The Type of Language for Mathematical Programming

Madeleine Udell
Operations Research and Information Engineering Cornell University

JuliaCon, June 232017

What is an optimization problem?

the optimization contract:

- you give me a function, and l'll find you its minimum

What is an optimization problem?

the optimization contract:

- you give me a function, and I'll find you its minimum
- why optimize?
- fit a model to data (e.g., understand customer preferences)
- make predictions (e.g., image recognition)
- maximize revenue (e.g., airline pricing)
- maximize investment returns (e.g., quant finance)
- design a control system (e.g., autopilot)
- ...

How to find the minimum

how to find the minimum of f ?

How to find the minimum

how to find the minimum of f ?

How to find the minimum

how to find the minimum of f ?

- set derivative to zero

How to find the minimum

how to find the minimum of f ?

- set derivative to zero ... if $\frac{d}{d x} f$ has an analytical formula

How to find the minimum

how to find the minimum of f ?

- set derivative to zero ... if $\frac{d}{d x} f$ has an analytical formula
- gradient descent / backprop

How to find the minimum

how to find the minimum of f ?

- set derivative to zero ... if $\frac{d}{d x} f$ has an analytical formula
- gradient descent / backprop ... if f is differentiable

How to find the minimum

how to find the minimum of f ?

- set derivative to zero ... if $\frac{d}{d x} f$ has an analytical formula
- gradient descent / backprop ... if f is differentiable
- other fancy optimization methods

How to find the minimum

how to find the minimum of f ?

- set derivative to zero ... if $\frac{d}{d x} f$ has an analytical formula
- gradient descent / backprop ... if f is differentiable
- other fancy optimization methods ... where they apply

How to find the minimum

how to find the minimum of f ?

- set derivative to zero ... if $\frac{d}{d x} f$ has an analytical formula
- gradient descent / backprop ... if f is differentiable
- other fancy optimization methods ... where they apply
- point

How to find the minimum

how to find the minimum of f ?

- set derivative to zero ... if $\frac{d}{d x} f$ has an analytical formula
- gradient descent / backprop ... if f is differentiable
- other fancy optimization methods ... where they apply
- point ...if I can plot f in 2D or 3D

How to find the minimum

how to find the minimum of f ?

- set derivative to zero ... if $\frac{d}{d x} f$ has an analytical formula
- gradient descent / backprop ... if f is differentiable
- other fancy optimization methods ... where they apply
- point ...if I can plot f in 2D or 3D
key question: how will you give me the function?

Example: what is $\frac{d}{d x}$?

what is

$$
\left.\frac{d}{d x}\left(x^{2}\right)\right|_{x=1}
$$

?

Example: what is $\frac{d}{d x}$?

what is

$$
\left.\frac{d}{d x}\left(x^{2}\right)\right|_{x=1}
$$

? it's bad notation!
x means three different things above:

- x^{2} is the square function
- $\frac{d}{d x}$ is an operator that takes a function and returns its derivative (another function)
- $\left.\right|_{x=1}$ evaluates the function at the argument 1

How to give a function

- as a plot
- as an oracle
$f(x)=x^{\wedge} 2$
$f(1)$
$f(2)$

$f(2)$

- as a type

type Square end	
$\mathrm{f}=$ Square()	Square()
evaluate(f: :S	(are, x)
evaluate(f, 1)	1
evaluate(f,2)	4

How to give a function

demo:

https://github.com/madeleineudell/JuliaCon17/
types-for-opt.ipynb

How to give a function

moral:

- a function is a type
- on which various operations are defined
- which can be used to solve optimization problems
advantages:
- easy to understand
- easy to reuse code
- easy to extend by adding new methods

What is an optimization problem?

optimization problem: nonlinear form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m_{1} \\
& h_{i}(x)=0, \quad i=1, \ldots, m_{2} \\
& x \in \mathcal{C}
\end{array}
$$

- objective f_{0}
- inequality constraints f_{i}
- equality constraints h_{i}
- domain \mathcal{C}
advantages:
- easy to formulate

Structure determines solvers

How should we solve this problem?

- LP solver?
- conic solver?
- nonlinear derivative based solver?
- operator splitting?

Structure determines solvers

How should we solve this problem?

- LP solver?
- conic solver?
- nonlinear derivative based solver?
- operator splitting?

What do we know about this problem's structure?

Structure

useful kinds of structure:

- is the problem convex?
- is the objective convex?
- is the domain convex?
- are the inequality constraints convex?
- are the equality constraints affine?
- is the problem representable in some standard form?
- convex: LP, QP, SOCP, SDP, ...
- nonconvex: MILP, MISOCP ...
- is the problem smooth?
- . . .

Optimization in Julia

model specifies structure; solvers exploit structure

- model (e.g., JuMP or Convex)
- glue (MathProgBase)
- solvers (e.g., GLKP, Gurobi, Mosek, ECOS, ...)

JuliaOpt curates all these solvers: http://www.juliaopt.org/

Two major approaches

- JuMP: user specifies structure
- Convex: solver detects structure

JuMP vs Convex

JuMP

- lower level interface
- access to advanced solver features
- automatic differentiation
- support for conic and nonlinear programming

Convex

- automatic structure detection
- automatic convexity proof
- can only solve convex problems

Convex in action

demo:

> https://github.com/madeleineudell/JuliaCon17/ Convex-intro.ipynb

Convex: behind the scenes

Convex is a framework for detecting and exploiting structure in optimization problems.
what properties of functions does Convex use?

- evaluate
- verify convexity
- compute conic form

Induction detects; recursion exploits. Let's see how.

Expressions: behind the scenes

(using prefix notation)
$-x+y \Longrightarrow(+,(x, y))$

- $x[1]+x[2] \Longrightarrow(+,((\operatorname{index},(x, 1)),($ index,$(x, 2)))$
$-\log (x+7 y) \Longrightarrow(\log ,(+,(x,(*,(7, y)))))$

Every composite expression has

- a head (operation) and
- a (possibly empty) list of children (arguments).

Evaluate expressions recursively

to evaluate expression:

- apply top level function to value of argument
- e.g., if top level function of expression is abs,

```
function evaluate(e::AbsAtom)
    return abs.(evaluate(e.children[1]))
end
```


Abstract expression tree for an optimization problem

Structure by induction

We use induction (and recursion) to move from properties of

- variables,
- constants, and
- functions
to properties of
- expressions,
- constraints, and
- problems.

Detecting structure: two case studies

- detect convexity
- transform to conic form

Convexity

f is convex if for all $\theta \in[0,1]$

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

equivalently,

- f has nonnegative (upward) curvature
- the graph of f never lies above its chords

Disciplined convex programming

Disciplined convex programming (DCP) [Grant, Boyd \& Ye, 2006] provides a set of simple inductive rules to verify convexity:

- $f \circ g(x)$ is convex in x if
- f is convex nondecreasing and g is convex
- f is convex nonincreasing and g is concave
$c f$., the chain rule:

$$
(f \circ g)^{\prime \prime}(x)=f^{\prime \prime}(g(x))(g(x))^{2}+f^{\prime}(g(x)) g^{\prime \prime}(x)
$$

Disciplined convex programming

Disciplined convex programming (DCP) [Grant, Boyd \& Ye, 2006] provides a set of simple inductive rules to verify convexity:

- $f \circ g(x)$ is convex in x if
- f is convex nondecreasing and g is convex
- f is convex nonincreasing and g is concave
cf., the chain rule:

$$
(f \circ g)^{\prime \prime}(x)=f^{\prime \prime}(g(x))(g(x))^{2}+f^{\prime}(g(x)) g^{\prime \prime}(x)
$$

- $f \circ g(x)$ is concave in x if $-f \circ g(x)$ is convex
- $f \circ g(x)$ is affine if it is both convex and concave

A function is DCP if its convexity (or concavity) can be inferred from these composition rules.

Disciplined convex programming

Disciplined convex programming (DCP) [Grant, Boyd \& Ye, 2006] provides a set of simple inductive rules to verify convexity:

- $f \circ g(x)$ is convex in x if
- f is convex nondecreasing and g is convex
- f is convex nonincreasing and g is concave
cf., the chain rule:

$$
(f \circ g)^{\prime \prime}(x)=f^{\prime \prime}(g(x))(g(x))^{2}+f^{\prime}(g(x)) g^{\prime \prime}(x)
$$

- $f \circ g(x)$ is concave in x if $-f \circ g(x)$ is convex
- $f \circ g(x)$ is affine if it is both convex and concave

A function is DCP if its convexity (or concavity) can be inferred from these composition rules.
(N.B. a function that is not DCP may still be convex)

DCP: base case

A function vexity is defined on each data type (variable, constant, functions, constraints, problems) to return its vexity: constant, affine, convex, concave, or not DCP.
base case:

- Constant. Constants are constant.
- Variable. Variables are affine.

DCP: inductive rule

inductive rules:

- Expressions. Functions each have known curvature (convex, concave, or affine) and monotonicity (increasing, decreasing, or none) in each of their arguments. Expressions check their convexity by examining convexity of arguments and following composition rules.
- Constraints. Constraints check their convexity by determining their left and right hand sides define convex sets.
- Problems. Problems check their convexity by verifying the objective and constraints are all convex.

DCP: inductive rule

Composition rules are implemented as arithmetic on vexities:

function vexity(x::AbstractExpr) monotonicities = monotonicity(x)
vex = curvature(x)
for $i=1$: length(x.children)
vex += monotonicities[i] * vexity(x.children[i])
end
return vex
end

DCP in action

demo:

> https://github.com/madeleineudell/JuliaCon17/ Convex-intro.ipynb

Conic form

Convex transforms optimization problems to conic form:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & b-A x \in \mathcal{K}
\end{array}
$$

where \mathcal{K} is a convex cone:

$$
x \in \mathcal{K} \Longleftrightarrow r x \in \mathcal{K} \text { for any } r>0
$$

examples:

- zero cone $\mathcal{K}=\{0\}$
- positive orthant $\mathcal{K}=\left\{x: x_{i}>=0, i=1, \ldots, n\right\}$
- second order cone $\mathcal{K}=\left\{(x, t):\|x\|_{2} \leq t\right\}$
- positive semidefinite (PSD) cone $\mathcal{K}=\left\{X: X=X^{T}, v^{T} X v \geq 0, \forall v \in \mathbf{R}^{n}\right\}$
- products of cones

Why conic form?

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & b-A x \in \mathcal{K},
\end{array}
$$

advantages:

- efficiently grok the structure of problem
- fast solvers

Conic form for expressions

epigraph conic form for expressions:

$$
f(x)=\begin{array}{ll}
\min & C[x, t] \\
\text { with variable } & t \\
\text { subject to } & A[x, t] \in \mathcal{K}
\end{array}
$$

(note: "objective" can be vector valued)

- function can be represented by tuple

$$
(C, A, \mathcal{K})
$$

Conic form: base case

A function conic_form is defined on each data type to return the tuple (C, A, \mathcal{K}).

base case:

- Constant.

$$
3=\begin{array}{ll}
\min & 3 \\
\text { with variable } & \emptyset \\
\text { subject to } & \emptyset
\end{array}
$$

- Variable.

$$
x=\begin{array}{ll}
\min & x \\
\text { with variable } & \emptyset \\
\text { subject to } & \emptyset
\end{array}
$$

Conic form: inductive rule

inductive rule: if

$$
\begin{array}{lll}
& \min & C^{f}\left[y, t^{f}\right] \\
f(y)= & \text { with variable } & t^{f} \\
& \text { subject to } & A^{f}\left[y, t^{f}\right] \in \mathcal{K}^{f}, \\
& \text { min } & C^{g}\left[x, t^{g}\right] \\
g(x)= & \text { with variable } & t^{g} \\
& \text { subject to } & A^{g}\left[x, t^{g}\right] \in \mathcal{K}^{g}
\end{array}
$$

then

$$
f(g(x))=\begin{array}{ll}
\min & C^{f}\left[C^{g} I\right]\left[x, t^{g}, t^{f}\right] \\
\text { with variable } & t^{g}, t^{f} \\
\text { subject to } & A^{f}\left[C^{g} I\right]\left[x, t^{g}, t^{f}\right] \in \mathcal{K}^{f} \\
& A^{g}\left[x, t^{g}\right] \in \mathcal{K}^{g}
\end{array}
$$

Conic form: inductive rule

inductive rule: if

$$
\begin{array}{rll}
& \min & C^{f}\left[y, t^{f}\right] \\
f(y)= & \text { with variable } & t^{f} \\
& \text { subject to } & A^{f}\left[y, t^{f}\right] \in \mathcal{K}^{f}, \\
& \text { min } & C^{g}\left[x, t^{g}\right] \\
g(x)= & \text { with variable } & t^{g} \\
& \text { subject to } & A^{g}\left[x, t^{g}\right] \in \mathcal{K}^{g}
\end{array}
$$

then

$$
f(g(x))=\begin{array}{ll}
\min & C^{f}\left[C^{g} l\right]\left[x, t^{g}, t^{f}\right] \\
\text { with variable } & t^{g}, t^{f} \\
\text { subject to } & A^{f}\left[C^{g} l\right]\left[x, t^{g}, t^{f}\right] \in \mathcal{K}^{f} \\
& A^{g}\left[x, t^{g}\right] \in \mathcal{K}^{g}
\end{array}
$$

proof: f is convex and increasing in its argument and g is convex, so partial minimizations over t^{f} and t^{g} commute.

Conic form: inductive rule

in math:

$$
f(g(x))=\begin{array}{ll}
\min & C^{f}\left[C^{g} I\right]\left[x, t^{g}, t^{f}\right] \\
\text { with variable } & t^{g}, t^{f} \\
\text { subject to } & A^{f}\left[C^{g} I\right]\left[x, t^{g}, t^{f}\right] \\
& A^{g}\left[x, t^{g}\right] \in \mathcal{K}^{g}
\end{array}
$$

in code:

```
function conic_form(f:::AbstractExpr)
    (Cg,Ag,Kg) = conic_form(f.children)
    (Cf,Af,Kf) = conic_form(f.head)
    return (Cf*[Cg I], [Af*[Cg I], [Ag 0]], [Kf, Kf])
end
```


Coda: compilers

is Convex reproducing the compiler?

- yes: and we're not ashamed
- type system + multiple dispatch makes it easy
- so you can simulate a compiler
- without understanding Julia's own compiler
other optimization software goes down the rabbit hole:
- Automatic Differentiation demo:

$$
\begin{gathered}
\text { https://github.com/madeleineudell/JuliaCon17/ } \\
\text { types-for-opt.ipynb }
\end{gathered}
$$

The Type of Language for Mathematical Programming

Julia is the right language for mathematical programming:

- a function is a type
- on which various operations are defined
- which can be used to solve optimization problems
so use Julia for your mathematical programming:
- Julia has a tremendous ecosystem of optimization software
- use it!
more information (and code!)
- JuliaOpt: http://www.juliaopt.org/
- Convex: http://www.github.com/JuliaOpt/Convex.jl
- LowRankModels: http://www.github.com/ madeleineudell/LowRankModels.jl
more on Convex and LowRankModels at JuliaCon:
- 3:52pm today: Mihir Paradkar on GraphGLRMs
- (yesterday) 5:09pm: Ayush Pandey on complex numbers in Convex

Data table

age	gender	state	diabetes	education	\cdots
22	F	CT	$?$	college	\cdots
57	$?$	NY	severe	high school	\cdots
$?$	M	CA	moderate	masters	\cdots
41	F	NV	none	$?$	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	

- detect demographic groups?
- find typical responses?
- identify related features?
- impute missing entries?

LowRankModels: behind the scenes

LowRankModels is a framework for specifying and solving matrix factorization problems
LowRankModels handles problems with a fixed, but complex, structure: matrix factorization problems with missing data what properties of functions does LowRankModels use?

- evaluate
- gradient
- prox

Impute heterogeneous data

Impute heterogeneous data

qpca rank 10 recovery

Impute heterogeneous data

qpca rank 10 recovery

