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1 Introduction

Advances in randomized numerical linear algebra (randNLA) in the new
millenium have reduced the complexity of a variety of fundamental linear
algebraic operations, including finding the top-k eigenspace or principal com-
ponents of a matrix or solving a large-scale linear system of equations. These
advances have implications throughout optimization that have not yet been
fully realized. This article provides a brief overview of some of the most im-
portant and useful tools in randomized numerical linear algebra, a few case
studies of their use in optimization, and a tour of what we believe possible
with these methods. The major technique is to approximate the most com-
putationally challenging step in an optimization algorithm as the solution to
a linear system Ax = b; and to approximate the matrix A by a matrix that
is low rank + diagonal in order to efficiently solve or precondition an indi-
rect solver for the linear system. In particular, we showcase major advances
in linear system solvers, smooth optimization, stochastic optimization, com-
posite (smooth + nonsmooth) optimization, and semidefinite optimization
that can be achieved using these methods. These advances yield speedups of
3–58x on important machine learning problems like lasso, logistic regression,
SVM, and deep learning.

To understand the potential gains, consider Figure 1, which compares
the recent NysADMM method from [39] to SAGA [9] on an ℓ1-regularized
logistic regression problem with a 60, 000× 60, 000 data matrix formed from
a random features transformation of the CIFAR-10 data set (CIFAR-10 rf).
NysADMM combines ideas from randNLA with the ADMM algorithm to
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obtain a scalable large-scale optimization algorithm. SAGA is a stochastic
gradient method and is the default solver used by scikit-learn for solving ℓ1-
regularized logistic regression. Figure 1 shows NysADMM runs 8x faster than
SAGA using the default stopping criterion in scikit-learn. We see randNLA
can dramatically accelerate large scale optimization.
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Figure 1: NysADMM vs. SAGA on ℓ1-logistic regression with CIFAR-10 rf.

2 Background

Randomized rangefinder. The methods we present here build on a fun-
damental primitive: the randomized rangefinder. Given an input matrix
B ∈ Rm×n and a target dimension s, the randomized rangefinder produces
an orthonormal matrix Q ∈ Rm×s whose columns span (as well as possible)
the same range as the top s left singular vectors of B. See [22] for a recent
review or [16] for an earlier exposition.
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One simple method to compute such a Q starts with a random test matrix
Ω ∈ Rn×s, for example, a matrix with iid N (0, 1) entries. We review other
choices in Section 4. The randomized rangefinder algorithm computes a
sketch Y = BΩ of B, and returns an orthonormal basis Q for Y . The main
computational work here consists of s matrix-vectors products (matvecs)
with the matrix B, which typically dominates the O(ns2) work to compute
an orthonormal basis. The memory required is O(ns): smaller than the
memory required to store B if B is dense.

How well does the rangefinder work? Suppose m ≥ n and matrix B ∈
Rm×n has singular values σ1 ≥ · · · ≥ σn. Then for any k < s − 1, the
expected spectral-norm error of the randomized rangefinder, E ∥(I−PQ)B∥,
with standard normal test matrix Ω ∈ Rn×s is bounded by(

1 +

√
k

s− k − 1

)
σk+1 + γ

(∑
j>k

σ2
j

)1/2

,

where γ = E ∥Γ†∥ for standard normal Γ ∈ Rk×s [22]. We see the random-
ized rangefinder works extremely well when the singular values of B decay
rapidly. In particular, if B has rank r ≤ k so that σk+1 = 0, the randomized
rangefinder exactly recovers the matrix B as E ∥(I − PQ)B∥ = 0.

Randomized SVD. The randomized rangefinder can be used to compute
a low rank approximation of a matrix. Given a basis Q that approximately
spans the top s-dimensional left singular subspace of a matrix B, compute
the SVD of QTB = ÛΣV T . Then B ≈ (QÛ)ΣV T approximates the top-s
SVD of B. If Q exactly spans the top s-dimensional left singular subspace
of B, then this approximation is exact.

Randomized Nyström approximation. It is even simpler to compute
an approximate eigenvalue decomposition of a matrix A ∈ Rn×n. Given test
matrix Ω ∈ Rn×s, the Nyström approximation of A is

A ≈ AΩ(ΩTAΩ)†(AΩ)T .

Notice that given the sketch Y = AΩ, no further access to A is needed. We
may form an approximate eigenvalue decomposition using ideas similar to
the randomized SVD. A stable implementation requires a bit more care; see
[30].
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Distributed and parallel. One delightful aspect of randNLA is how well
its primitives adapt to modern computational paradigms, such as computa-
tion on a GPU or in a distributed system; indeed, the increasing importance
of parallel and distributed computation makes the techniques of randNLA
an essential part of any computational toolbox. The fundamental workhorse
of randNLA is the computation of a sketch Y = AΩ of a matrix A. It is easy
to distribute this computation over the rows of A (concatenate the sketch
of each row Yi: = Ai:Ω) or over the columns of A (sum the sketch of each
column Y =

∑
j(A:jΩ)).

Kinds of guarantees. We state many of the bounds in this newsletter
as bounds in expectation. High probability bounds are also available: the
simplest are easy to prove from an expectation bound by applying Markov’s
inequality: if E ∥A− Â∥ ≤ ϵ, then

Prob
[
∥A− Â∥ ≥ ϵt

]
≤ 1

t
.

For most results in this newsletter, exponential concentration bounds are
also available.

More importantly, these algorithms yield methods that work well and re-
liably in practice. To prove convergence of optimization algorithms that rely
on these methods, we often use union bounds to guarantee good performance
at every iteration of an outer optimization algorithm. In our experiments, we
simply never see any large deviations from expected performance that would
confound the optimizer.

Low rank + diagonal. To state the obvious: low rank approximation
works well for matrices that are low rank. However, in optimization, many
important matrices are the sum of a low rank part and a diagonal part: for
example, the Hessian of a regularized linear system, or the covariance matrix
corresponding to a factor model in finance. Direct low rank approximation
of these matrices works poorly. Instead, to approximate these matrices, it is
best to subtract off the diagonal first and sketch the rest to form a low rank
approximation. Interestingly, we are not aware of a linear algebraic method
to find a good low rank + diagonal approximation to a matrix. Iterative
methods like matrix completion are generally required; these work well but
are generally too expensive to be useful in the context of randNLA. Luckily,
the diagonal part of the matrix is often known in advance.
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Statistical perspectives. For many large-scale machine learning prob-
lems, solving the associated optimization problem to high-accuracy often
yields little benefit for predictions. In this case, we can replace a deter-
ministic solver with a randomized solver with impunity. We can formalize
our understanding of which problems are unharmed by randomized meth-
ods by considering the irreducible statistical error due to uncertain problem
data. So long as optimization error is bounded by statistical error, there is
no statistical benefit to solving the optimization problem to higher precision
[1, 19].

Many theoretical and practical algorithms exploit the fact that solving
a problem beyond statistical error is unimportant for practical performance.
For example, randomized PCA works as well as PCA on large scale statistical
datasets: [34] show that randomized PCA via the sketch-and-solve SVD
[10, 20] works nearly as well as PCA to recover the top principal components
when data is generated by the spike covariance model which models the data
matrix as low rank + iid Gaussian. As another example, Falkon [28] is a
large-scale method for approximate kernel ridge regression that uses column
sampling to solve a reduced problem. [28] show that Falkon obtains minimax
optimal statistical performance, even though it does not solve the original
problem.

3 Optimization problems

This section surveys some paradigmatic applications of randNLA to speed up
optimization. We organize our discussion by application area, and consider
linear systems, statistical learning problems, smooth optimization, and conic
optimization, each in its own subsection. The solution of a linear system is
at the computational core of a variety of optimization algorithms, including
first-order solvers for a variety of statistical learning problems, Newton’s
method, and interior point methods, so the first subsection on linear system
solvers is fundamental for understanding ideas in the subsequent subsections.

3.1 Linear systems

Many algorithms rely on a fast solver for the regularized linear system

(A+ µI)x = b,
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where A ∈ Sn
+ is symmetric psd and µ ≥ 0. In the context of the regularized

least squares problem

minimize
1

2
∥Ux− y∥2 + µ

2
∥x∥2,

A = UTU is the Gram matrix and b = UTy is the righthand side. This prob-
lem appears in iteratively reweighted least squares, (kernel) ridge regression,
Gaussian processes, approximate cross validation [29], influence functions
[17], and hyperparameter optimization [21]. For small systems (n ≤ 50, 000),
direct methods are most efficient: these factor the matrix A and then solve
the factored system. For larger systems, indirect methods are preferred:
these iteratively solve the system by applying the matrix A to the iterate x
to form the residual r = Ax − b at each iteration, which is used to update
x. Classic Krylov methods like Conjugate Gradients (CG) are guaranteed
to return, at the kth iteration, the best solution x in the kth Krylov sub-
space Kk = Span{b, Ab, . . . , Ak−1b}. CG requires O(

√
κ(A) log(1

ϵ
)) matvecs

to reach ϵ accuracy. So the condition number κ(A) = λ1(A)/λn(A) matters
tremendously!

Sketch-and-solve. A natural first idea is to solve an easier problem in-
stead. Given a rank-s (say, Nyström) approximation A ≈ Â = V Λ̂V T to
A ∈ Sn

+, it is easy to solve

(Â+ µI)x̂ = b instead of (A+ µI)x⋆ = b.

In fact, we can apply the inverse of Â+ µI in O(ns) time, since

(Â+ µI)−1 = V (Λ̂ + µI)−1V T +
1

µ
(I − V V T ).

This solution paradigm, which returns the solution x̂ to the sketched problem,
is called sketch-and-solve. Variants of this idea approximate A = UTU using
the sketch of a tall-skinny factor U ∈ Rm×n [33, 22].

Sketch-and-solve works well if b ∈ span(V ), but in general, high accuracy
solutions require large sketch sizes s → n: a guaranteed ϵ-accurate solution
requires a sketch size s for which λs ≤ ϵµ [12], where λ1 ≥ · · · ≥ λn are the
eigenvalues of A.

Hence the method is only useful for low accuracy solutions (large ϵ) to
strongly regularized problems (large µ), or when A is low rank. For example,
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Nyström sketch-and-solve works well for kernel ridge regression. Indeed,
the Nyström approximation was first introduced to machine learning in the
context of kernel ridge regression [32], and bears a strong resemblance to the
newer Falkon method [28]. In this setting, the sketch-and-solve solution x̂
achieves good prediction error even though it may not be close to the true
solution x⋆ [4, 2].

Sketch-and-precondition. An alternative approach to solving a linear
system seeks to improves the condition number by solving a related system.
For any preconditioner P ≻ 0,

Ax = b ⇐⇒ P−1/2Ax = P−1/2b

P−1/2AP−1/2z = P−1/2b

where x = P−1/2z. Preconditioning works well when the preconditioner
P is easy to invert and results in a system with much smaller condition
number κ(P−1/2AP−1/2) ≪ κ(A). Common preconditioners include Jacobi
preconditioning P = diag(A); incomplete Cholesky, which works best for
structured sparsity; and randomized preconditioners, which approximate the
matrix on its top-k eigenspace and work well for ill-conditioned matrices with
fast spectral decay.

Sketch-and-precondition solvers form a randomized preconditioner from
a sketch of the matrix A. These solvers enable fast and accurate solutions
and can solve both overdetermined and underdetermined least-squares prob-
lems. An early sketch-and-precondition method [27] proposed an algorithm
with runtime O(mn log(n/ϵ) + n4). Progress in the field has improved the
idea substantially: [3] improved the runtime to O(mn log(n/ϵ) + n3 log(n))
and showed that randomized least-squares solvers significantly outperform
LAPACK on large-scale overdetermined least-squares problems. A sketch-
and-precondition variant using sparse sketching matrices [8] enables solution
in input-sparsity time O(nnz(A) log

(
n
ϵ

)
+ n3 log2(n)) for matrices satisfying

nnz(A)≪ mn. The LSRN method [23] works for underdetermined problems
with only black-box access to A.

To explain how these methods work, consider for simplicity an overdeter-
mined least-squares problem Ux = b with U ∈ Rm×n, m ≫ n. Sketch-and-
precondition computes a sketch ΩTU using test matrix Ω ∈ Rm×s, performs
a QR-decomposition ΩTU = QR of the resulting s×n matrix, and uses R−1

as a preconditioner for U .
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We can show UR−1 is well-conditioned using the subspace embedding prop-
erty. Suppose Ω ∈ Rm×s is a Gaussian matrix with sketch size s = O(n/ζ2)
where ζ ∈ (0, 1). Then the ζ-subspace embedding property holds [22, 33]:
with high probability for all x ∈ Rn,

(1− ζ)∥Ux∥2 ≤ ∥ΩTUx∥2 ≤ (1 + ζ)∥Ux∥2.

We can use this result to show that the preconditioned system UR−1 preserves
the lengths of vectors in the range of U . To see how, let x = R−1z. By the
subspace embedding property,

1

1 + ζ
∥ΩTUR−1z∥2 ≤ ∥UR−1z∥2 ≤ 1

1− ζ
∥ΩTUR−1z∥2.

Now using ∥ΩTUR−1z∥2 = ∥Qz∥2 = ∥z∥2, the above display becomes

1

1 + ζ
∥z∥2 ≤ ∥UR−1z∥2 ≤ 1

1− ζ
∥z∥2,

which bounds the condition number κ(UR−1) ≤
√

1+ζ
1−ζ

. In particular, setting

ζ = 1
2
, we have κ(UR−1) ≤

√
3. Hence preconditioned conjugate gradient

(PCG) applied to UR−1 converges rapidly.
In practice, the sketch can often be computed faster using a structured

test matrix like a randomized trigonometric transform or sparse sign matrix;
see Section 4. These structured test matrices also satisfy the ζ-subspace em-
bedding property with high probability but generally require a larger sketch
size [22].

Unfortunately, this approach to sketch-and-precondition is restricted to
highly overdetermined or underdetermined problems, as it requires a QR de-
composition of ΩTU ∈ Rs×n at a cost of O(n3). It is not useful for square(ish)
systems when the smaller dimension n is still large.

Nyström PCG. Nyström PCG provides an alternative to sketch-and-
precondition that works for square systems A ∈ Rn×n, and generalizes to
an efficient method for rectangular systems Ux = b, U ∈ Rm×n, by forming
the normal equations Ax := UTUx = UT b.

Nyström PCG uses the Nyström approximation to the matrix A: given
a rank-s Nyström approximation

Ânys = V Λ̂V T ≈ A ∈ Sn
+,
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Figure 2: Nyström PCG is significantly faster than traditional NLA methods on
YearMSD dataset with 15, 000 random features.

the Nyström preconditioner for the regularized system (A+ µI)x = b is

Pnys =
1

λ̂s + µ
V (Λ̂ + µI)V T + (I − V V T ).

The inverse of this preconditioner can be applied in O(ns):

P−1 = (λ̂s + µ)V (Λ̂ + µI)−1V T + (I − V V T ).

We can bound the number of iterations required to achieve a solution
of accuracy ϵ using the Nyström preconditioner in terms of the effective
dimension at µ, a smoothed count of eigenvalues ≥ µ:

deff(µ) =
n∑

j=1

λj

λj + µ
.
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The effective dimension bounds sketch size required for the preconditioner to
achieve constant condition number [12]:

Theorem 1 Construct the randomized Nyström preconditioner P with rank
s = 2⌈1.5deff(µ)⌉+ 1. Then

E
[
κ(P−1/2AµP

−1/2)
]
< 28.

High probability bounds ensuring small condition number may be established
by using a slightly larger sketch size [12, 39].

Contrast this result with sketch-and-precondition: while sketch-and-precondition
methods rely on the subspace embedding property and can accelerate the
solution of very skinny or fat rectangular linear systems, Nyström PCG op-
erates on the principle of low-rank approximation and so is useful for square
and squareish systems. The main requirement is that the effective dimension
is small, or equivalently, that the spectrum of A decays quickly. This property
is common in statistical learning problems. Fig. 2 compares Nyström PCG to
traditional numerical linear algebra methods for a regularized least-squares
problem.

Iterative sketching Sketch-and-solve requires a sketch size of O(1/ϵ2) to
ensure an ϵ-approximate solution, so it is not practical for high precision
solutions. Instead, a natural idea is to solve a sequence of linear systems
with sketch-and-solve to converge to higher accuracy. For example, given an
approximate solution x(0) to Ax = b, iterative refinement via Richardson’s
iteration provides a classical technique to improve the solution:

x(k+1) = x(k) − η(Ax(k) − b),

where η is a suitably chosen stepsize. Unfortunately, Richardson’s iteration
converges quite slowly in practice: O(κ log(1/ϵ)) iterations for an ϵ-accurate
solution, where κ is the condition number of A. This complexity is a factor√
κ worse than CG.
Pilanci and Wainwright [25] close this gap for overdetermined uncon-

strained least-squares problems using a preconditioned Richardson’s itera-
tion,

x(k+1) = x(k) −
(

1

m
AS(k)

)−1

(b− Ax(k))
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where A = UTU , AS(k) = UT (S(k))TS(k)U , and b = UTy. Applying the

preconditioner
(

1
m
AS(k)

)−1
requires solving the sketched linear system, which

explains the name iterative sketching. With a sketch size m = Ω(p), [25]
shows that iterative sketching yields an ϵ-accurate solution after O

(
log
(
1
ϵ

))
iterations, independent of the condition number, and offers extensions for
constrained least-squares problems such as the lasso. More recently, [18]
extend the iterative Hessian sketch to ridge regression and obtain analogous
results provided the sketch size satisfies m = Ω(deff(µ)). Gower et al. [15]
propose a third approach: at each iteration the linear system is sketched and
the next iterate is chosen to minimize the distance to the previous iterate
among all solutions to the sketched system.

Iterative sketching, like sketch-and-precondition, can accelerate optimiza-
tion methods by replacing linear system solves inside optimization algorithms
(such as Newton’s method [26, 14]) with faster sketched linear system solves.
However, in the experience of the authors, sketch-and-precondition (and
Nyström PCG in particular) work as well if not better [12]. See Fig. 5 below
for an example.

3.2 Statistical learning problems

Consider the composite optimization problem

minimize ℓ(Ax) + r(x)

where ℓ : Rn → R is smooth, A ∈ Rm×n is a feature matrix, and r :
Rn → R is proxable: that is, suppose there is an easy (even, closed form)
solution to proxr(x) = argminy r(y) +

1
2
∥x − y∥2 [24]. For example, for

r(x) = ∥x∥1, proxr(x) is soft-thresholding operator. As examples, we have
three important problems in statistical learning:

• the lasso,

minimize
1

2
∥Ax− b∥22 + γ∥x∥1,

with squared error loss ℓ(x) = 1
2
∥Ax− b∥22;

• ℓ1-regularized logistic regression,

minimize ℓlogistic(Ax) + γ∥x∥1
with logistic loss ℓ(Ax) = ℓlogistic(Ax) =

∑n
i=1 log(1 + exp(−bi(Ax)i);

and
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• the support vector machine (SVM) problem

minimize 1
2
xTdiag(b)Kdiag(b)x− 1Tx

subject to xT b = 0
0 ≤ x ≤ C.

with loss ℓ(x) = 1
2
xTdiag(b)Kdiag(b)x− 1Tx.

The state-of-the-art solvers for each of these problems are different: for
lasso, glmnet uses coordinate descent [13]; for logistic regression, SAGA is
a stochastic average gradient method [9]; and for SVM, LIBSVM, uses a
sequential minimal optimization (pairwise coordinate descent) method [6].

NysADMM. However, all of these problems can be addressed simply us-
ing an operator splitting framework like the alternating directions method of
multipliers (ADMM Algorithm 1; see [5] for a tutorial overview), in which
the major computational challenge is the solution of an unconstrained mini-
mization involving a large-scale data matrix (step 4 of Algorithm 1).

Algorithm 1 ADMM

1: Input: loss function ℓ, regularization r, stepsize ρ,
2: initial z0, u0 = 0
3: for k = 0, 1, . . . do
4: xk+1 = argminx{ℓ(Ax) + ρ

2
∥x− zk + uk∥22}

5: zk+1 = argminz{r(z) + ρ
2
∥xk+1 − z + uk∥22}

6: uk+1 = uk + xk+1 − zk+1

return x⋆ (nearly) minimizing ℓ(x) + r(x)

Our recent paper [39], with coauthor Shipu Zhao, shows how to acceler-
ate ADMM for these problems using ideas from randNLA. To improve the
runtime of ADMM, recall that inexact ADMM, which solves step 4 approxi-
mately with error εk at iteration k, converges if

∑
k ε

k <∞ [11]. To employ
our randNLA toolbox, approximate step 4 by a quadratic optimization, and
solve the resulting linear system with NyströmPCG.

More precisely, if ℓ is twice differentiable, approximate the objective near
the previous iterate xk as

ℓ(Ax) ≈ ℓ(Axk) + (x− xk)TAT∇ℓ(xk)

+
1

2
(x− xk)TATHℓ(x

k)A(x− xk),
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where Hℓ is the Hessian of ℓ. With this approximation, the problem reduces
to a linear system: set rk = ρzk − ρuk +ATHℓ(x

k)Axk −AT∇ℓ(xk) and find
x to solve

(ATHℓ(x
k)A+ ρI)x = rk.

Observe the Hessian ATHℓ(x
k)A has the feature matrix A inside of it,

and so generally exhibits fast spectral decay. Moreover, the stepsize ρ reg-
ularizes linear system. Interestingly, this fact simplifies the choice of ρ for
ADMM, which is often quite challenging: as larger ρ yields an easier-to-solve
subproblem, erring on the side of large ρ is better. Empirically, we find a
choice of 10 works well across a startlingly wide variety of problems [39].

For this method to work, in theory we must solve to tolerance εk at
iteration k, where

∑
k ε

k < ∞; if the sketch size s ≈ deff(ρ), we will need
≤ O(log(1/εk)) CG steps per iteration. On the other hand, in practice we
find good performance by setting εk as the geometric mean of the primal
and dual residual (as recommended in [5], and using a sketch size s = 50
uniformly. If ℓ is quadratic (e.g., lasso and SVM), Hℓ(x

k) = Hℓ is constant,
so we need only sketch ATHℓA once and can reuse the sketch at each iteration;
otherwise (for logistic regression), we find it suffices to re-sketch infrequently,
say, every 50 iterations.

This simple paradigm yields substantial speedups over state-of-the-art
solvers, we saw in Fig. 1 that NysADMM significantly outperforms SAGA
on ℓ1-logistic regression. NysADMM also delivers impressive numerical re-
sults on other problem classes as well. Fig. 3 shows NysADMM outper-
forms standard solvers such as glmnet on a large Lasso problem instance
(m = 13, 000, n = 27, 648), while in Fig. 4 NysADMM runs almost 4×
faster than LIBSVM on a kernelized SVM instance with m = 60, 000. Thus
NysADMM has potential to provide a unified framework for a wide class of
statistical learning problems.

3.3 Smooth optimization

Consider the problem

minimize F (x) := f(x) +
µ

2
∥x∥2

where f : Rn → R is twice differentiable and µ > 0 is a regularization
parameter. Newton’s method minimizes this objective by solving a sequence
of quadratic optimization problems, or, equivalently, linear systems: given
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Figure 3: NysADMM outperforms other lasso solvers for moderate precision.

iterate x, Newton’s method computes the gradient g = ∇f(x) + µx, the
Hessian H = ∇2f(x)+µI, and the Newton direction p = H−1g, and updates
the iterate as x ← x − ηp where η ∈ R is a step-size that can be chosen
using line-search. The main computational burden of Newton’s method is in
solving the linear system Hp = g to compute the Newton direction, which
costs O(n3) using a direct solver.

Let d⋆ := supx∈S(x0) d
µ
eff(x), where S(x0) = {x : F (x) ≤ F (x0)} is the

sublevel set of F at x0, and dµeff(x) is the effective dimension with respect to
µ of the Hessian evaluated at x. Hence the effective dimension of the Hessian
along the optimization path is bounded by d⋆.

NysPCG-Newton. A simple improvement for large scale problems, which
we call NysPCG-Newton, solves for the Newton direction p using precondi-
tioned CG. Suppose we use Nyström PCG to compute the search direction.
Then if the preconditioner is constructed with a sketch size of s = O(d⋆),
the theory for the Nyström preconditioner in Section 3.1 guarantees we can
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Figure 4: NysADMM outperforms LIBSVM on a kernelized SVM problem with
CIFAR-10 rf.

solve the Newton system in a constant number of iterations. Moreover, un-
der appropriate conditions this method exhibits superlinear convergence; see
Fig. 5 for an example.

nyssNewton. A related quasi-Newton algorithm we call Nyström sketch-
and-solve Newton (nyssNewton) uses a sketch-and-solve idea to replace the
Hessian ∇2f(x) with a low rank approximation Ĥf in the computation of
the Newton direction. It computes the following update

xk+1 = xk − ηk(Ĥfk + µI)−1gk.
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Figure 5: Convergence of the squared Newton decrement on an ℓ2-logistic regres-
sion problem on the MNIST-rotated dataset with random features (m = 62, 000,
n = 8, 000). NysPCG-Newton converges superlinearly on this problem, while
nyssNewton converges linearly. Both methods were terminated when λ2

f ≤ 10−6.
NysPCG-Newton took 75.9 seconds to run while nyssNewton took 92.7 seconds

If at each iteration k we construct Ĥfk with sketch size O(d⋆/ζ) where ζ ∈
(0, 1) is a user selected parameter, then with high probability,

Ĥfk + µI ⪯ Hk ⪯ (1 + ζ)(Ĥfk + µI).

Given this relation, if the step-size ηk is chosen via line-search, then Theorem
5 in [35] guarantees that when f is self-concordant nyssNewton returns an
ϵ-suboptimal point in O(log(1/ϵ))-iterations. That is, nyssNewton converges
linearly to the optimum independent of the condition number (compared
to quadratic for Newton’s method or superlinearly for NysPCG-Newton).
This excellent convergence rate comes at a relatively cheap per-iteration cost:
constructing and factoring Ĥfk requires O(Tmvd⋆) computation, so the total
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complexity of the algorithm is O (Tmvd⋆ log(1/ϵ)).

3.4 Conic optimization

A related line of work uses randNLA to sketch the decision variable and
thereby reduce the memory required to run the algorithm. Examples include
[38, 37]. This approach makes sense for matrix optimization problems whose
solutions are expected to be low rank, and often results in a computational
speedup as an additional benefit. Unfortunately, the requirement that the
sketch be linear in the decision variable limits the class of algorithms that can
use this trick to primal-dual algorithms like the conditional gradient method
or [36].

In contrast, the ideas presented above in Section 3.2 sketch internal prob-
lem data (such as the constraint matrix or objective Hessian) in order to
reduce the time required to perform the inner algorithm iterations, and work
on a wide range of algoritmic templates, from conjugate gradient to Newton’s
method to ADMM.

A separate idea is to accelerate interior point methods using a random-
ized linear system solver to solve the internal Newton systems, as in e.g.[7].
We believe this idea, coupled with NysPCG-Newton or nyssNewton (see Sec-
tion 3.3, has substantial potential to improve IPMs.

4 Structured test matrices

Structured test matrices can reduce the time required to compute the sketch
of a matrix. Our discussion of this topic follows the excellent review in [22].
Most randNLA methods begin by computing a linear sketch AΩ, where Ω is a
random test matrix. The canonical choice takes Ω to be a Gaussian random
matrix. While Gaussian test matrices work well in practice and facilitate
analysis, they can be expensive to store (O(nk) for Gaussian Ω ∈ Rn×k )
and compute with (O(n2k) to compute AΩ for dense A ∈ Rn×n).

In contrast, structured test matrices are designed so that Ω is efficient to
store and to apply. Two classes of structured test matrices are particularly
useful: randomized trigonometric transforms (RTTs), which work best when
A is dense and unstructured, and sparse sign matrices (SSMs), which work
best when A is sparse.
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RTTs have the form

Ω =

√
n

k
ΠFR,

where Π ∈ Rn×n is signed permutation matrix, F is a discrete trignonometric
transform such as the discrete cosine transform or Hadamard transform, and
R ∈ Rn×k is a random restriction operator that selects k-coordinates uni-
formly at random. The cost of storing a RTT is O(n log(n)), while computing
AΩ costs only O(n2 log(k)): an exponential (in k) improvement compared to
a Gaussian test matrix! RTTs perform similarly to Gaussian test matrices
in practice, despite offering weaker theoretical guarantees. The major limi-
tation of RTTs is that they require explicit access to the columns of A, so
they are not appropriate when only a black-box matvec oracle for A is avail-
able or when A is distributed. Moreover, a high-quality implementation of
the relevant fast trigonometric transform is required to realize the full ben-
efit of RTTs: the default implementation e.g. in matlab yields complexity
O(n2 log(n)) rather than O(n2 log(k)).

SSMs take the form

Ω =

√
n

k
[ω1|ω2| · · · |ωk] ∈ Rn×k,

where each column ωj ∈ Rn has at most s non-zero entries. To construct
each ωj, we draw s random signs and place them in s coordinates selected
uniformly at random. We may store Ω with O(ns log(n)) numbers and can
compute AΩ in O(nsk) time. Variants of sparse embeddings differ in how
they trade off sparsity compared to the number of samples needed to en-
sure a high quality sketch. SSMs are natural choices for sparse data. Some
variants can compute AΩ in O(nnz(A)) time: much faster than the O(n2k)
time required by Gaussian test matrices! In contrast to RTTs, SSMs are
compatible with matvec oracle access to A. However, unless the matvec or-
acle has special structure, computing AΩ for an SSM may be be no cheaper
than using a Gaussian test matrix. The downsides of sparse sign matrices
are similar to RTTs: they require careful implementation to extract their full
computational benefits, particularly in the distributed setting.

For more discussion, see sections 9 and 10 in the survey [22]; or for pseu-
docode implementations, see the appendix of [31].
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5 Conclusion

We have seen how fundamental innovations in randomized numerical linear
algebra yield important primitives for speeding up optimization problems,
including linear system solvers, smooth optimization, structured composite
problems such as lasso, regularized logistic regression, and SVMs, and even
interior point methods. The methods presented here demonstrate potential
speedups of 10-100x over standard approaches. Much more work remains to
realize the promise of randNLA throughout optimization!
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