = (wT
0 y0)/(pT

0 v)
x = x0 + αp0

w = w0 − αv
y = P−1w
β = (wT y)/(wT

0 y0)
x0 ← x, w0 ← w, p0 ← y + βp0, y0 ← y

end while
output: approximate solution x̂

Algorithm B.2.1 Randomized Nyström Approximation

input: psd matrix H ∈ S+d (R), sketch size s
Ω = randn(d, s) ▷ Gaussian test matrix
Ω = qr(Ω, 0) ▷ thin QR decomposition
Y = HΩ ▷ s matvecs with H
ν = eps(norm(Y, 2)) ▷ compute shift
Yν = Y + νΩ ▷ add shift for stability
C = chol(ΩT Yν) ▷ Cholesky decomposition
B = Yν/C ▷ triangular solve
[U,Σ,∼] = svd(B, 0) ▷ thin SVD
Λ̂ = max{0,Σ2 − νI} ▷ remove shift, compute eigs

output: Nyström approximation Ĥnys = UΛ̂UT

B.3 AdaNysADMM

In this section we give the adaptive algorithm for computing the randomized

Nyström approximation adopted from [41]. The adaptive algorithm has the

benefit of reusing computation, in particular, we do not need to compute the
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sketch Y from scratch. We simply add onto the sketch that we have already

computed. We also give the pseudo-code for AdaNysADMM that uses algo-

rithm B.3.1 to compute the Nyström preconditioner.

Algorithm B.3.1 AdaptiveRandNysAppx

input: symmetric psd matrix H, initial rank s0, tolerance Tol
Y = [ ],Ω = [ ], and (λ̂s + ρ)/ρ = Inf
m = s0

while (λ̂s + ρ)/ρ > Tol do
generate Gaussian test matrix Ω0 ∈ R

n×m

[Ω0,∼] = qr(Ω0, 0)
Y0 = HΩ0

Ω = [Ω Ω0] and Y = [Y Y0]
ν =
√

n eps(norm(Y, 2))
Yν = Y + νΩ,
C = chol(ΩT Yν)
B = Yν/C
compute [U,Σ,∼] = svd(B, 0)
Λ̂ = max{0,Σ2 − νI} ▷ remove shift
compute (λ̂s + ρ)/ρ
m← s0, s0 ← 2s0 ▷ double rank if tolerance is not met
if s0 > smax then

s0 = s0 − m ▷when s0 > smax, reset to s0 = smax

m = smax − s0

generate Gaussian test matrix Ω0 ∈ R
n×m

[Ω0,∼] = qr(Ω0, 0)
Y0 = HΩ0

Ω = [Ω Ω0] and Y = [Y Y0]
ν =
√

n eps(norm(Y, 2)) ▷ compute final approximation and break
Yν = Y + νΩ,
C = chol(ΩT Yν)
B = Yν/C
compute [U,Σ,∼] = svd(B, 0)
Λ̂ = max{0,Σ2 − νI}
break

end if
end while

output: Nyström approximation (U, Λ̂)
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Algorithm B.3.2 AdaNysADMM

input: feature matrix A, response b, loss function ℓ, regularization g and h, step-
size ρ, positive summable sequence {εk}∞k=0
[U, Λ̂] = AdaptiveRandNysAppx(AT HℓA + Hg, s) ▷ use algorithm B.3.1
repeat

find x̃k+1 that solves (3.4) within tolerance εk by Nyström PCG
z̃k+1 = argminz{h(z) + ρ2∥x̃

k+1 − z + ũk∥22}

ũk+1 = ũk + x̃k+1 − z̃k+1

until convergence
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APPENDIX C

APPENDIX OF CHAPTER 4

C.1 Proofs for section 4.4

We begin by proving the following lemma, which plays a key role in the proof

of lemma 4.4.1.

Lemma C.1.1. Let h(z) = ρ2∥w − z∥2. Then

∂εh(z) =
{

s

∣∣∣∣∣∣ ρ2
∥∥∥∥∥w − z +

s
ρ

∥∥∥∥∥2

≤ ε

}
=

{
v = ρ(z − w + s̃)

∣∣∣∣∣∣ ρ∥s̃∥22
≤ ε

}
.

Proof. The second equality follows immediately from the first, hence we shall

prove the first equality. By definition of being an ε-subgradient, s satisfies the

following inequality for all t

h(t) − h(z) ≥ sT (t − z) − ε.

Setting t = w + s
ρ

in the preceding inequality obtains,

ρ

2

(
∥s∥2

ρ2 − ∥w − z∥2
)
≥ sT

(
w − z +

s
ρ

)
− ε.

So,

ε ≥
ρ

2
∥w − z∥2 + sT (w − z) +

∥s∥2

2ρ
.

Simple algebra yields

ρ

2
∥w − z∥2 + sT (w − z) +

∥s∥2

2ρ
=
ρ

2

∥∥∥∥∥w − z +
s
ρ

∥∥∥∥∥2

.
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Thus
ρ

2

∥∥∥∥∥w − z +
s
ρ

∥∥∥∥∥2

≤ ε,

The preceding argument establishes ∂εh(z) ⊂
{
s
∣∣∣∣∣ ρ2 ∥∥∥∥w − z + s

ρ

∥∥∥∥2
≤ ε

}
. The reverse

inclusion may be established by starting from the last display and reversing the

argument used to arrive at it. Hence we conclude the desired result. □

Proof of lemma 4.4.1

Proof. Observe the function defining the z-subproblme may be decomposed as

G(z) = g(z) + h(z) with h(z) = ρ2∥Mx̃k+1 − z + ũk∥22. Now, by hypothesis z̃k+1 gives an

εk
z-minimum of G(z). Hence by proposition 4.4.1, 0 ∈ ∂εkz G(z̃k+1) and ∂εkz G(z̃k+1) ⊂

∂εkz g(z̃k+1) + ∂εkz h(z̃k+1). Thus, we have 0 = s + sh where s ∈ ∂εkz g(z̃k+1) and sh ∈

∂εkz h(z̃k+1). Applying lemma C.1.1 we reach sh = ρ(z̃k+1 − Mx̃k+1 − uk + s̃) with

∥s̃∥ ≤
√

2εkz
ρ

. The desired claim now immediately follows from using s = −sh.

C.2 Proofs for section 4.5

Proof of proposition 4.5.1

Proof. Using the eigendecomposition, we may decompose H f as

H f = λ1(H f )vvT +

d∑
i=2

λi(H f )vivT
i .
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So

∥x⋆∥2H f
= λ1(H f )⟨v, x⋆⟩2 +

d∑
i=2

λi(H f )⟨vi, x⋆⟩2

≤ λ1(H f )µv∥x⋆∥2 + λ2(H f )
d∑

i=2

⟨vi, x⋆⟩2

≤

(
µv +

λ2(H f )
λ1(H f )

)
λ1(H f )∥x⋆∥2.

Hence we reach
λ1(H f )∥x⋆∥2

∥x⋆∥2H f

≥

(
µv +

λ2(H f )
λ1(H f )

)−1

.

As we always have λ1(H f )∥x⋆∥2 ≥ ∥x⋆∥2H f
, we conclude from the previous display

that
λ1(H f )∥x⋆∥2

∥x⋆∥2H f

≥ max


(
µv +

λ2(H f )
λ1(H f )

)−1

, 1

 .
The last claim follows from elementary calculation. □

Proof of lemma 4.5.1

Proof. By definition of ℓU(v,w)

ℓU(v,w) = f (x) + g(z) − p⋆ + sup
û∈U
⟨ρû, v − (Mx − z)⟩. (C.1)

Hence if v = Mx − z and ℓU(v,w) ≤ ϵ, (C.1) yields

f (x) + g(z) − p⋆ ≤ ϵ.

Thus we obtain the first statement.

Now, suppose ℓU(v,w) ≤ ϵ, ∥v∥ ≤ δ and U = Z. Then combining these hy-

potheses with (C.1) and using p⋆ that is the optimum, we reach

sup
û∈Z
⟨ρû, v − (Mx − z)⟩ ≤ ϵ.
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Observe if v , Mx−z then supû∈Z⟨ρû, v−(Mx−z)⟩ = ∞, contradicting the preceding

inequality. Thus v = Mx − z, which yields the second statement, and completes

the proof. □

Proof of lemma 4.5.2

Proof. Throughout the proof, we shall use xk+1 and zk+1 to represent the exact

solutions of the x-subproblem and z-subproblem at iteration k.

We start by observing the optimality condition satisfied by the exact solution

of the x-subproblem is given by

⟨∇ f (x̃k), xk+1 − x⟩ ≤ ⟨ηkΘk(xk+1 − x̃k), x − xk+1⟩ + ρ⟨Mxk+1 − z̃k + ũk,M(x − xk+1)⟩

+ αρ⟨M(x̃k − xk+1),M(x − xk+1)⟩.
(C.2)

To obtain the perturbed optimality condition satisfied by the inexact solution,

we introduce the inexact solution in (C.2) by writing xk+1 = xk+1 − x̃k+1 + x̃k+1,

which yields

⟨∇ f (x̃k), xk+1 − x̃k+1 + x̃k+1 − x⟩ ≤ ⟨ηkΘk(xk+1 − x̃k+1 + x̃k+1 − x̃k), x − x̃k+1 + x̃k+1 − xk+1⟩

+ ρ⟨M(xk+1 − x̃k+1) + Mx̃k+1 − z̃k + ũk,M(x − x̃k+1 + x̃k+1 − xk+1)⟩

+ αρ⟨M(x̃k − x̃k+1 + x̃k+1 − xk+1),M(x − x̃k+1 + x̃k+1 − xk+1)⟩.
(C.3)
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Rearranging (C.3) we reach

⟨∇ f (x̃k), x̃k+1 − x⟩ ≤ ⟨ηkΘk(x̃k+1 − x̃k), x − x̃k+1⟩ + ρ⟨Mx̃k+1 − z̃k + ũk,M(x − x̃k+1)⟩

+ αρ⟨M(x̃k − x̃k+1),M(x − x̃k+1)⟩

+ ⟨ηkΘk(xk+1 − x̃k+1), x − x̃k+1 + x̃k+1 − xk+1⟩︸                                                 ︷︷                                                 ︸
E1

+ ⟨ηkΘk(x̃k+1 − x̃k), x̃k+1 − xk+1⟩︸                                ︷︷                                ︸
E2

+ ρ⟨M(xk+1 − x̃k+1),M(x − x̃k+1 + x̃k+1 − xk+1)⟩︸                                                     ︷︷                                                     ︸
E3

+ ρ⟨Mx̃k+1 − z̃k + ũk,M(x̃k+1 − xk+1)⟩︸                                       ︷︷                                       ︸
E4

+αρ⟨M(x̃k − x̃k+1),M(x̃k+1 − xk+1)⟩︸                                     ︷︷                                     ︸
E5

+ αρ⟨M(x̃k+1 − xk+1),M(x − x̃k+1 + x̃k+1 − xk+1)⟩︸                                                       ︷︷                                                       ︸
E6

+ ⟨∇ f (x̃k), x̃k+1 − xk+1⟩︸                    ︷︷                    ︸
E7

.

We see x̃k+1 satisfies the original optimality condition with the addition of

seven error terms: E1 to E7, which arise from inexactness. We proceed to control

these terms by using x̃k+1 is an εk
x-approximate minimum of the x-subproblem.

In this vein, recall at each iteration, assumption 4.4.4 indicates the inexact solu-

tion satisfies

max{∥x̃k+1 − xk+1∥ηkΘk+ρMT M, ∥x̃k+1 − xk+1∥} ≤ εk
x. (C.4)

Observe that (C.4) implies the important inequalities

∥x̃k+1 − xk+1∥ηkΘk ≤ εk
x, ∥x̃

k+1 − xk+1∥ρMT M ≤ ε
k
x.

Furthermore, the boundedness hypothesis assumption 4.4.6 ensures for all k

that

∥x̃k − x⋆∥Θ1 ≤ Rx⋆,Θ1 , ∥x̃k − x⋆∥MT M ≤ Rx⋆,M, ∥z̃k − z⋆∥, ∥ũk − u⋆∥ ≤ Rx⋆,u⋆,z⋆ .

We now apply the preceding observations to bound terms E1 through E6.
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For term E1, we find

E1 = ⟨η
kΘk(xk+1 − x̃k+1), x − x̃k+1⟩ − ∥xk+1 − x̃k+1∥2

Θk ≤ ⟨η
kΘk(xk+1 − x̃k+1), x − x̃k+1⟩

≤ ∥xk+1 − x̃k+1∥ηkΘk∥x − x̃k+1∥ηkΘk ≤ τζε
k
x∥x − x̃k+1∥ηkΘ1 .

Next we bound E2. Invoking Cauchy-Schwarz, we find

E2 = ⟨η
kΘk(x̃k+1 − x̃k), x̃k+1 − xk+1⟩ ≤ ∥x̃k+1 − x̃k∥ηkΘk∥x̃k+1 − xk+1∥ηkΘk ≤ εk

x∥x̃
k+1 − x̃k∥ηkΘk

≤ εk
xτζ

(
∥x̃k+1 − x⋆∥ηΘ1 + ∥x̃k − x⋆∥ηΘ1

)
≤ 2τζRx⋆,Θ1εk

x.

The logic for the remaining terms is similar. Combining Cauchy-Schwarz, inex-

actness, and boundedness we reach

E3 ≤ ∥xk+1 − x̃k+1∥ρMT M∥x − x̃k+1∥ρMT M ≤ ε
k
x∥x − x̃k+1∥ρMT M,

E4 = ρ⟨ũk+1 + z̃k+1 − z̃k,M(x̃k+1 − xk+1)⟩ ≤
√
ρ∥ũk+1 + z̃k+1 − z̃k∥∥x̃k+1 − xk+1∥ρMT M

≤
√
ρ(3Rx⋆,u⋆,z⋆ + ∥u⋆∥)εk

x,

E5 ≤ α∥x̃k − x̃k+1∥ρMT M∥x̃k+1 − xk+1∥ρMT M ≤ αε
k
x∥x̃

k − x̃k+1∥ρMT M ≤ 2αρRx⋆,Mε
k
x,

E6 ≤ αε
k
x(∥x − x̃k+1∥ρMT M + ε

k
x),

E7 ≤ ∥∇ f (x̃k)∥∥x̃k+1 − xk+1∥ ≤ β fε
k
x.

Substituting the preceding bounds on the error terms, we conclude

⟨∇ f (x̃k), x̃k+1 − x⟩ ≤ ⟨ηkΘk(x̃k+1 − x̃k), x − x̃k+1⟩ + ρ⟨Mx̃k+1 − z̃k + ũk,M(x − x̃k+1)⟩

+ αρ⟨M(x̃k − x̃k+1),M(x − x̃k+1)⟩

+
(
χ1 + τζ∥x − x̃k+1∥ηΘ1 + (1 + α)∥x − x̃k+1∥ρMT M

)
εk

x + α(εk
x)

2,

where χ1 =
(
2τζRx⋆,Θ1 +

√
ρ(3Rx⋆,u⋆,z⋆ + ∥u⋆∥) + β f + 2αρRx⋆,M

)
. □

Proof of lemma 4.5.3
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Proof. We start by the observing the optimality condition satisfied by the exact

solution of the z-subproblem is given by

g(zk+1) − g(z) + ρ⟨(zk+1 − Mx̃k+1) − ũk, zk+1 − z⟩ ≤ 0. (C.5)

To arrive at the inexact optimality condition for the z-subproblem, we follow the

same strategy as in lemma 4.5.2. We write g(zk+1) = g(zk+1) − g(z̃k+1) + g(z̃k+1) and

zk+1 = zk+1 − z̃k+1 + z̃k+1 in (C.5), which yields

g(zk+1) − g(z̃k+1) + g(z̃k+1) − g(z)

+ ρ⟨zk+1 − z̃k+1 + z̃k+1 − Mx̃k+1 − ũk, zk+1 − z̃k+1 + z̃k+1 − z⟩ ≤ 0.

Using ũk+1 = Mx̃k+1− z̃k+1+ ũk in the preceding display, and rearranging we reach

g(z̃k+1) − g(z) − ρ⟨ũk+1, z̃k+1 − z⟩ ≤ g(z̃k+1) − g(zk+1) + ρ⟨ũk+1, zk+1 − z̃k+1⟩

+ ρ⟨zk+1 − z̃k+1, z − z̃k+1⟩.

Now, invoking z̃k+1 is εk
z-approximate minimizer of the z-subproblem, we obtain

from ρ-strong convexity of the z-subproblem that ∥z̃k+1 − zk+1∥ ≤

√
2εkz
ρ

. Applying

this observation in the preceding display yields

g(z̃k+1) − g(z) − ρ⟨ũk+1, z̃k+1 − z⟩ ≤ g(z̃k+1) − g(zk+1) +
(
Rx⋆,u⋆,z⋆ + ∥u⋆∥ + ∥z̃k+1 − z∥

) √
2ρεk

x.

Next we apply lemma 4.4.1 to obtain, s = ρ(Mx̃k+1 − z̃k+1 + ũk − s̃) ∈ ∂εkz g(z̃k+1) such

that

∥s̃∥ ≤

√
2εk

z

ρ
.

Using this in conjunction with the definition of the εk
z-subgradient, we reach

g(z̃k+1) − g(z) − ρ⟨ũk+1, z̃k+1 − z⟩
(1)
≤ ⟨s, z̃k+1 − zk+1⟩ + εk

z +
(
Rx⋆,u⋆,z⋆ + ∥u⋆∥ + ∥z̃k+1 − z∥

) √
2ρεk

z

(2)
= ρ⟨ũk+1 − s̃, z̃k+1 − zk+1⟩ + εk

z +
(
Rx⋆,u⋆,z⋆∥u⋆∥ + ∥z̃k+1 − z∥

) √
2ρεk

z

(3)
≤

(
Rx⋆,u⋆,z⋆ + ∥u⋆∥ +

√
2ρεk

z

) √
2ρεk

z+(
Rx⋆,u⋆,z⋆ + ∥u⋆∥ + ∥z̃k+1 − z∥

) √
2ρεk

z

= (1 + 2ρ)εk
z +

(
2(Rx⋆,u⋆,z⋆ + ∥u⋆∥) + ∥z̃k+1 − z∥

) √
2ρεk

z .
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Where (1) uses s is a εk
z-subgradient, (2) uses the explicit form of s, and (3) uses

Cauchy-Schwarz. The desired claim now follows by rearrangement. □

C.3 Proofs for section 4.6

Proof of lemma 4.6.1

Proof. We start by the optimality condition of the x-subproblem,

−ρMT ũk+1 + ρMT M(x̃k+1 − xk+1) + ρMT (z̃k − z̃k+1) = ∇ f (x̃k) + ηkΘk(xk+1 − x̃k). (C.6)

Introducing the inexact solution x̃k+1 in (C.6) by writing xk+1 = xk+1 + x̃k+1 − x̃k+1

and ∇ f (xk+1) = ∇ f (xk+1) + ∇ f (x̃k+1) − ∇ f (x̃k+1) and rearranging, we obtain the

optimality condition of the x-subproblem with the inexact solution,

∇ f (x̃k+1) = − ρMT ũk+1 + ρMT (z̃k − z̃k+1) + ∇ f (x̃k+1) − (∇ f (x̃k) + ηkΘk(x̃k+1 − x̃k))

+ ρMT M(x̃k+1 − xk+1) + ηkΘk(x̃k+1 − xk+1)
(C.7)

Similarly, we can get the optimality condition of the z-subproblem with the in-

exact solution z̃k+1 as

ρũk+1 + ρ(z̃k+1 − zk+1) ∈ ∂g(zk+1). (C.8)

Recall that the saddle point (x⋆, z⋆, u⋆) of problem (4.1) satisfies the KKT condi-

tions
−ρMT u⋆ = ∇ f (x⋆),

ρu⋆ ∈ ∂g(z⋆),

Mx⋆ − z⋆ = 0.

(C.9)

Now, by strong convexity of f

⟨x̃k+1 − x⋆,∇ f (x̃k+1) − ∇ f (x⋆)⟩ ≥ σ f ∥x̃k+1 − x⋆∥2.
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Combining the preceding display with (C.7) and (C.9), we have

⟨x̃k+1 − x⋆,∇ f (x̃k+1) − ∇ f (x⋆)⟩

= ρ⟨M(x̃k+1 − x⋆), u⋆ − ũk+1⟩ + ρ⟨M(x̃k+1 − x⋆), z̃k − z̃k+1⟩

+⟨x̃k+1 − x⋆,∇ f (x̃k+1) − (∇ f (x̃k) + ηkΘk(x̃k+1 − x̃k))⟩ + ⟨x̃k+1 − x⋆, (ηkΘk + ρMT M)(x̃k+1 − xk+1)⟩

≤ ρ⟨M(x̃k+1 − x⋆), u⋆ − ũk+1 + z̃k − z̃k+1⟩ + Rx⋆,u⋆,z⋆ε
k
∇ + (

√
ηk∥Θk∥Rx⋆,u⋆,z⋆ +

√
ρRx⋆,M)εk

x,

where the last inequality follows from Cauchy-Schwartz, gradient estimation

error of f (assumption 4.6.2), and ∥x̃k+1 − xk+1∥ηkΘk+ρMT M ≤ ε
k
x. Thus we prove

inequality (4.28),

⟨M(x̃k+1−x⋆), u⋆−ũk+1+z̃k−z̃k+1⟩+
Rx⋆,u⋆,z⋆

ρ
εk
∇+

√
ηk∥Θk∥Rx⋆,u⋆,z⋆ +

√
ρRx⋆,M

ρ
εk

x ≥
σ f

ρ
∥x̃k+1−x⋆∥2.

Next, we combine (C.8) and (C.9), and use convexity of g to obtain

⟨z̃k+1 − z⋆ + zk+1 − z̃k+1, ũk+1 − u⋆ + z̃k+1 − zk+1⟩ ≥ 0.

Given the fact that z̃k+1 is an εk
z-minimum of the z-subproblem we know that

∥z̃k+1 − zk+1∥2 ≤

√
2εkz
ρ

. Applying Cauchy-Schwarz, we get inequality (4.29)

⟨z̃k+1 − z⋆, ũk+1 − u⋆⟩ + 2

√
2
ρ

Rx⋆,u⋆,z⋆

√
εk

z ≥ 0.

Observe by convexity of g and using (C.8),

⟨zk − zk+1, ũk + z̃k − zk − ũk+1 − z̃k+1 + zk+1⟩ ≥ 0.

Now, arguing as we did to arrrive at (4.29) with the fact εk−1
z > εk

z , we conclude

inequality (4.30)

⟨z̃k − z̃k+1, ũk − ũk+1⟩ + 8

√
2
ρ

Rx⋆,u⋆,z⋆

√
εk−1

z +
4
ρ
εk−1

z ≥ 0.

□
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Proof of lemma 4.6.3

Proof. Recall that we use strong convexity of f to prove (4.28). Now we first

use Lipschitz continuity of ∇ f to prove another similar inequality. By Lipschitz

continuity,

⟨x̃k+1 − x⋆,∇ f (x̃k+1) − ∇ f (x⋆)⟩ ≥
1
L f
∥∇ f (x̃k+1) − ∇ f (x⋆)∥2.

Using the same step as the proof of (4.28), we know

⟨M(x̃k+1− x⋆), u⋆− ũk+1+ z̃k− z̃k+1⟩+
C1

2
εk
∇+

C2

2
εk

x ≥
1
ρL f
∥∇ f (x̃k+1)−∇ f (x⋆)∥2. (C.10)

Combining (C.7) and (C.9), the righthand side of (C.10) becomes

1
ρL f
∥ρMT (u⋆−ũk+1+z̃k−z̃k+1)+∇ f (x̃k+1)−(∇ f (x̃k)+ηkΘk(x̃k+1−x̃k))+(ηkΘk+ρMT M)(x̃k+1−xk+1)∥2.

And by the reverse triangle inequality,

1
ρL f
∥∇ f (x̃k+1) − ∇ f (x⋆)∥2 ≥

1
ρL f
∥ρMT (u⋆ − ũk+1 + z̃k − z̃k+1)∥2

−
1
ρL f
∥∇ f (x̃k+1) − (∇ f (x̃k) + ηkΘk(x̃k+1 − x̃k))∥2 −

1
ρL f
∥(ηkΘk + ρMT M)(x̃k+1 − xk+1)∥2

(C.11)

Putting (C.10) and (C.11) together, we have

⟨M(x̃k+1 − x⋆), u⋆ − ũk+1 + z̃k − z̃k+1⟩ +
C1

2
εk
∇ +

1
ρL f

(εk
∇)2 +

C2

2
εk

x +
C4

2
(εk

x)
2 ≥

1
ρL f
∥ρMT (u⋆ − ũk+1 + z̃k − z̃k+1)∥2 ≥

ρλmin(MMT )
L f

∥u⋆ − ũk+1 + z̃k − z̃k+1∥2,

(C.12)

where term 1
ρL f

(εk
∇
)2 is obtained by the gradient estimation error of f (assump-

tion 4.6.2) and term C4
2 (εk

x)
2 comes from Cauchy-Schwarz and x-inexactness con-

dition. Adding (4.28) and (C.12) together, we know for any 0 ≤ µ ≤ 1

⟨M(x̃k+1 − x⋆), u⋆ − ũk+1 + z̃k − z̃k+1⟩ +
C1

2
εk
∇ +

1
ρL f

(1 − µ)(εk
∇)2 +

C2

2
εk

x +
C4

2
(1 − µ)(εk

x)
2 ≥

σ fµ

ρ
∥x̃k+1 − x⋆∥2 +

ρλmin(MMT )
L f

(1 − µ)∥u⋆ − ũk+1 + z̃k − z̃k+1∥2.

(C.13)
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Given the relation Mx̃k+1 − Mx⋆ − (z̃k+1 − z⋆) = ũk+1 − ũk, we know

∥x̃k+1 − x⋆∥2 ≥
1
∥M∥2

∥ũk − ũk+1 + z⋆ − z̃k+1∥2.

Thus, (C.13) becomes

⟨M(x̃k+1 − x⋆), u⋆ − ũk+1 + z̃k − z̃k+1⟩ +
C1

2
εk
∇ +

1
ρL f

(1 − µ)(εk
∇)2 +

C2

2
εk

x +
C4

2
(1 − µ)(εk

x)
2 ≥

σ f

ρ∥M∥2
µ∥ũk − ũk+1 + z⋆ − z̃k+1∥2 +

ρλmin(MMT )
L f

(1 − µ)∥u⋆ − ũk+1 + z̃k − z̃k+1∥2.

(C.14)

With same steps to arrive at (4.31) but replacing (4.28) with (C.14), we can derive

a modified sufficient descent condition

∥ỹk − y⋆∥2 − ∥ỹk+1 − y⋆∥2 +C1ε
k
∇ +

2
ρL f

(1 − µ)(εk
∇)2 +C2ε

k
x +C4(1 − µ)(εk

x)
2 +C3

√
εk−1

z +
8
ρ
εk−1

z ≥

∥ỹk − ỹk+1∥2 +
2σ f

ρ∥M∥2
µ∥ũk − ũk+1 + z⋆ − z̃k+1∥2 +

2ρλmin(MMT )
L f

(1 − µ)∥u⋆ − ũk+1 + z̃k − z̃k+1∥2.

(C.15)

Using the reverse triangle inequality, the righthand side of (C.15) is greated than

or equal to

2σ f

ρ∥M∥2
µ∥z̃k+1 − z⋆∥2 +

(
1 −

2σ f

ρ∥M∥2
µ

)
∥ũk − ũk+1∥2

+
2ρλmin(MMT )

L f
(1 − µ)∥ũk+1 − u⋆∥2 +

(
1 −

2ρλmin(MMT )
L f

(1 − µ)
)
∥z̃k − z̃k+1∥2.

(C.16)

Therefore, as long as there exists 0 ≤ µ ≤ 1 such that

1 −
2σ f

ρ∥M∥2
µ ≥ 0 and 1 −

2ρλmin(MMT )
L f

(1 − µ) ≥ 0, (C.17)

inequality (4.33) must be satisfied.

Let

µ =
ρ2∥M∥2λmin(MMT )

L fσ f + ρ2∥M∥2λmin(MMT )
,

then we have

δ =
2ρσ fλmin(MMT )

L fσ f + ρ2∥M∥2λmin(MMT )
.
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Condition (C.17) simplifies to 1 − δ ≥ 0. As we pick

ρ =

√
L fσ f

∥M∥2λmin(MMT )
,

it maximizes δ as

δmax =
1

κM
√
κ f
.

Recall that κM is the condition number of M and κ f is the condition number of

f . We must have κM ≥ 1, κ f ≥ 1, and δmax ≤ 1. Condition (C.17) is naturally

satisfied for any δ. This completes the proof of lemma 4.6.3. □
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