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What is an optimization problem?

the optimization contract:

I you give me a function, and I’ll find you its minimum

I why optimize?
I fit a model to data (e.g., understand customer preferences)
I make predictions (e.g., image recognition)
I maximize revenue (e.g., airline pricing)
I maximize investment returns (e.g., quant finance)
I design a control system (e.g., autopilot)
I . . .
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How to find the minimum

how to find the minimum of f ?

I set derivative to zero . . . if d
dx f has an analytical formula

I gradient descent / backprop . . . if f is differentiable
I other fancy optimization methods . . . where they apply
I point . . . if I can plot f in 2D or 3D

key question: how will you give me the function?
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Example: what is d
dx

?

what is
d

dx
(x2)|x=1

?

it’s bad notation!

x means three different things above:

I x2 is the square function

I d
dx is an operator that takes a function and
returns its derivative (another function)

I |x=1 evaluates the function at the argument 1
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How to give a function

I as a plot
I as an oracle

I as a type
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How to give a function

demo:

https://github.com/madeleineudell/JuliaCon17/

types-for-opt.ipynb
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How to give a function

moral:

I a function is a type

I on which various operations are defined

I which can be used to solve optimization problems

advantages:

I easy to understand

I easy to reuse code

I easy to extend by adding new methods
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What is an optimization problem?

optimization problem: nonlinear form

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m1

hi (x) = 0, i = 1, . . . ,m2

x ∈ C

I objective f0
I inequality constraints fi
I equality constraints hi
I domain C

advantages:

I easy to formulate
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Structure determines solvers

How should we solve this problem?

I LP solver?

I conic solver?

I nonlinear derivative based solver?

I operator splitting?

What do we know about this problem’s structure?
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Structure

useful kinds of structure:

I is the problem convex?
I is the objective convex?
I is the domain convex?
I are the inequality constraints convex?
I are the equality constraints affine?

I is the problem representable in some standard form?
I convex: LP, QP, SOCP, SDP, . . .
I nonconvex: MILP, MISOCP . . .

I is the problem smooth?

I . . .
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Optimization in Julia

model specifies structure; solvers exploit structure

I model (e.g., JuMP or Convex)

I glue (MathProgBase)

I solvers (e.g., GLKP, Gurobi, Mosek, ECOS, . . . )

JuliaOpt curates all these solvers: http://www.juliaopt.org/
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Two major approaches

I JuMP: user specifies structure

I Convex: solver detects structure
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JuMP vs Convex

JuMP

I lower level interface

I access to advanced solver features

I automatic differentiation

I support for conic and nonlinear programming

Convex

I automatic structure detection

I automatic convexity proof

I can only solve convex problems
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Convex in action

demo:

https://github.com/madeleineudell/JuliaCon17/

Convex-intro.ipynb
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Convex: behind the scenes

Convex is a framework for detecting and exploiting structure in
optimization problems.

what properties of functions does Convex use?

I evaluate

I verify convexity

I compute conic form

Induction detects; recursion exploits. Let’s see how.
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Expressions: behind the scenes

(using prefix notation)

I x + y =⇒ (+, (x , y))

I x [1] + x [2] =⇒ (+, ((index, (x , 1)), (index, (x , 2)))

I log(x + 7y) =⇒ (log, (+, (x , (∗, (7, y)))))

Every composite expression has

I a head (operation) and

I a (possibly empty) list of children (arguments).
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Evaluate expressions recursively

to evaluate expression:

I apply top level function to value of argument

I e.g., if top level function of expression is abs,

function evaluate(e:: AbsAtom)

return abs.( evaluate(e.children [1]))

end
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Abstract expression tree for an optimization problem
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Structure by induction

We use induction (and recursion) to move from properties of

I variables,

I constants, and

I functions

to properties of

I expressions,

I constraints, and

I problems.

19 / 35



Detecting structure: two case studies

I detect convexity

I transform to conic form
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Convexity

f is convex if for all θ ∈ [0, 1]

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)

equivalently,

I f has nonnegative (upward) curvature
I the graph of f never lies above its chords
I f ′′ ≥ 0 (if f is differentiable)
I epigraph {(x , t) : f (x) ≤ t} is a convex set

I implies sublevel sets {x : f (x) ≤ α} are convex sets
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Disciplined convex programming

Disciplined convex programming (DCP) [Grant, Boyd & Ye,

2006] provides a set of simple inductive rules to verify convexity:

I f ◦ g(x) is convex in x if
I f is convex nondecreasing and g is convex
I f is convex nonincreasing and g is concave

cf., the chain rule:

(f ◦ g)′′(x) = f ′′(g(x))(g(x))2 + f ′(g(x))g ′′(x)

I f ◦ g(x) is concave in x if −f ◦ g(x) is convex

I f ◦ g(x) is affine if it is both convex and concave

A function is DCP if its convexity (or concavity) can be inferred
from these composition rules.

(N.B. a function that is not DCP may still be convex)
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DCP: base case

A function vexity is defined on each data type (variable,
constant, functions, constraints, problems) to return its vexity:
constant, affine, convex, concave, or not DCP.

base case:

I Constant. Constants are constant.

I Variable. Variables are affine.
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DCP: inductive rule

inductive rules:

I Expressions. Functions each have known curvature
(convex, concave, or affine) and monotonicity (increasing,
decreasing, or none) in each of their arguments.
Expressions check their convexity by examining convexity of
arguments and following composition rules.

I Constraints. Constraints check their convexity by
determining their left and right hand sides define convex
sets.

I Problems. Problems check their convexity by verifying the
objective and constraints are all convex.
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DCP: inductive rule

Composition rules are implemented as arithmetic on vexities:

convex function︸ ︷︷ ︸
ConvexVexity+

nondecreasing︸ ︷︷ ︸
NonDecreasing

in︸︷︷︸
∗

convex expression︸ ︷︷ ︸
ConvexVexity

is︸︷︷︸
==

convex︸ ︷︷ ︸
ConvexVexity
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DCP in action

demo:

https://github.com/madeleineudell/JuliaCon17/

Convex-intro.ipynb
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Conic form

Convex transforms optimization problems to conic form:

minimize cT x
subject to b − Ax ∈ K,

where K is a convex cone:

x ∈ K ⇐⇒ rx ∈ K for any r > 0.

examples:

I zero cone K = {0}
I positive orthant K = {x : xi >= 0, i = 1, . . . , n}
I second order cone K = {(x , t) : ‖x‖2 ≤ t}
I positive semidefinite (PSD) cone
K = {X : X = XT , vTXv ≥ 0, ∀v ∈ Rn}

I products of cones
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Why conic form?

minimize cT x
subject to b − Ax ∈ K,

advantages:

I efficiently grok the structure of problem

I fast solvers

28 / 35



Conic form for expressions

epigraph conic form for expressions:

f (x) =
min C [x , t]
with variable t
subject to A[x , t] ∈ K

(note: “objective” can be vector valued)

I function can be represented by tuple

(C ,A,K)
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Conic form: base case

A function conic_form is defined on each data type to return
the tuple (C ,A,K).

base case:

I Constant.

3 =
min 3
with variable ∅
subject to ∅

I Variable.

x =
min x
with variable ∅
subject to ∅
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Conic form: inductive rule

inductive rule: if

f (y) =
min C f [y , t f ]
with variable t f

subject to Af [y , t f ] ∈ Kf ,

g(x) =
min C g [x , tg ]
with variable tg

subject to Ag [x , tg ] ∈ Kg

then

f (g(x)) =

min C f [C g I ][x , tg , t f ]
with variable tg , t f

subject to Af [C g I ][x , tg , t f ] ∈ Kf

Ag [x , tg ] ∈ Kg

proof: f is convex and increasing in its argument and g is
convex, so partial minimizations over t f and tg commute.
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Conic form: inductive rule

in math:

f (g(x)) =

min C f [C g I ][x , tg , t f ]
with variable tg , t f

subject to Af [C g I ][x , tg , t f ] ∈ Kf

Ag [x , tg ] ∈ Kg

in code:
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Coda: compilers

is Convex reproducing the compiler?

I yes: and we’re not ashamed
I type system + multiple dispatch makes it easy
I so you can simulate a compiler
I without understanding Julia’s own compiler

other optimization software goes down the rabbit hole:

I Automatic Differentiation demo:

https://github.com/madeleineudell/JuliaCon17/

types-for-opt.ipynb
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The Type of Language for Mathematical

Programming

Julia is the right language for mathematical programming:

I a function is a type

I on which various operations are defined

I which can be used to solve optimization problems

so use Julia for your mathematical programming:

I Julia has a tremendous ecosystem of optimization software

I use it!
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more information (and code!)

I JuliaOpt: http://www.juliaopt.org/

I Convex: http://www.github.com/JuliaOpt/Convex.jl

I LowRankModels: http://www.github.com/

madeleineudell/LowRankModels.jl

more on Convex and LowRankModels at JuliaCon:

I 3:52pm today: Mihir Paradkar on GraphGLRMs

I (yesterday) 5:09pm: Ayush Pandey on complex numbers in
Convex
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Data table

age gender state diabetes education · · ·
22 F CT ? college · · ·
57 ? NY severe high school · · ·
? M CA moderate masters · · ·

41 F NV none ? · · ·
...

...
...

...
...

I detect demographic groups?

I find typical responses?

I identify related features?

I impute missing entries?
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LowRankModels: behind the scenes

LowRankModels is a framework for specifying and solving
matrix factorization problems

LowRankModels handles problems with a fixed, but complex,
structure: matrix factorization problems with missing data

what properties of functions does LowRankModels use?

I evaluate

I gradient

I prox
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Impute heterogeneous data

mixed data types
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