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Ensemble Learning

I Given training data X ∈ Rmxp and response y ∈ Rm

I Fit a collection of base learners T1(x),T2(x), . . .Tn(x) on
the training data

I Combine the predictions of the base learners
I Example: Regression averaging: Ŷ = 1

n
∑n

j=1 Tj(x)
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Tree Ensembles
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Ensemble Post-Processing

I Reduces ensemble size to:
I Prevent overfitting
I Improve interpretability

I Friedman and Popescu (2003): `1 post processing
I Minimize w.r.t. α∑m

i=1 L(yi , α0 + ∑n
j=1 αjTj(xi)) + λ

∑n
j=1 ‖αj‖1 (1)

I Loss function L(y , ŷ) :
I Square loss (Regression): ‖y − ŷ‖22
I Hinge loss (Classification): [1− y ŷ ]+
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L1 regularization

I Induces sparsity,
coefficients can shrink to
zero.

I Example: LASSO
regression selects single
feature from a group of
features
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Motivating Example
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I Correlation bias: Interpretability ↓
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Quiz

If we fit logistic LASSO regression on the Titanic dataset w/
correlated features what is most likely to occur?

A) None of the correlated features will be included in the
model.

B) All of the correlated features will be included in the
model, with similar coefficients.

C) Only one of the correlated features will be included in the
model.

7 / 20



Feature Sparse Ensembles

I Goal: Select a subset of learners such that the resulting
ensemble does not use all the features

I Important for tree ensembles since they distribute feature
importance evenly amongst correlated features
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Feature Sparse LASSO for Tree Ensembles

Given: feature matrix X ∈ Rm×p, response y ∈ Rm, loss
function L

Grow a forest of n trees.

Solve:
minimize 1

mL(y ,Aw) + λ
∑n

i=1 uiwi
subject to w ≥ 0 (2)

A ∈ Rm×n: predictions of each tree as columns.

ui is the number of features used in tree i .
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Problem

I What if every tree uses all
the features?

I Either all or none of the
features will be selected.
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Solution

Grow a diverse forest.

Diverse Forest

leaf
x1 x5x4x3x2

For feature sparse subforest solve:

minimize

s.t. .
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Incremental Depth Bagging
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Incremental Depth Bag Boosting
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Out-of-Bag Early Stopping
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Results

I ControlBurn is useful on data w/ correlated features.
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Results

I Adult income dataset: select top 3 features
I Random Forest Baseline:

I Fnlwgt, Age, CapitalGain
I Model AUC: 0.70

I ControlBurn:
I CapitalGain, MaritalStatus, EducationNum
I Model AUC: 0.89
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Results
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Results
Chess dataset synthetic example:
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Overfitting

I ControlBurn prevents overfitting through:
I Explicit `1 regularization
I Averaging predictions
I Limiting tree depth
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Conclusion

I ControlBurn uses `1 regularization to select a sparse
subset of important features from a tree ensemble

I ControlBurn works best on diverse forests
I Links:

I https://arxiv.org/abs/2107.00219
I https://pypi.org/project/ControlBurn/
I https://github.com/udellgroup/controlburn
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