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A key challenge in inverse problems is the selection of sensors 
to gather the most effective data. In this paper, we consider 
the problem of inferring the initial condition to a linear dy-
namical system and develop an efficient control-theoretical 
approach for greedily selecting sensors. Our method employs a 
Galerkin projection to reduce the size of the inverse problem, 
resulting in a computationally efficient algorithm for sensor 
selection. As a byproduct of our algorithm, we obtain a pre-
conditioner for the inverse problem that enables the rapid 
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recovery of the initial condition. We analyze the theoretical 
performance of our greedy sensor selection algorithm as well 
as the performance of the associated preconditioner. Finally, 
we verify our theoretical results on various inverse problems 
involving partial differential equations.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the task of inferring the initial condition x0 to a linear time-
invariant dynamical system from measured data, which we formulate as the optimization 
problem

min
xptq,x0

1
2

ż tf

0
}Cxptq ´ ydptq}

2
2 dt `

1
2xJ

0 Rx0 ` Φpx0q (1a)

subject to
#

E 9xptq “ Axptq ` fptq for t P p0, tf s

xp0q “ x0
. (1b)

Here, tf ą 0 denotes the final time, E and A are m-by-m matrices, fptq P Rm is 
a load or force, C is an S-by-m rectangular matrix that produces measurements of 
the state x P Rm, ydptq P RS is observed data, R is a symmetric m-by-m matrix 
representing a quadratic regularization function, and Φ is an extended real-valued, convex 
function that encapsulates auxiliary convex constraints and nonsmooth regularization 
terms. We interpret each row of C to be a sensor. In an attempt to reduce the recovery 
error for the initial condition, we develop an efficient numerical method to select sensors 
from a finite set of possible sensors. As a byproduct of our algorithm, we produce a 
good preconditioner to accelerate the iterative solution of the optimization problem 
(1). Optimization problems similar to (1) arise in numerous applications including data 
assimilation for weather forecasting and climate modeling [1,2], detecting sources of 
contaminants such as pollution, radiation or contagions [3,4], and calibrating financial 
models [5] and experimental facilities [6].

A common statistical approach for selecting sensors, and more generally designing 
experiments, is based on the Fisher information matrix or the covariance matrix of the 
estimated initial condition x0 [7,8]. In design of experiments, it is common to maximize 
some metric of the Fisher information matrix such as the determinant, the minimum 
eigenvalue, or the trace. In the context of (1), [9,10] choose sensors using the determinant 
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of the Fisher information matrix. A related approach is based on frame potential, which 
measures the orthogonality of the rows of the Fisher information matrix [11,12].

Our approach is closely related to these statistical approaches. However, instead of 
using the Fisher information matrix, we select sensors using the observability Gramian 
of the dynamical system. As with design of experiments, several scalarized version of the 
observability Gramian have been investigated including the minimum eigenvalue [13], the 
trace [14], and the determinant [15]. This approach attempts to maximize the output 
energy of the dynamical system and thereby minimize the worst-case recovery error for 
any initial condition x0. In the context of (1), this approach assumes an infinite time 
horizon tf “ `8 and consequently only provides an approximation when tf is finite—an 
approximation that must be accounted for to guarantee that the computed sensors are 
near optimal for (1).

Traditional Gramian-based sensor selection has been successfully applied to stable lin-
ear time-invariant dynamical systems with the form (1b). However, the typical stability 
assumptions are too restrictive for many practical applications [16]. To circumvent this 
issue, the Gramian-based approach has been generalized to handle nonlinear dynamical 
systems [14,17], unstable dynamics [18], infinite-dimensional systems of partial differ-
ential equations (PDEs) [19,20], differential algebraic equations [21], and closed-loop 
control systems [22].

In general, we formulate sensor selection as the binary optimization problem

max
w

Ψ
˜

R `

S̄
ÿ

s“1
wsQs

¸

subject to
S̄

ÿ

s“1
ws ď S, ws P t0, 1u, (2)

where Qs is the observability Gramian for sensor s, S is the sensor budget, S̄ is the 
number of possible sensors and the functional Ψ acts on square matrices to measure the 
quality of the selected sensors. For example, Ψ is the determinant, minimum eigenvalue, 
or trace. The solution of (2) is NP-hard. Even evaluating the objective function for a 
given set of sensors can scale with the cube of the problem dimension.

To address these challenges, we develop a greedy sensor placement algorithm that 
offers guaranteed solution quality. To ensure that our approach is computationally 
tractable, we employ a Galerkin projection of the observability Gramian to reduce the 
overall dimensionality of the problem. Although we consider the finite time horizon case 
tf ă 8, we employ the infinite time horizon observability Gramian, which introduces 
an error. We quantify this error, showing that the observability Gramian produces a 
sufficiently accurate approximation of the reduced Hessian matrix from (1). As a con-
sequence, we can employ the observability Gramian to place sensors. Moreover, we can 
use the observability Gramian as a preconditioner for the reduced Hessian to accelerate 
the iterative solution of (1).

The paper is organized as follows. In Section 2, we introduce the notation and standing 
assumptions used throughout. In Section 3, we review the optimality conditions for (1)
and derive a bound on the recovery error. We use this bound to motivate our sensor 
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selection algorithm. In Section 4, we prove that the observability Gramian provides an 
accurate approximation to the reduced Hessian matrix from (1) and therefore it serves 
well as a preconditioner and as a proxy for selecting sensors. In Section 5, we introduce 
our Galerkin approximation to the observability Gramian and demonstrate that this 
approximation is exact under certain assumptions. Finally, in Section 6 we describe our 
greedy sensory selection algorithm and demonstrate its performance on various PDE 
examples in Section 7.

2. Notation and standing assumptions

Given a symmetric positive definite matrix M P Rmˆm, we denote the M-inner prod-
uct by

xx,yyM :“ xJMy

and the associated norm by }x}
2
M :“ xx,xyM. Given another symmetric positive definite 

matrix N P Rmˆm, we denote the induced matrix norm associated with M and N by

}B}M,N :“ sup
x‰0

}Bx}M
}x}N

.

When M “ N, we denote the norm }¨}M,M “ }¨}M and when M “ N “ I, where I is the 
appropriately sized identity matrix, the induced matrix norm is the usual matrix 2-norm, 
i.e., } ̈ }I “ } ̈ }2. If either M “ I or N “ I, we replace the associated subscript with the 
number 2. In addition, for any square matrices B and M of the same size, we denote the 
maximum and minimum generalized eigenvalues of the pair pB, Mq by λmaxpB, Mq and 
λminpB, Mq, respectively. Recall that λ is a generalized eigenvalue of the pair pB, Mq if 
there exists a generalized eigenvector v satisfying

Bv “ λMv.

When M “ I, we simplify this notation to λmaxpBq and λminpBq. Finally, for an arbitrary 
square matrix B, we denote the maximum real part of the eigenvalues of B by αpBq and 
refer to this quantity as the spectral abscissa.

Throughout, E, A and R denote m-by-m matrices with real entries, f : p0, tf s Ñ Rm, 
and Φ : Rm Ñ p´8, ̀ 8s. We assume that E is symmetric positive definite, R is 
symmetric positive semidefinite, and Φ is given by

Φpxq “

#

Φ0pxq if x P F ,
`8 otherwise,

(3)

where Φ0 : Rm Ñ p´8, ̀ 8s is convex and Lipschitz continuous with respect to the 
E-norm on a neighborhood of the nonempty, closed and convex set F Ď Rm. We denote 
the Lipschitz modulus of Φ0 by L ě 0. As (3) suggests, (1) includes the constraints 
x0 P F .
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We denote by X the vector space Rm endowed with the inner product x¨, ¨yE. We 
associate with X the dual space X 1, which is the vector space Rm endowed with the 
inner product x¨, ¨yE´1 . We recall that for x P X and y P X 1, the usual continuity bound 
holds, i.e.,

|xJy| ď }x}E }y}E´1 . (4)

We further note that for each x̄ P X 1, the vector x “ E´1x̄ P X is the Riesz representer 
of x̄. We view the matrices E, A and R as linear operators from X to X 1 and the vector 
fptq as an element in X 1 for t ą 0. In particular, E´1A and exppE´1Atq for t ą 0 are 
linear operators from X to X . We make the following assumption on E´1A to ensure 
stability of the dynamical system (1b).

Assumption 1 (Stability). The logarithmic norm, with respect to the E-norm, of the 
matrix E´1A satisfies

μEpE´1Aq ă 0,

where the logarithmic norm of a square matrix B with respect to the E-norm is defined 
as

μEpBq :“ lim
hÓ0

}I ` hB}E ´ 1
h

“ αp
1
2 pBJ

` EBE´1
qq.

One consequence of Assumption 1 is that

›

›exppE´1Atq
›

›

E ď exppμEpE´1Aqtq ď 1 @ t ě 0.

Another consequence is that the spectral abscissa of E´1A is negative and therefore the 
linear time-invariant system

#

E 9xptq “ Axptq ` fptq

yptq “ Cxptq
(5)

is stable. Owing to a similarity transformation, we have that μEpE´1Aq is the maximal 
eigenvalue of 1

2E
´1pA ̀ AJq, or equivalently the maximal generalized eigenvalue of the 

matrix pair p1
2 pA ̀ AJq, Eq. In addition, we denote the logarithmic norm, with respect 

to the matrix 2-norm, of a square matrix B by μ2pBq and note that this quantity is 
the spectral abscissa of 1

2 pB ̀ BJq. For more information on the logarithmic norm, see 
[23–25].

Finally, we denote the set of possible sensors by tcsuS̄s“1, where cs P X 1. We construct 
the observation matrix Cσ using a subset σ Ď t1, . . . , S̄u of possible sensors. In particular, 
the observation matrix Cσ P RSˆm, with S “ |σ|, has rows given by tcJ

s usPσ. We 
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interpret Cσ as a linear operator from X to RS , where the range space is endowed with 
the Euclidean inner product. We recall that the matrix-matrix product CJ

σCσ satisfies

CJ
σCσ “

ÿ

sPσ

cscJ
s (6)

for all subsets σ Ď t1, . . . , S̄u. For notational convenience, we often denote C “ Cσ, 
where σ is a fixed subset of t1, . . . , S̄u. We further denote the data associated with the 
observations tcsusPσ by yd : p0, tf s Ñ RS .

3. Optimality conditions and recovery error

In this section, we review some basic results regarding the optimization problem (1). 
First, we recall that the solution xptq “ rSpx0qsptq to the linear dynamical system (1b)
is affine in the initial condition x0 and is given by

xptq “ exppE´1Atqx0 ` exppE´1Atq

ż t

0
expp´E´1AτqE´1fpτq dτ.

We denote by ȳ : r0, tf s Ñ RS the function

ȳptq :“ ydptq ´ C exppE´1Atq

ż t

0
expp´E´1AτqE´1fpτq dτ,

which allows us to rewrite the optimization problem (1) in reduced form as

min
x0PRm

1
2

ż tf

0
}C exppE´1Atqx0 ´ ȳptq}

2
2 dt `

1
2xJ

0 Rx0 ` Φpx0q. (7)

Any solution to (7) satisfies the first-order necessary and sufficient optimality condition

„
ż tf

0
exppE´1AtqJCJȳptq dt ´ pHtf

0 ` Rqx0

jJ

px1
0 ´ x0q ď Φpx1

0q ´ Φpx0q (8)

for all x1
0 P X , where the Hessian matrix Htf

0 is given by

Htf
0 :“

ż tf

0
exppE´1AtqJCJC exppE´1Atq dt. (9)

Note that the sub and superscript on the Hessian matrix refer to the initial and final 
times. Consequently, H8

0 is the Hessian matrix for the infinite time horizon problem (i.e., 
tf “ `8) and is the so-called observability Gramian. We also note that Htf

0 is a linear 
operator from X into X 1 and the Hessian of the objective function in (7) with respect 
to the E-inner product, omitting the regularization terms, is E´1Htf

0 . In particular, 
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E´1Htf
0 is self-adjoint with respect to the E-inner product, i.e., for all u, v P X , we have 

that

xu,E´1Htf
0 vyE “ uJEE´1Htf

0 v “ uJHtf
0 v “ vJHtf

0 u “ xv,E´1Htf
0 uyE.

By Assumption 1, the spectral abscissa of E´1A is negative and consequently H8
0 solves 

the Lyapunov equation

pE´1Aq
JH8

0 ` H8
0 pE´1Aq ` CJC “ 0. (10)

When H8
0 is positive definite, the system (5) is observable. Additionally, making the sub-

stitution H8
0 “ EH8

0 E in (10), demonstrates that H8

0 solves the generalized Lyapunov 
equation

AJH8

0 E ` EH8

0 A ` CJC “ 0. (11)

Solving (11) can have computational advantages over solving (10) because it does not 
require the inverse matrix E´1.

Owing to (9) and the linearity of the integral, we can write the finite-time Hessian 
Htf

0 in terms of the observability Gramian H8
0 . In particular,

Htf
0 “ H8

0 ´ exppE´1Atf q
JH8

0 exppE´1Atf q.

From this, we see that Htf
0 solves the Lyapunov equation

pE´1Aq
JHtf

0 ` Htf
0 pE´1Aq ` CJC ´ exppE´1Atf q

JCJC exppE´1Atf q “ 0

(cf. [26,27] for additional details). In particular, we can compute Htf
0 by solving the 

generalized Lyapunov equation

AJHtf
0 E ` EHtf

0 A ` CJC ´ exppE´1Atf q
JCJC exppE´1Atf q “ 0,

and setting Htf
0 “ EHtf

0 E. Notice that the computation of Htf
0 requires multiple ap-

plications of the matrix exponential exppE´1Atf q, which can be performed with Opm3q

complexity using, e.g., the scaling-and-squaring method [28].
To conclude this discussion, suppose that the target data yd is given by the additive 

noise relationship

ydptq “ pCrpSpx‹
0qsptq ` ηt,

where ηt is an S-dimensional random vector of measurement noise, pC is the true obser-
vation operator, pS is the true state map, and x‹

0 P Rm is the unknown initial condition. 
The true observation operator pC and state map pS may differ from C and S, respectively, 
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because of incorrectly specified parameters, inaccurate modeling assumptions, and un-
known environmental conditions. These true operators may even be nonlinear. Let p‹

0
denote the metric projection in X of x‹

0 onto the feasible set F . Substituting the assumed 
form of yd into the bracketed term on the left-hand side of the optimality conditions (8), 
adding and subtracting CSpp‹

0q to yd, and adding and subtracting Rp‹
0 yields

ż tf

0
exppE´1AtqJCJȳptq dt ´ pHtf

0 ` Rqx0

“ pHtf
0 ` Rqpp‹

0 ´ x0q `

ż tf

0
exppE´1AtqJCJηt dt ´ Rp‹

0

`

ż tf

0
exppE´1AtqJCJ

p pCrpSpx‹
0qs ´ CrSpp‹

0qsqptq dt.

A consequence of this equation, the optimality conditions (8), the Lipschitz continuity 
of Φ0, and the triangle inequality is that the error committed between the solution x0

to (7) and the unknown x‹
0 is bounded by

}x0 ´ x‹
0}E ď }p‹

0 ´ x‹
0}E `

M

λminpHtf
0 ` R,Eq

, (12)

where M ě 0 is bounded above by the error associated with the measurement noise ηt
as well as the model error and regularization biases, i.e.,

M ď

›

›

›

›

ż tf

0
exppE´1AtqJCJ

p pCrpSpx‹
0qs ´ CrSpp‹

0qsqptq dt
›

›

›

›

E´1

`

›

›

›

›

ż tf

0
exppE´1AtqJCJηt dt

›

›

›

›

E´1
` }Rp‹

0}E´1 ` L.

In general, the noise and biases that make up M are difficult or impossible to reduce. 
Motivated by this, our goal is to choose the observation matrix C so that λminpHtf

0 `

R, Eq is large. By increasing λminpHtf
0 `R, Eq, we reduce the second term in the recovery 

error bound (12).

4. Theoretical results

In this section, we discuss the main theoretical results used to demonstrate that 
choosing the observation matrix C based on H8

0 provides a good proxy for increasing 
the minimum eigenvalue of Htf

0 . A fortuitous consequence of this analysis is that H8
0 `

R is a good preconditioner for Htf
0 ` R and can be used to accelerate the iterative 

solution of (7). We begin with a technical lemma regarding the eigenvalues of perturbed 
matrices.
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Lemma 1. Suppose H P Rmˆm is symmetric positive definite, D P Rmˆm is symmetric 
positive semidefinite, and define P “ H ` D. We consider H, P, and D to be linear 
operators from X into X 1. Then the eigenvalues of P´1H lie in the interval

„

λminpH,Eq

λminpH,Eq ` λmaxpD,Eq
,

λmaxpH,Eq

λmaxpH,Eq ` λminpD,Eq

j

Ď p0, 1s.

Moreover, the minimum eigenvalues of H and P satisfy

λminpD,Eq ď λminpP,Eq ´ λminpH,Eq ď λmaxpD,Eq.

Proof. First, recall that the eigenvalues of P´1H are the generalized eigenvalues of 
pH, Pq. Suppose μ is a generalized eigenvalue of pH, Pq with associated eigenvector v, 
i.e., Hv “ μPv. Then we have that

p1 ´ μqHv “ μDv.

If μ ą 1, then p1 ´ μqvJHv ă 0 and μvJDv ě 0, which cannot happen. On the other 
hand, if μ ď 0, then p1 ´ μqvJHv ą 0 and μvJDv ď 0, which again cannot happen. 
Consequently, μ P p0, 1s and we have that

p1 ´ μqλminpH,Eq}v}
2
E ď p1 ´ μqvJHv “ μvJDv ď μλmaxpD,Eq}v}

2
E.

Rearranging this inequality gives the bound

μ ě
λminpH,Eq

λminpH,Eq ` λmaxpD,Eq
.

Analogously, we have that

p1 ´ μqλmaxpH,Eq}v}
2
E ě p1 ´ μqvJHv “ μvJDv ě μλminpD,Eq}v}

2
E,

which produces the stated upper bound. To conclude the proof, we note that

λminpP,Eq ě λminpH,Eq ` λminpD,Eq.

In addition, we have that

λminpH,Eq ě λminpP,Eq ` λminp´D,Eq ě λminpP,Eq ´ λmaxpD,Eq,

which concludes the proof. l

Our intention is to use P “ H8
0 `R as a surrogate and preconditioner for the Hessian 

of the quadratic objective function in (7), H “ Htf
0 ` R. As suggested by Lemma 1, we 
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must demonstrate that the eigenvalues of D “ H8
0 ´Htf

0 are sufficiently small to ensure 
that P is a good approximation to H. In the next result, we use Assumption 1 to bound 
the eigenvalues of D.

Proposition 1. The matrix D “ H8
0 ´Htf

0 is symmetric positive semidefinite and satisfies 
the bound

λmaxpD,Eq “ }D}E´1,E ď
}C}

2
2,E

2|μEpE´1Aq|
expp2μEpE´1Aqtf q.

In particular, λmaxpD, Eq decays exponentially as tf increases. Furthermore, the follow-
ing bound holds

0 ď λminpHtf
0 ` R,Eq ď λmaxpHtf

0 ` R,Eq

ď }H8
0 ` R}E´1,E `

}C}
2
2,E

2|μEpE´1Aq|
expp2μEpE´1Atf q.

Proof. First, we note that the matrix D can be rewritten as

D “

ż 8

tf

exppE´1AtqJCJC exppE´1Atq dt.

Clearly, D is symmetric since H8
0 and Htf

0 are. To show that D is positive semidefinite, 
we set Mtf :“ exppE´1Atf q and rewrite D as

D “ MJ
tf

ż 8

tf

exppE´1Apt ´ tf qq
JCJC exppE´1Apt ´ tf qq dtMtf

“ MJ
tf

ż 8

0
exppE´1AtqJCJC exppE´1Atq dtMtf

“ MJ
tf

H8
0 Mtf .

Since Mtf is invertible and H8
0 is positive semidefinite, D is also positive semidefinite. 

We now show that }D}E´1,E “ λmaxpD, Eq. For any x P X with x ‰ 0, we have that

xJDE´1Dx
xJEx “

}E´ 1
2 DE´ 1

2 y}2
2

}y}2
2

,

where y “ E 1
2 x and E 1

2 is the square root of the symmetric positive definite matrix E. By 
taking y to be the eigenvector corresponding to the maximum eigenvalue of E´1

2 DE´ 1
2 , 

we see that }D}E´1,E “ λmaxpE´ 1
2 DE´ 1

2 q. Moreover, we have that

λmaxpE´ 1
2 DE´ 1

2 q “
yJE´ 1

2 DE´ 1
2 y

J
“

xJDx
J

“ λmaxpD,Eq,
y y x Ex
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where y is again the eigenvector associated with the maximum eigenvalue of E´ 1
2 DE´ 1

2

and x “ E´ 1
2 y. Now, using this x and the properties of the logarithmic norm, we arrive 

at the following bound

λmaxpD,Eq “ }x}
´2
E

ż 8

tf

}C exppE´1Atqx}
2
2 dt

ď }C}
2
2,E

ż 8

tf

expp2μEpE´1Aqtq dt.

Evaluating the integral on the right-hand side gives the desired bound. The final bound 
is a consequence of the previous bound and the triangle inequality,

›

›

›
Htf

0 ` R
›

›

›

E´1,E
ď }D}E´1,E ` }H8

0 ` R}E´1,E

“ }H8
0 ` R}E´1,E ` λmaxpD,Eq,

which yields the desired result. l

Using Proposition 1, the following result is a direct corollary of Lemma 1 and demon-
strates that the observability Gramian H8

0 is an increasingly accurate approximation of 
the Hessian matrix Htf

0 as tf increases.

Corollary 1. Suppose H8
0 ` R is positive definite. In addition, let the assumptions of 

Proposition 1 hold and define

β :“ 2μEpE´1Aq and c :“ |β|
´1

}C}2,E .

Then the eigenvalues of pH8
0 ` Rq´1pHtf

0 ` Rq lie in the interval
«

λminpHtf
0 ` R,Eq

λminpHtf
0 ` R,Eq ` c exppβtf q

, 1
ff

and the minimum eigenvalues of H8
0 ` R and Htf

0 ` R satisfy

0 ď λminpH8
0 ` R,Eq ´ λminpHtf

0 ` R,Eq ď c exppβtf q. (13)

As a consequence of Corollary 1, the spectral diameter of the preconditioned Hessian 
is bounded above by

λmaxppH8
0 ` Rq

´1
pHtf

0 ` Rqq ´ λminppH8
0 ` Rq

´1
pHtf

0 ` Rqq

ď
c exppβtf q

λminpHtf
0 ` R,Eq ` c exppβtf q

ď
c exppβtf q

8
λminpH0 ` R,Eq
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and therefore approaches zero as tf increases. Moreover, let 0 ă ε ă λminpH8
0 ` R, Eq

be arbitrary. Then for all tf ě β´1 logpc´1εq, we have that c exppβtf q ď ε and

0 ă λminpH8
0 ` R,Eq ´ ε ď λminpHtf

0 ` R,Eq

by (13). Consequently, the condition number of pH8
0 `Rq´1pHtf

0 `Rq is bounded above 
by

λmaxppH8
0 ` Rq´1pHtf

0 ` Rqq

λminppH8
0 ` Rq´1pHtf

0 ` Rqq
ď

λminpHtf
0 ` R,Eq ` c exppβtf q

λminpHtf
0 ` R,Eq

ď
λminpH8

0 ` R,Eq ` c exppβtf q

λminpH8
0 ` R,Eq ´ ε

and approaches one as tf increases since ε is arbitrary.

Remark 1 (Positive definite H8
0 ` R). Since H8

0 and R are positive semidefinite, the 
null space of H8

0 ` R satisfies

kerpH8
0 ` Rq “ kerpH8

0 q X kerpRq.

Consequently, as long as kerpH8
0 q XkerpRq “ H, the matrix H8

0 `R is positive definite as 
required by Proposition 1. This is the case if either H8

0 or R are nonsingular. Recall that 
H8

0 is nonsingular if and only if the system (5) is observable, which by Hautus’ lemma, 
is equivalent to the condition: Cv ‰ 0 for all eigenvectors v of E´1A [29, Th. 4.26]. 
As Hautus’ lemma suggests, the system (5) may not be observable if C has a large null 
space. When (5) is unobservable, we rely on the regularization matrix R to ensure that 
H8

0 ` R is positive definite.

Remark 2 (Stability). Assumption 1 is too strong for many applications. In particular, 
it can happen that the spectral abscissa of E´1A is negative (i.e., the dynamical system 
(1b) is stable), yet the logarithmic norm μEpE´1Aq is positive. If this is the case, then 
the bounds in Proposition 1 and Corollary 1 do not decay as tf increases. However, if 
the spectral abscissa of E´1A is negative, then we have that

lim
tÑ`8

›

›exppE´1Atq
›

›

E “ 0.

Unfortunately, this property does not provide a convergence rate as in the bounds of 
Proposition 1 and Corollary 1. To obtain a convergence rate, we can use the results in 
[30], which guarantee the existence of a symmetric positive definite matrix M for which 
μMpE´1Aq is negative. In fact, M solves the Lyapunov equation

pE´1Aq
JM ` MpE´1Aq ` I “ 0
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or equivalently, M “ EME, where M solves the generalized Lyapunov equation

AJME ` EMA ` I “ 0.

Moreover, since all norms are equivalent in finite dimensions, there exists a positive 
constant C ą 0 such that

} exppE´1Atq}E ď C} exppE´1Atq}M ď C exppμMpE´1Aqtq. (14)

Using these facts, we can replace exppμEpE´1Aqtq in Proposition 1 and Corollary 1
with the upper bound in (14), producing a bound that decays as tf increases. Given 
the finite-dimensional nature of this argument, when E and A arise from the spatial 
discretization of a system of PDEs, the constant C will generally depend on the problem 
size m, leading to a bound that changes as the discretization is refined. We provide a 
numerical example in Section 7.2 that confirms this discussion, but also demonstrates 
that our results and methods work even when Assumption 1 fails to hold.

5. Galerkin approximation

As the results in Section 4 suggest, H8
0 ` R is a good preconditioner for the finite-

time horizon Hessian Htf
0 ` R. Unfortunately, the Lyapunov equation that defines the 

observability Gramian H8
0 can be difficult to solve numerically when the problem size 

m is large. In this case, we can reduce the computational cost by approximating the 
Gramian H8

0 using a Galerkin projection. Let the columns of Y P Rmˆd be orthonormal 
with respect to the E-inner product, i.e., YJEY “ I. We treat Y as a linear operator 
from Rd, endowed with the Euclidean inner product, into X . We denote by Y0 a matrix 
whose columns span the orthogonal complement of Y, so that the columns of the square 
matrix Ȳ :“ rY|Y0s are E-orthonormal, i.e., YJEY0 “ 0 and YJ

0 EY0 “ I. Throughout 
this section, we assume that the set pF :“ tp P Rd | Yp P Fu is nonempty.

Before introducing the Galerkin approximation, we make the following observations. 
First, we have that }Y}E,2 “ 1 since Y is E-orthonormal. Second, we have that 
}YJ}2,E´1 “ }YJE}2,E “ 1. To see this, take any x P X with x ‰ 0. We can de-
compose x as x “ Yv ` Y0v0 since rY|Y0s forms a basis of X . From this, we see 
that

}YJEx}
2
2 “ }v}

2
2 and }x}

2
E “ }v}

2
2 ` }v0}

2
2.

Consequently, we have that

}YJEx}2
2

}x}2
E

“
}v}2

2
}v}2

2 ` }v0}2
2

ď 1 ùñ }YJE}2,E ď 1,

and the upper bound is attained if v0 “ 0. Combining these facts with the definition of 
the norm }YJE}2,E proves that the norm is equal to one.
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The Galerkin approximation of H8
0 is given by EYG8

0 YJE, where G8
0 P Rdˆd solves 

the reduced Lyapunov equation

pYJAYq
JG8

0 ` G8
0 pYJAYq ` YJCJCY “ 0. (15)

For notational convenience, we denote pA :“ YJAY, pC :“ CY, and pR :“ YJRY. We 
define Gtf

0 analogously to Htf
0 , i.e.,

Gtf
0 :“

ż tf

0
expp pAtqJ

pCJ
pC expp pAtq dt (16)

One overwhelming benefit of the Galerkin approximation is that if d ! m, then 
the reduced Lyapunov equation (15) can be solved efficiently using direct or iterative 
methods [31]. For example, one possible direct method to compute G8

0 , when d is small, 
is to solve the linear system of equations

pI b pAJ
` pA b IqvecpG8

0 q “ ´vecp pCJ
pCq

using a matrix factorization. Here, vecpMq is the vector of stacked columns of M and 
b denotes the Kronecker product. For additional information on Galerkin methods for 
solving large Lyapunov equations, see [31–33].

To connect the Galerkin approximation G8
0 to (7), we note that Gtf

0 ` pR is the 
Hessian to the Galerkin projected optimization problem

min
px0PRd

1
2

ż tf

0
} pC expp pAtqpx0 ´ ȳptq}

2
2 dt `

1
2

pxJ
0

pRpx0 ` ΦpYpx0q. (17)

Optimization problem (17) arises by first requiring that solutions to the differential 
equation (1b) be in the subspace spanned by the columns of Y. Since the solution to 
(1b) is generally not a linear combination of the columns of Y, we instead require that the 
residual of (1b) be orthogonal to the columns of Y. At the expense of this approximation, 
we reduce the dimensionality of (1) from m to d. Galerkin projections are commonly used 
in model reduction such as proper orthogonal decomposition and reduced basis methods 
(cf. [34] and the references therein). In contrast, by replacing the initial condition x0 in 
(1b) with Yx0 for some x0 P Rd, we see that (17) is closely related to the transformed 
optimization problem

min
x0PRd

1
2

ż tf

0
}C exppE´1AtqYx0 ´ ȳptq}

2
2 dt `

1
2xJ

0
pRx0 ` ΦpYx0q. (18)

In particular, the error between the optimal solution px0 for (17) and the optimal solution 
x0 for (18) is controlled by the difference of the matrix functions

hptq :“ C exppE´1AtqY and gptq :“ pC expp pAtq.



D.P. Kouri et al. / Linear Algebra and its Applications 679 (2023) 275–304 289
Additionally, the optimal solutions Ypx0 and Yx0 are generally approximations to the 
optimal solution, x0, to (7), unless x0 P RangepYq. To quantify the error between Ypx0
and x0, we note that

}Ypx0 ´ x0}E ď }Yppx0 ´ x0q}E ` }Yx0 ´ x0}E

“ }px0 ´ x0}2 ` }Yx0 ´ x0}E .

Consequently, it is important to understand the error between px0 and x0 as well as the 
error between Yx0 and x0.

The error between Yx0 and x0 is controlled by the approximation quality of the 
subspace spanned by the columns of Y. The following proposition provides a bound for 
the resulting recovery error. For this result, we require that Htf

0 ` R is positive definite, 
which in turn implies that H8

0 ` R is positive definite since

H8
0 ` R “ pHtf

0 ` Rq ` pH8
0 ´ Htf

0 q,

where the first matrix in parentheses on the right-hand side is positive definite and the 
second is positive semidefinite by Proposition 1.

Proposition 2. Suppose that Htf
0 `R is positive definite, x0 P Rm solves (7) and x0 P Rd

solves (18). Then

}x0 ´ Yx0}
2
E ď

K

λminpHtf
0 ` R,Eq

min
pP pF

}Yp ´ x0}E , (19)

where the constant K ą 0 is given by

K :“ L `

›

›

›

›

pHtf
0 ` RqYx0 ´

ż tf

0
exppE´1AtqJCJȳptq dt

›

›

›

›

E´1
.

In particular, if x0 P RangepYq, then }x0 ´ Yx0}E “ 0. Moreover, if x0 is in the interior 
of F , then

K ď 2L `

›

›

›
Htf

0 ` R
›

›

›

E´1,E
}x0 ´ Yx0}E .

If, in addition, Φ0 ” 0, then

}x0 ´ Yx0}E ď

›

›

›
Htf

0 ` R
›

›

›

E´1,E

λminpHtf
0 ` R,Eq

min
pP pF

}x0 ´ Yp}E .

Proof. The optimality conditions for (18) are
„

YJ

ż tf

0
exppE´1AtqJCJȳptq dt´

ˆ

YJHtf
0 Y ` YJRY

˙

x0

jJ

pp ´ x0q (20)

ď ΦpYpq ´ ΦpYx0q
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for all p P Rd. Adding (20) to the optimality conditions (8) for (7) with x1
0 “ Yx0 results 

in the bound

pYp ´ x0q
J

ˆ
ż tf

0
exppE´1AtqJCJȳptq dt ´ pHtf

0 ` RqYx0

˙

` px0 ´ Yx0q
J

pHtf
0 ` Rqpx0 ´ Yx0q ď ΦpYpq ´ Φpx0q.

Rearranging terms, applying the bound

λminpHtf
0 ` R,Eq }x0 ´ Yx0}

2
E ď px0 ´ Yx0q

J
pHtf

0 ` Rqpx0 ´ Yx0q

on the left-hand side, applying the Cauchy-Schwarz inequality on the right, employing 
the Lipschitz continuity of Φ0, and passing to the infimum over pF yields (19).

Now, suppose that x0 is in the interior of F . To obtain the bound on K, we add and 
subtract pHtf

0 ` Rqx0 in the norm and apply the triangle inequality to obtain

›

›

›

›

pHtf
0 ` RqYx0´

ż tf

0
exppE´1AtqJCJȳptq dt

›

›

›

›

E´1

ď

›

›

›
pHtf

0 ` RqpYx0 ´ x0q

›

›

›

E´1

`

›

›

›

›

ż tf

0
exppE´1AtqJCJȳptq dt ´ pHtf

0 ` Rqx0

›

›

›

›

E´1
.

The expression in the second term on the right-hand side of the previous inequality is a 
subgradient of Φ0 at x0 by the optimality of x0 and the assumption that x0 is an interior 
point. Consequently, this term is bounded above by the Lipschitz constant L. This fact, 
combined with the submultiplicativity of the matrix norm, proves the desired bound. 
Finally, suppose Φ0 ” 0. Then, L “ 0 and dividing both sides of (19), using the upper 
bound on K, by }x0 ´ Yx0}E results in the desired bound. l

Remark 3 (Nonsmoothness and the projected problem). As Proposition 2 demonstrates, 
the presence of nonsmoothness, via a nonsmooth regularizer Φ0 and active constraints 
x0 P F , results in a larger error between x0 and Yx0. In this case, the error between 
x0 and Yx0 is on the order of the square root of the best approximation error in the 
subspace spanned by the columns on Y. In contrast, the error is proportional to the 
best approximation error when the problem is smooth and the constraints are not active 
at x0.

The Hessian of the transformed problem (18), omitting pR, is given by

pHtf
0 :“ YJHtf

0 Y,

which can be expressed in terms of H8
0 as
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pHtf
0 “ YJH8

0 Y ´ pexppE´1Atf qYq
JH8

0 pexppE´1Atf qYq.

Consequently, the evaluation of pHtf
0 in this way requires the solution of an m-dimensional 

Lyapunov equation to compute H8
0 and d applications of the matrix exponential 

exppE´1Atf q. The Galerkin Gramian G8
0 is an approximation of pH8

0 and plays an 
important role in bounding the error between px0 and x0. We provide this error bound 
in the following proposition.

Proposition 3. Suppose that YJpHtf
0 ` RqY is positive definite, px0 P Rd solves (17) and 

x0 P Rd solves (18). Then

λminpYJ
pHtf

0 ` RqYq }px0 ´ x0}2

ď }Gtf
0 ´ pHtf

0 }2 }px0}2 `

ż tf

0
}hptq ´ gptq}2 }ȳptq}2 dt,

(21)

where }Gtf
0 ´ pHtf

0 }2 is bounded by

}Gtf
0 ´ pHtf

0 }2 ď 2 }C}2,E

ż tf

0
exppμEpE´1Aqtq}hptq ´ gptq}2 dt. (22)

Proof. Let pJpxq ̀ 1
2x

J
pRx`ΦpYxq denote the objective function from (17) and let Jpxq ̀

1
2x

J
pRx ` ΦpYxq be the objective function from (18). Both pJ and J are continuously 

differentiable and convex. Moreover, px0 and x0 satisfy the optimality conditions

ppx0 ´ pq
J

p∇ pJppx0q ` pRpx0q ď ΦpYpq ´ ΦpYpx0q

and

px0 ´ pq
J

p∇Jpx0q ` pRx0q ď ΦpYpq ´ ΦpYx0q

for all p P Rd. Setting p “ x0 in the first variational inequality and p “ px0 in the second 
yields

ppx0 ´ x0q
J

pRppx0 ´ x0q ` ppx0 ´ x0q
J

p∇ pJppx0q ´ ∇Jpx0qq ď 0. (23)

The gradients of pJ and J are given by

∇ pJppx0q “ Gtf
0 px0 ´

ż tf

0
expp pAtqJYJCJȳptq dt

∇Jpx0q “ pHtf
0 x0 ´

ż tf

0
YJ expppE´1AtqJCJȳptq dt,

respectively. Substituting these expressions into (23) and adding and subtracting pHtf
0 px0

yields
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ppx0 ´ x0q
J

p pHtf
0 ` pRqppx0 ´ x0q

ď ppx0 ´ x0q
J

ˆ

p pHtf
0 ´ Gtf

0 qpx0 `

ż tf

0
phptq ´ gptqq

Jȳptq dt
˙

Consequently, the Cauchy-Schwarz and triangle inequalities produce (21). We now bound 
the error }Gtf

0 ´ pHtf
0 }2. Using the definition of h and g, we can rewrite the projected 

and Galerkin Gramians as

pHtf
0 “

ż tf

0
hptqJhptq dt and Gtf

0 “

ż tf

0
gptqJgptq dt,

respectively. The submultiplicativity of the matrix 2-norm produces the upper bound

} pHtf
0 ´ Gtf

0 }2 “

ż tf

0
p}hptqJ

phptq ´ gptqq ` gptqJ
phptq ´ gptqq}2 dt

ď

ż tf

0
p}hptq}2 ` }gptq}2q}hptq ´ gptq}2 dt

and by the arguments in the proof of Proposition 1, we can bound }hptq}2 as

}hptq}2 ď }C}2,E
›

›exppE´1Atq
›

›

E }Y}E,2 ď }C}2,E exppμEpE´1Aqtq.

Similarly, we can bound }gptq}2 as

}gptq}2 ď }C}2,E } expp pAtq}2 ď }C}2,E exppμ2p pAqtq.

To estimate the logarithmic norm μ2p pAq, we note that

μ2p pAq “ lim
hÓ0

}I ` hpA}2 ´ 1
h

“ lim
hÓ0

}YJpE ` hAqY}2 ´ 1
h

ď lim
hÓ0

}Y}
2
E,2 }E ` hA}E´1,E ´ 1

h
“ lim

hÓ0

›

›I ` hE´1A
›

›

E ´ 1
h

“ μEpE´1Aq

and consequently, we have that

}gptq}2 ď }C}2,E exppμEpE´1Aqtq.

Combining these results, produces the desired error bound (22). l

The bound in (22) demonstrates that Gtf
0 is typically a good preconditioner for pHtf

0
and can be used for sensor selection. Owing to (16), we can write Gtf

0 in terms of G8
0 as



D.P. Kouri et al. / Linear Algebra and its Applications 679 (2023) 275–304 293
Gtf
0 “ G8

0 ´ expp pAtf q
JG8

0 expp pAtf q

or by solving the reduced Lyapunov equation

pAJGtf
0 ` Gtf

0
pA ` pCJ

pC ´ expp pAtf q
J

pCJ
pC expp pAtf q “ 0.

Consequently, the computation of Gtf
0 requires roughly mintd, Su applications of the 

matrix exponential expp pAtf qJ (i.e., either to the left and right of G8
0 or to YJcs for 

s “ 1, . . . , S). When it is not possible to apply Gtf
0 , one can instead employ G8

0 to select 
sensors and to precondition pHtf

0 . Similar to the discussion in Section 4, we can use G8
0

as a preconditioner for pHtf
0 . In order to gauge the quality of this preconditioner, we must 

bound the eigenvalues of the matrix D “ G8
0 ´ pHtf

0 .

Proposition 4. Let the assumptions of Proposition 1 hold. Then

}G8
0 ´ pHtf

0 }2 ď }G8
0 ´ pH8

0 }2 ` c exppβtf q,

where }G8
0 ´ pH8

0 }2 is bounded above by (22) with tf replaced by `8.

Proof. This result follows directly from the triangle inequality and Proposition 1. In 
particular, we note that

G8
0 ´ pHtf

0 “ pG8
0 ´ pH8

0 q ` p pH8
0 ´ pHtf

0 q

“ pG8
0 ´ pH8

0 q ` YJ
pH8

0 ´ Htf
0 qY.

Using the triangle inequality, we obtain

}G8
0 ´ pHtf

0 }2 ď }G8
0 ´ pH8

0 }2 ` }Y}
2
E,2}H8

0 ´ Htf
0 }E´1,E

and Proposition 1 yields the desired bound. l

As a consequence of Proposition 4, if G8
0 ´ pHtf

0 is symmetric positive semidefinite and 
λminp pHtf

0 ` pRq ą 0, then the condition number of the preconditioned Hessian pG8
0 `

pRq´1p pHtf
0 ` pRq is bounded above by

λmaxppG8
0 ` pRq´1p pHtf

0 ` pRqq

λminppG8
0 ` pRq´1p pHtf

0 ` pRqq
ď

λminp pHtf
0 ` pRq ` }G8

0 ´ pH8
0 }2 ` c exppβtf q

λminp pHtf
0 ` pRq

and its spectral diameter is bounded above by

λmaxppG8
0 ` pRq

´1
p pHtf

0 ` pRqq ´ λminppG8
0 ` Rq

´1
p pHtf

0 ` pRqq

ď
}G8

0 ´ pH8
0 }2 ` c exppβtf q

p

tf
p

8
p

8
.

λminpH0 ` Rq ` }G0 ´ H0 }2 ` c exppβtf q
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Therefore, the quality of the preconditioner is controlled by tf and the Galerkin approx-
imation error, which is bounded as in (22).

Remark 4 (Petrov-Galerkin approximation). In principal, it is possible to employ 
a Petrov-Galerkin approximation to reduce the dimensionality of the observability 
Gramian. That is, given a d-by-m matrix X such that the columns of X and Y are 
biorthogonal with respect to the E-inner product, i.e., XJEY “ I, we can approximate 
the Gramian H8

0 by EXG8
0 XJE, where G8

0 solves the reduced Lyapunov equation

pXJAYq
JG8

0 ` G8
0 pXJAYq ` YJCJCY “ 0.

Petrov-Galerkin approximations are common in control theory where one can perform a 
balanced reduction to reduce the dimensionality of the underlying control system [29]. 
Unfortunately, it is unclear how to produce a bound of the form

μ2pXJAYq ď κμEpE´1Aq, κ ą 0,

as required by the proof of Proposition 3.

Remark 5 (Polynomial approximation). In many applications, the differential equation 
(1b) arises from the discretization of a system of PDEs, in which case the initial condition 
is a function defined on some domain Ω. For this class of problems, it is often practical 
to approximate the initial condition using a set of orthogonal polynomials. For example, 
if Ω “ p0, 1qd, d “ 1, 2, 3, and the E-inner product is a discretization of the L2pΩq inner 
product, then we can define the columns of Y as the values of the Legendre polynomials at 
predefined mesh vertices (reorthogonalized with respect to the E-inner product). When 
d ą 1, this set of polynomials could consist of polynomials with total or maximum degree 
less than a prescribed order p. Since the polynomials are dense in L2pΩq, we would expect 
to reduce the recovery error by increasing p.

Example 1 (Spectral approximation for symmetric A). In the following results, we assume 
that A is symmetric. Under this assumption, we can show that the Galerkin error is zero 
when using eigenvectors as the columns of Y.

Proposition 5. Suppose A is symmetric and let the columns of Y be d eigenvectors of 
E´1A. Then the Galerkin error is zero, i.e., }hptq ´ gptq}2 “ 0.

Proof. We first note that E´1A is the similarity transformation of a symmetric matrix. 
In particular, let E 1

2 denote the square root of the symmetric positive definite matrix E, 
then

E´1A “ E´ 1
2 E´ 1

2 AE´ 1
2 E 1

2 “ E´ 1
2 ĀE 1

2 ,
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where Ā “ E´ 1
2 AE´ 1

2 . We denote the eigenvectors of E´1A as the columns of the 
matrix Ȳ, and the eigenvectors of Ā as the columns of Ū. Since they are related by 
a similarity transformation, the eigenvalues of E´1A and Ā coincide and are negative 
by Assumption 1. We denote the diagonal matrix of eigenvalues by L̄ and employ the 
decompositions

Ȳ “ rY|Y0s, Ū “ rU|U0s, L̄ “

«

L 0
0 L0

ff

.

We note that Ū “ E 1
2 Ȳ and U “ E 1

2 Y. By definition, we have that

pA “ YJAY “ YJE 1
2 ĀE 1

2 Y “ UJĀU “ L

and expp pAtq “ exppLtq. To bound the Galerkin error, we must bound the quantity 
}hptq ́ gptq}2. To this end, we notice that

exppE´1AtqY ´ Y expp pAtq “ exppE´ 1
2 ĀE 1

2 tqY ´ Y exppLtq

“ E´ 1
2 Ū exppL̄tqŪJE 1

2 Y ´ Y exppLtq

“ Ȳ exppL̄tqŪJU ´ Y exppLtq

“ Y exppLtq ´ Y exppLtq “ 0.

Here, we have used the fact that the columns of Ū are orthonormal. Consequently, 
hptq “ gptq for all t ě 0 as desired. l

In the setting of Proposition 5, the state trajectory satisfies

xptq “ exppE´1AtqYpx0 ` exppE´1Atq

ż t

0
expp´E´1AτqE´1fpτq dτ

“ Y exppLtqpx0 ` Ȳ exppL̄tq
ż t

0
expp´L̄τqȲJfpτq dτ.

Consequently, if fptq “ EYpfptq for some function pf : p0, tf s Ñ Rd, then

xptq “ Y exppLtqpx0 ` Y exppLtq
ż t

0
expp´Lτqpfptqpτq dτ.

In particular, xptq “ Ypxptq, where pxptq solves the reduced system of differential equations

#

9
px “ Lpx ` pf , in p0, tf s

pxp0q “ px0
,
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which is equal to the Galerkin approximation of the differential equation (1b). However, 
if f does not have this form, then the Galerkin projection of the dynamical system (1b)
is no longer exact and is given by

#

9w “ Lw ` YJf , in p0, tf s

wp0q “ px0
. l

6. Greedy sensor placement

As the results in Sections 4 and 5 suggest, G8
0 ` pR provides a good surrogate for 

pHtf
0 ` pR when selecting sensors to improve the recovery error (12). Owing to (6) and the 

linearity of the Lyapunov equation, we have that for any set of sensors σ Ď t1, . . . , S̄u, 
the Galerkin Gramian associated with C “ Cσ can be written as a sum over the sensors,

G8
0 “

ÿ

sPσ

Qs,

where the Gramian Qs for sensor s P t1, . . . , S̄u solves the reduced Lyapunov equation

pAJQs ` Qs
pA ` YJcscJ

s Y “ 0. (24)

As a consequence, we formulate the objective function for our optimal sensor placement 
problem as

gpσq :“ log det
˜

ÿ

sPσ

Qs ` pR
¸

.

We employ the following greedy algorithm to determine a sensor set σ that approximately 
maximizes g.

Algorithm 1 Greedy sensor placement.
Require: The desired number of sensors S0 P N.
1: Set S “ 0, G8

0 “ 0 and σ “ H.
2: Compute Qs for each s P t1, . . . , S̄u by solving the Lyapunov equation (24).
3: while S ă S0 do
4: Compute γs “ log detpG8

0 ` Qs ` xRq for s P t1, . . . , S̄uzσ.
5: Choose s‹

“ arg maxs γs.
6: Update S Ð S ` 1, σ Ð σ Y ts‹

u, and G8
0 Ð G8

0 ` Qs‹ .
7: end while

The main computational effort required by Algorithm 1 is the computation of the 
single measurement Gramians Qs, which is performed offline—a computation that can 
easily be done in parallel. If S̄ and d are small, then this step can be performed efficiently 
using direct or iterative solvers. Once these are computed, one only needs to compute 
the determinants of G8

0 `Qs ` pR for s P t1, . . . , S̄uzσ at each iteration of the algorithm. 
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This cost decreases at each iteration because the set of remaining sensors, t1, . . . , S̄uzσ, 
decreases in size. One interesting direction for future work would identify safe selection 
rules that can reject sensors that will not be used without computing the determinant.

To analyze Algorithm 1, we note that the objective function g is submodular as a 
function of the set σ: for any sets τ Ď σ Ă t1, . . . , S̄u and any sensor s P t1, . . . , S̄uzσ,

gpτ Y tsuq ´ gpτq ě gpσ Y tsuq ´ gpσq.

In words, the improvement from adding an additional sensor is always larger when the 
sensor is added to the smaller set τ Ď σ. For a submodular objective, the greedy algo-
rithm, Algorithm 1, provably yields a solution within 1 ́ 1{e of the optimum [35] (and 
often even better [36]). Formally, let σ be the set of sensors returned by Algorithm 1. 
Then the submodularity of g ensures that

gpσq ě

ˆ

1 ´
1
e

˙

max
|τ |ďS0

gpτq.

Consequently, the greedy algorithm is inexpensive to run and produces a solution that 
is nearly optimal.

In comparison, we can reformulate the problem of maximizing g over the sets σ Ă

t1, . . . , S̄u as the binary optimization problem

max
w

log det
˜

S̄
ÿ

s“1
wsQs ` pR

¸

subject to
S̄

ÿ

s“1
ws ď S0, ws P t0, 1u. (25)

Given an optimal binary vector w, the associated measurement set is σ “ ts | ws “ 1u. 
Although the objective function for the binary program (25) is concave for w P r0, 1sS̄ , 
its numerical solution can be quite expensive. For example, a branch-and-bound method 
[16] might require exponentially many evaluations of the determinant.

7. Numerical results

In this section, we investigate the performance of Algorithm 1 for a two-dimensional 
advection-diffusion-reaction example and a one-dimensional wave example. We discretize 
the PDEs in space using continuous piecewise (bi)linear finite elements on a uniform mesh 
(quadrilateral elements in 2d) and the backward Euler method in time (500 time steps 
for tf “ 5). Upon discretizing in space, we arrive at an optimization problem with the 
form (18). We set the measurement vectors to be point measurements collocated at the 
mesh vertices, i.e., cs “ es, where es has the value one as its s-th component and zero 
for all other components, and the desired number of sensors to S0 “ 16. We further 
generate the data yd by solving the discretized PDE to obtain the “true” signal utrue, 
applying the current observation matrix C, and adding normally distributed noise of 



298 D.P. Kouri et al. / Linear Algebra and its Applications 679 (2023) 275–304
zero mean and standard deviation σ chosen so that the resulting data has signal-to-noise 
ratio equal to a prescribed value. We define the signal-to-noise ratio to be the quantity

SNR “
σ´2

tf

ż tf

0

ż

Ω
|utrue|

2 dΩdt.

For each example, we set the regularization matrix R to be the associated discretization 
of the squared H1-norm scaled by δ “ 10´2 and set the nonsmooth term Φ to zero. 
Finally, for the Galerkin approximation, we choose the columns of Y to be the Legendre 
polynomials of degree less than or equal to six, tp0, . . . , p6u, evaluated at the mesh 
vertices in 1d. In 2d, we employ the total degree Legendre polynomials

pi,jpx, yq “ pipxqpjpyq for i ` j ď 6, i, j P t0, . . . , 6u.

The subspace dimension is d “ 7 in 1d and d “ 21 in 2d.
To describe the discretization, we restrict the presentation to the advection-diffusion-

reaction equation and then repurpose the notation for the wave equation. Let Ω “ p0, 1qp, 
p “ 1, 2, with boundary Γ “ BΩ and consider the parabolic PDE

9u ´ ∇ ¨ pκ∇uq ` v ¨ ∇u ` ru “ 0 in p0, tf q ˆ Ω

κ∇u ¨ n “ βu on p0, tf q ˆ Γ

up0, ¨q “ u0 in Ω.

(26)

Let Um “ spantϕ1, . . . , ϕmu denote a linear subspace of the Sobolev space H1pΩq. We 
approximate the PDE solution u in space as

upt, xq « umpt, xq :“
m
ÿ

i“1
xiptqϕipxq

and discretize the PDE (26) by enforcing that the PDE residual at um is orthogonal 
to Um resulting in a problem of the form (1b). We will use the following finite-element 
matrix notation in the upcoming sections:

Kij “

ż

Ω
tpκ∇ϕiq ¨ ∇ϕj ` pv ¨ ∇ϕiqϕj ` rϕiϕju dΩ ` β

ż

Γ
ϕiϕj dΓ (27a)

Mij “

ż

Ω
ϕiϕj dΩ (27b)

Rij “δ

ż

Ω
t∇ϕi ¨ ∇ϕj ` ϕiϕju dΩ (27c)

To solve the resulting reduced, discretized optimization problem (18), we employ the 
preconditioned conjugate gradient (CG) method. We use the same algorithm applied to 
(17) to generate the initial guess for (18).
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Table 1
First Row: Logarithmic norm for the two-dimensional advection-diffusion-reaction 
example with varying diffusivities κ P t10´3, 10´2, 10´1, 100

u. Second Row: Average 
number of conjugate gradient iterations using G8

0 ` xR as a preconditioner. Third 
Row: Average number of unpreconditioned conjugate gradient iterations.

κ 10´3 10´2 10´1 100

μEpE´1Aq -0.019735 -0.196642 -1.897475 -13.801099
PCG iters 21.0000 16.2500 8.9375 5.4375
CG iters 26.0625 24.5200 26.6250 28.6250

7.1. Advection-diffusion-reaction equation

For this example, we set A “ ´K, E “ M, and f ” 0. We discretize in space on 
a uniform mesh of 25,600 quadrilateral elements. We choose the coefficients β “ 10, 
κpxq ” 10a for a P t´3, ́ 2, ́ 1, 0u, vpxq ” p1, 1qJ and rpxq ” 0. In addition, we choose 
the true initial condition to be u0pxq “ sinpπx1q sinpπx2q and set the signal-to-noise 
ratio to SNR “ 5. The logarithmic norms of E´1A with respect to the E-norm for the 
varying κ are listed in the first row of Table 1. In the second and third rows, we list the 
average number of pG8

0 ` pRq-preconditioned CG iterations and unpreconditioned CG 
iterations for solving (1) with C corresponding to the greedy sensor locations depicted in 
the left column of Fig. 1. As demonstrated in Section 4, the quality of the preconditioner 
improves as |μEpE´1Aq| increases, which is confirmed by our numerical results. For 
example, when κ “ 1 the preconditioner pG8

0 ` pRq reduces the average number of 
iterations by a factor of roughly 5.2644 when compared with no preconditioning. In 
contrast, when κ “ 10´3, |μEpE´1Aq| is relatively small and CG performs comparably 
with and without preconditioning. In particular, the preconditioner pG8

0 ` pRq reduces 
the average number of iterations only slightly compared to unpreconditioned CG. When 
using pGtf

0 ` pRq as a preconditioner, the average number of CG iterations was nearly 
identical to the values in the second row of Table 1.

In the right column of Fig. 1, we depict the discretized L2-recovery error. For com-
parison, we solved each instance of (1) with 100 realizations of S randomly selected 
sensors for S “ 1, . . . , S0. The solid red lines in the right images are the median of the 
error for the random sensors, while the dashed red lines correspond to the 10% and 90% 
quantiles of the error. The black line corresponds to the recovery error for the greedy 
sensors using G8

0 . As depicted, the greedy sensor selection outperforms the randomly 
selected sensors by a considerable margin for all κ. We note that more sensors are placed 
near the boundary of Ω as κ decreases in size, with increasing numbers of sensors in the 
direction of the advection. This is expected since for small κ the advection dominates 
the diffusion, pushing the state towards the boundary at a higher rate. This feature of 
the greedy algorithm is impossible to recover with randomly placed sensors, resulting in 
poor recovery errors. We note that the greedy sensors selected when using the finite-time 
Gramian Gtf

0 were identical to those selected using G8
0 .
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Fig. 1. Two-dimensional advection-diffusion-reaction results. Left: The greedy sensor locations. Right: The 
recovery error for the greedy and randomly selected sensors measured in the discretized L2 norm.

7.2. Wave equation

For our second example, we consider the one-dimensional wave equation

:u ` γ 9u ´ c2Δu “ 0 in p0, tf q ˆ Ω

c2∇u ¨ n “ βu on p0, tf q ˆ BΩ (28)

up0, ¨q “ u0, 9up0, ¨q “ v0 in Ω.
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Fig. 2. One-dimensional wave equation results. Left: The greedy sensor locations. Right: The recover error 
for the greedy and random sensors measured in the discretized L2 norm.

We discretize (28) on a uniform mesh of 256 intervals and we choose the wave speed 
c “ 2, the damping factor γ “ 10´1, and the Robin coefficient β “ 10. We transform 
(28) into a first-order equation in time by adding the velocity variable v “ 9u, producing 
the PDE

9u “ v in p0, tf q ˆ Ω

9v ` γv ´ c2Δu “ 0 in p0, tf q ˆ Ω

c2∇u ¨ n “ βu on p0, tf q ˆ BΩ.

(29)

In addition, we choose the true initial conditions to be u0pxq “ sinpπxq and v0pxq ” 0, 
and set the signal-to-noise ratio to SNR “ 10. Upon discretization, the system matrices 
are

A “

ˆ

0 M
´K ´γM

˙

, E “

ˆ

M 0
0 M

˙

, and f ” 0,

where K is defined as in (27a) with κ ” c2, v ” 0, and r ” 0. In addition, we restrict the 
set of possible sensors to only measure the u-variable. The logarithmic norm of E´1A, 
with respect to the E-norm, is

μEpE´1Aq « 1,572,898.12.

Clearly, Assumption 1 is violated. However, the spectral abscissa associated with E´1A
is negative (i.e., αpE´1Aq “ ´

γ
2 “ ´0.05). Consequently, the discussion in Remark 2 ap-

plies to this example. A simple computation shows that the constant C in (14) decreases 
by 

?
2 as the finite-element mesh size is doubled, confirming that the E and P norms are 

not equivalent in the limit of the spatial discretization. However, this does suggest that 
our results and method are applicable even though Assumption 1 fails to hold. In Fig. 2, 
we depict the greedy sensor locations, using G8

0 , in the left image and the discretized 
L2-recovery error in the right image. For comparison, we solved (1) with 100 realizations 
of S randomly selected sensors for S “ 1, . . . , S0. The solid red line in the right image 
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Table 2
Greedy sensor locations for the one-dimensional 
wave equation. The first column indicates the or-
der in which each sensor was selected, the second 
column are the sensors selected using G8

0 and the 
third column are the sensors selected using Gtf

0 .

Sensor G8
0 Gtf

0

1 1.00000000 1.00000000
2 0.00000000 0.00000000
3 0.99609375 0.99609375
4 0.00390625 0.00390625
5 0.99218750 0.00781250
6 0.00781250 0.99218750
7 0.01171875 0.98828125
8 0.98828125 0.01171875
9 0.01562500 0.98437500
10 0.98437500 0.01562500
11 0.01953125 0.01953125
12 0.98046875 0.98046875
13 0.97656250 0.97656250
14 0.02343750 0.02343750
15 0.97265625 0.97265625
16 0.02734375 0.02734375

is the median of the error for the random sensors, while the dashed red lines correspond 
to the 10% and 90% quantiles of the error. The black line corresponds to the recovery 
error for the greedy sensors. As seen in this image, greedily selected sensors tend to 
outperform the randomly placed sensors. As with the advection-diffusion-reaction exam-
ple, the greedy sensors are all clustered near the boundary of Ω—a physically intuitive 
feature that cannot be replicated using randomly placed sensors. In Table 2, we list the 
greedy sensor locations, in the order that they were selected. The second column lists 
the sensor locations selected using G8

0 , while the third column lists the sensor locations 
selected using Gtf

0 . In comparison, the sensors selected using Gtf
0 and using G8

0 differ 
only slightly in the order in which they were selected, suggesting that both Gtf

0 and G8
0

perform comparably for sensor selection.

8. Conclusion

The quality of the solution recovered by solving an inverse problem depends on the 
quality of the data. The location of sensors is one important parameter determining data 
quality. We have demonstrated a method to select sensors with guarantees on the quality 
of the resulting solution. Choosing the optimal location of sensors is computationally 
challenging; our method uses a Galerkin projection to reduce the size of the problem 
(which also generates a preconditioner for the inverse problem) and uses a greedy method 
to select each subsequent sensor. Empirically, we have seen that our sensor selection 
method yields improved accuracy compared to selecting random sensors in most cases.
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The following important questions remain open. For which dynamical systems do ran-
dom sensors perform well, and for which dynamical systems are optimized, not greedy, 
sensors important? Can we adapt our Galerkin method for problems with time-varying, 
nonlinear, or unstable dynamics? Can we use similar ideas to design a method for actu-
ator placement using the controllability Gramian? We leave these as future work.
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