CONTROLBURN: Feature Selection by Sparse Forests

Brian Liu, Miaolan Xie, and Madeleine Udell

Ensemble Learning

- Given training data $X \in \mathbb{R}^{m \times p}$ and response $y \in \mathbb{R}^m$
- Fit a collection of base learners $T_1(x), T_2(x), \ldots, T_n(x)$ on the training data
- Combine the predictions of the base learners
- **Example:** Regression averaging: $\hat{Y} = \frac{1}{n} \sum_{j=1}^{n} T_j(x)$

Tree Ensembles

Ensemble Post-Processing

Reduces ensemble size to:

- Prevent overfitting
- Improve interpretability
- ▶ Friedman and Popescu (2003): ℓ₁ post processing
- Minimize w.r.t. α

$$\sum_{i=1}^{m} \mathcal{L}(\mathbf{y}_i, \alpha_0 + \sum_{j=1}^{n} \alpha_j T_j(\mathbf{x}_i)) + \lambda \sum_{j=1}^{n} \|\alpha_j\|_1 \qquad (1)$$

Loss function $L(y, \hat{y})$:

- Square loss (Regression): $||y \hat{y}||_2^2$
- Hinge loss (Classification): $[1 y\hat{y}]_+$

L1 regularization

 Induces sparsity, coefficients can shrink to zero.

 Example: LASSO regression selects single feature from a group of features

Motivating Example

Correlation bias: Interpretability ↓

If we fit logistic LASSO regression on the Titanic dataset w/ correlated features what is most likely to occur?

- A) None of the correlated features will be included in the model.
- B) All of the correlated features will be included in the model, with similar coefficients.
- C) Only one of the correlated features will be included in the model.

Feature Sparse Ensembles

- ► **Goal**: Select a subset of learners such that the resulting ensemble does not use all the features
- Important for tree ensembles since they distribute feature importance evenly amongst correlated features

Feature Sparse LASSO for Tree Ensembles

Given: feature matrix $X \in \mathbb{R}^{m \times p}$, response $y \in \mathbb{R}^m$, loss function L

Grow a forest of n trees.

Solve:

minimize
$$\frac{1}{m}L(y, Aw) + \lambda \sum_{i=1}^{n} u_i w_i$$

subject to $w \ge 0$ (2)

 $A \in \mathbb{R}^{m \times n}$: predictions of each tree as columns.

 u_i is the number of features used in tree *i*.

Problem

- What if every tree uses all the features?
- Either all or none of the features will be selected.

Solution

Grow a diverse forest.

Incremental Depth Bagging

፤ ∽ < <> 12 / 20

Incremental Depth Bag Boosting

Out-of-Bag Early Stopping

14 / 20

CONTROLBURN is useful on data w/ correlated features.

Adult income dataset: select top 3 features

- Random Forest Baseline:
 - Fnlwgt, Age, CapitalGain
 - Model AUC: 0.70
- CONTROLBURN:
 - CapitalGain, MaritalStatus, EducationNum
 - Model AUC: 0.89

Chess dataset synthetic example:

Overfitting

CONTROLBURN prevents overfitting through:

- Explicit ℓ_1 regularization
- Averaging predictions
- Limiting tree depth

Conclusion

- CONTROLBURN uses ℓ_1 regularization to select a sparse subset of important features from a tree ensemble
- CONTROLBURN works best on diverse forests
- Links:
 - https://arxiv.org/abs/2107.00219
 - https://pypi.org/project/ControlBurn/
 - https://github.com/udellgroup/controlburn