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Applications
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Big data, small laptop
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Distributed data
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Streaming data

X =F +--+
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Streaming multilinear algebra

turnstile model:

X = Hi+--+Hr

» tensor X presented as sum of smaller, simpler tensors H;
» must discard JH; after it is processed

» Goal: without storing X, approximate X after seeing all
updates (with guaranteed accuracy)

applications:

» scientific simulation

» sensor measurements

» memory- or communication-limited computing
» low memory optimization
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Linear sketch

X = Hi+- +Hr
L(X) = L(Hi)+ -+ L(HT)

select a linear map L independent of X
sketch £(X) is much smaller than input tensor X
use randomness so sketch works for an arbitrary input

vvyyy

essentially the only way to handle the turnstile model
[Li, Nguyen & Woodruff 2014]

examples:

> L(X) =X x, Q for some matrix Q
> L(X) = {X x5 Qs}neqn) for some matrices {25} nen
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Main idea

sketch suffices for (Tucker) approximation:

» compute (randomized) linear sketch of tensor
» recover low rank (Tucker) approximation from sketch

» (optional) improve approximation by revisiting data
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Big data, small laptop: sketch

. ~J

X=3H1+--

» (+) reduced communication
» (+) sketch of data fits on laptop
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Distributed data: sketch

£(x(M)
/ =L(H1+ - +Hr_1)+ L(H7)

(4) reduced communication

>
» (+) no PITI (personally identifiable toast information)
> (+) sketch of data fits on laptop
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Streaming data: sketch

{ .

)
I = . ; ,
LX) = L(Hy + -+ + He1) + L(FL)

> (+) even a toaster can form sketch

Madeleine Udell, Cornell. Streaming Tucker Approximation.

11



Outline

Tucker factorization
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Notation

tensor to compress:

> tensor X € RV with N modes

» sometimes assume l; = --- = Iy = | for simplicity
indexing:

» [N]=1,...,N

> /(—n):II X oo X a1 X Ipypq X Iy
tensor operations:

» mode n product: for A € R<*/
x Xn A c RllX"'Xln71><k><ln+1><...><[N

» unfolding X(" € R"*/-n stacks mode-n fibers of X as
columns of matrix
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Tucker factorization

rank r = (r1, ..., ry) Tucker factorization of X € Ri> /.
X = Gx1U;---xyUy=:[G;Ug,...,Up]

where

» G c RNV is the core matrix

» U, € R"*™ is the factor matrix for each mode n € [N]

(sometimes assume r; = --- = ry = r for simplicity)

Tucker is useful for compression: when N is small,

» Tucker stores O(rNI) numbers for rank r3 approximation

» CP stores O(rNI) numbers for rank r approximation

future work: one pass ST-HOSVD / tensor train?
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Computing Tucker: HOSVD

Algorithm Higher order singular value decomposition (HOSVD)
[De Lathauwer, De Moor & Vandewalle 2000, Tucker 1966]

Given: tensor X, rank r = (r1,...,rn)

1. Factors. Compute top r, left singular vectors U, of the
unfolding X(") for each n € [N].

2. Core. Contract these with X to form the core
G=2Xx; U] - xyUJ.

Return: Tucker approximation Xyosvp = [G; U1, ..., Un]
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Two pass HOSVD

HOSVD can be computed in two passes over the tensor:

» Factors. use randomized linear algebra
» need to find span of fibers of X along nth mode:

range(U,) ~ range(X(")

> if rank(2) > rank(X("), then whp for random ,
range(X(") = range(X("Q)
algorithm:
1. compute sketch £(X) = {X(”)Q,,},,E[N]
2. use QR on sketch to approximate range(X(")
» Core. Computation is linear in X:

G=Xx U{ - xyUf.

Source: [Halko, Martinsson & Tropp 2011, Zhou, Cichocki & Xie 2014, Battaglino,
Ballard & Kolda 2019]
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Computing Tucker: HOOI

Algorithm Higher order orthogonal iteration (HOOI)
[De Lathauwer et al. 2000]

Given: tensor X, rank r = (ry,...,ry)
Initialize: compute X =~ [G; U1, ..., Up] using HOSVD
Repeat:

1. Factors. For n € [N],

U, « argumin I[G; Us,...,Un] — X|F,

2. Core.
G« argénin I[S; U1, ..., Un] — X|7.

Return: Tucker approximation Xpoor = [G; U1, ..., Un]

> core update has closed form G «— X x1 U] -+ xy U},
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Previous work: one pass algorithm via HOOI

[Malik & Becker 2018]:
» (+4) sketch design matrix to reduce size of HOOI
subproblems
» (+) exploit Tucker structure of design matrix
» (-) expensive slow reconstruction (via iterative optimization)
| 4

(-) no error guarantees for one pass algorithm
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Sketching
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Background: randomized sketches

idea: random matrix Q is not orthogonal to range of interest

(whp)
range(X(") = range(X("Q)

a dimension reduction map (DRM) (approximately) preserves
range of its argument

examples of DRMS: multiplication by random matrix €2 that is

» gaussian
» sparse [Achlioptas 2003, Li, Hastie & Church 2006]
» SSFRT [Woolfe, Liberty, Rokhlin & Tygert 2008]

» tensor random projection (TRP) [Sun, Guo, Tropp & Udell
2018]

> ...
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The sketch

approximate factor matrices and core:

» Factor sketch (k). For each n € [N],
fix random DRM Q,, € R/ -n*k" and compute the sketch

Vv, =XMQ, e Rk,

» Core sketch (s). For each n e [N],
fix random DRM @®,, € R"*". Compute the sketch

H=Xx1®] - xyby RN,

» Rule of thumb. Pick k as big as you can afford, pick s = 2k.
> define (3, V1,...,Vy) = SKETCH (X; {®p, 1} pepy))
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Low memory DRMs

factor sketch DRMs are big!

» l_n) X kn for each n € [N]

how to store?

» don't store DRMS; instead, use pseudorandom number
generator to generate (parts of) DRMs as needed.
» use structured DRM:

» TRP generates DRM as Khatri-Rao product of simpler,
smaller DRMs
» behaves approximately like a Gaussian sketch

Source: [Sun et al. 2018, Rudelson 2012]
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Reconstruction
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Recovery: factor matrices

» compute QR factorization of each factor sketch V,:

Vn = Qan

where Q,, is orthonormal and R,, is triangular
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Two pass algorithm

Algorithm Two Pass Sketch and Low Rank Recovery

Given: tensor X, rank r = (r1,...,ry), DRMs {®,, Q,} cin
» Sketch. (f}C, Vi,..., VN) = SKETCH (f)C, {(Dn, Qn}ne[N])
» Recover factor matrices. For n € [N],

(Qn; N) % QR(VH)
» Recover core.
W—Xx1Q1--- xnyQpn

Return: Tucker approximation X = [W;Q1,...,Qn]

accesses X twice: 1) to sketch 2) to recover core
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Intuition: one pass core recovery

» we want to know W:

compression of X using factor range approximations Q,,
» we observe H:

compression of X using random projections ®,,

how to approximate W?
X ~ Xx1Qi1Q; x---xnyQuQy
= (X x1Q] xn-x Q) x1 Qi Xy Qu

= Wx1Q1--- xnyQpn
WX1¢IQ1X-~'XN¢—/\F/QN

Q

9C><1<D1T---><N¢'I,

H

we can solve for W: s > k, so each ® Q,, has a left inverse
(whp):
W~ 3 (@] Q1) - xy (04,Qw)]
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One pass algorithm

Algorithm One Pass Sketch and Low Rank Recovery

Given: tensor X, rank r = (r1,...,ry), DRMs {®,, Q,} iy
» Sketch. (J‘C, Vi, ..., VN) = SKETCH (x; {d),,, Qn}ne[N])

» Recover factor matrices. For n € [N],
(Qn; ~) < QR(Vy)
» Recover core.
W — H oxy (©]Qu)f x -+ xn (PyQn)T

Return: Tucker approximation X = IW;Q1,...,Qn]

accesses X only once, to sketch

Source: [Sun, Guo, Luo, Tropp & Udell 2019]
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Fixed rank approximation

to truncate reconstruction to rank r, truncate core:

Lemma
For a tensor W € RK1XXkv ' orthogonal matrices Q,, € RKn*",

W x1Q1--- Xy Qn]r = [W]r x1 Q1+ xn Qs

where [-] denotes the best rank r Tucker approximation.

— compute fixed rank approximation using, e.g., HOOI on
(small) core approximation 'W
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Tail energy

For each unfolding X(", define its pth tail energy as

min(/n,—n))

(2= Y oR(X™),

k>p

where o, (X(M) is the kth largest singular value of X(").
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Guarantees (1)

Theorem (Recommended parameters [Sun et al. 2019])

Sketch X with Gaussian DRMs of parameters k, s = 2k + 1.

Form a rank r Tucker approximation X using the one pass
algorithm. Then

N
Ex - K| <4 (m")

n=1

If X is truly rank r, we obtain the true Tucker factorization!
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Guarantees (Il)

Theorem (Detailed guarantee [Sun et al. 2019])

Sketch X with Gaussian DRMs of parameters k, s. Form a rank
r Tucker approximation X using the one pass algorithm. Then

N
X2 < . Pn (n)y2
R < 0 a),_min 3 (14 g ) ef)

where A = max"N_, k,/(sp — kn — 1)
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Numerics
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Different DRMs perform similarly

Vary k, I = 600 (Low Rank v = 0.01) Vary k, I = 600 (Sparse Low Rank v = 0.01) Vary k, I = 600 (Polynomial Decay)

1 10

107!

1072

-3
00 01 02 03 04 002 004 006 008 010 0.00 0.05 0.10 0.15
Compression Factor: 8y = k/I Compression Factor: d; = k/I Compression Factor: 8; = k/1I

Vary k, I = 600 (Low Rank v = 0.1) N Vary k, I = 600 (Low Rank v = 1)
10
—#*— SSRFT

—&— Gaussian TRP
—+— Sparse TRP

0.0 0.1 0.2 0. 0.4 0.0 0.1 0.2 0.3 0.4
Compression Factor: ; Compression Factor: 6, = k/I

Comments: Synthetic data, / = 600 and r = (5,5,5). k/l = .4 — 20X
compression.

Madeleine Udell, Cornell. Streaming Tucker Approximation. 33



Sensible reconstruction at practical compression level

Vary Memory Size, I = 300 (Low Rank = 001)  Vary Memory Size, I = 300 (Sparse Low Rank v = 0.01) Vary k, I = 300 (Polynomial Decay)
100 . 100 {E o

£w £ o

z g

10° 100 107 10° 109 107 10° 100 107
Memory Use Memory Use Memory Use
Vary Memory Size, I = 300 (Low Rank v = 0.1) Vary Memory Size, I = 300 (Low Rank v = 1)
o o

—%— Two Pass
—6— One Pass
—= TS

10° 10° 107 10° 10° 107
Memory Use Memory Use

Comments: Error of fixed-rank approximation relative to HOOI for r = 10, / = 300
using TRP. Total memory use is ((2k + 1)V + kIN) and (Kr?N + K % r2N=2),
Low-rank data uses v = 0.01,0.1, 1.
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Combustion simulation

HOOI

0 20 40 60 80 100 120 0 20 40 60 80 100 120
X X

One Pass

Two Pass

> >

100 100

120 120

0 20 40 60 80 100 120
X X
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0 20 40 60 80 100 120

Comments:

1408 x 128 x 128
simulated
combustion data
from [Lapointe,
Savard & Blanquart
2015].
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Video scene classification

Linear Sketch (k = 20)

Two-Pass Tucker (k = 20, r = 10)

One-Pass Tucker (k = 20, r = 10)

One-Pass Tucker (k = 300, r = 10)

0 250 00 0 1000 1250 1500 1750 2000
Frame

Comments: Video data 2200 x 1080 x 1980. Classify scenes using k-means on: 1)
linear sketch along the time dimension k = 20 (Row 1); 2) The Tucker factor along
the time dimension, computed via our two pass (Row 2) and one pass (Row 3)
sketching algorithm (r, k,s) = (10,20, 41). 3) The Tucker factor along the time
dimension, computed via our one pass (Row 4) sketching algorithm
(r, k,s) = (10,300, 601).
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Summary

Streaming Tucker approximation compresses tensor without
storing it.
useful for:

» streaming data
» distributed data

» low memory compute

key ideas:

» form linear sketch of tensor and recover from sketch

» random projection of tensor preserves dominant information
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Future work + references

let's talk!

» bigger tensors to compress?
> streaming compression for (your research)?

references:

» Sun, Y., Guo, Y., Tropp, J. A., and Udell, M. (2018).
Tensor random projection for low memory dimension
reduction. In NeurlPS Workshop on Relational
Representation Learning.

» Sun, Y., Guo, Y., Luo, C,, Tropp, J. A., and Udell, M.
(2019). Low rank tucker approximation of a tensor from
streaming data. In preparation.

» Tropp, J. A., Yurtsever, A., Udell, M., and Cevher, V.
(2019). Streaming low-rank matrix approximation with an
application to scientific simulation. Submitted to SISC.
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