
Revealed Preference at Scale:
Learning Personalized Preferences from Assortment Choices

NATHAN KALLUS, Cornell University and Cornell Tech
MADELEINE UDELL, Cornell University

We consider the problem of learning the preferences of a heterogeneous population by observing choices
from an assortment of products, ads, or other offerings. Our observation model takes a form common in
assortment planning applications: each arriving customer is offered an assortment consisting of a subset of
all possible offerings; we observe only the assortment and the customer’s single choice.

In this paper we propose a mixture choice model with a natural underlying low-dimensional structure,
and show how to estimate its parameters. In our model, the preferences of each customer or segment follow
a separate parametric choice model, but the underlying structure of these parameters over all the models
has low dimension. We show that a nuclear-norm regularized maximum likelihood estimator can learn the
preferences of all customers using a number of observations much smaller than the number of item-customer
combinations. This result shows the potential for structural assumptions to speed up learning and improve
revenues in assortment planning and customization. We provide a specialized factored gradient descent
algorithm and study the success of the approach empirically.

CCS Concepts: �Information systems→ Learning to rank; Recommender systems; �Computing
methodologies→ Factorization methods; Learning from implicit feedback; �Mathematics of comput-
ing→ Convex optimization; Maximum likelihood estimation;

Additional Key Words and Phrases: Personalization, Assortment planning, Discrete choice, High-dimensio-
nal learning, Large-scale learning, First-order optimization, Recommender Systems, Matrix completion

1. INTRODUCTION
In many commerce and e-commerce settings, a firm chooses a set of items (products,
ads, or other offerings) to present to a customer, who then chooses from among these
items. Each choice results in some revenue for the firm that depends on the item se-
lected. The problem of choosing the revenue-maximizing assortments of items to offer
to the customer is referred to as assortment planning or assortment optimization. To
solve this problem, a firm must estimate customer preferences, and then choose an
optimal assortment of goods to present based on those estimates.

Usually the number of interactions between the firm and customer is limited so
efficient estimation of customer preferences is critical. But estimating customer pref-
erences is no easy task: there are combinatorially many assortments of goods, and so
potentially combinatorially many quantities to estimate. To enable tractable estima-
tion, customer preferences are often modeled parametrically, using the multinomial
logit (MNL) model or its variants.
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However, one parameter vector may not fit everyone in a heterogeneous population.
For a better fit, it can be important to segment the population into groups (geographic,
demographic, or temporal) and to fit parameters for each segment. In the limit, each
customer may represent a separate segment. In the e-commerce and online advertis-
ing settings, populations can be segmented into individual customers, since firms have
data on the indidual customers’ choices from individually customized assortments. In
the offline brick-and-mortar retail setting, populations may be segmented by store
branch, since firms have data on aggregate choices in each store branch and tastes
often vary geographically and by venue (mall, street, etc.). Customers may also be
segmented into smaller groups using loyalty program data.

The number of observations needed to estimate the parameters of the model for each
segment is at least linear in the number of items. But in modern advertisement mar-
kets or online retail settings, tens of millions of items may be on offer: far more than
the number of ads any one customer can be expected to view or click, or products any
one customer can be expected to consider or buy. Moreover, the sort of data available
in practice is limited to observation of a single choice of a single item out of a whole
assortment, rather than a full ranking or a pairwise comparison.

In this paper we propose a new model that enables tractable estimation as the num-
ber of segments and items grows. We suppose the preferences of each type (individual
customer or customer segment) follow a parametric (MNL) choice model, while the
underlying structure of these parameters over types has a low dimension. We show
that a nuclear-norm regularized maximum likelihood estimator based on such data
can learn the preferences of all customers using a number of observations that grows
sublinearly in the number of type-item combinations. This result shows the potential
for structural assumptions to speed up learning and improve revenue in assortment
planning and customization.

1.1. Related Work
The model presented in this paper builds on two distinct lines of research: on choice
modelling and assortment optimization, and on low-rank matrix completion.

Choice Modelling and Assortment Optimization. Assortment optimization is a cen-
tral problem in revenue management: which items should be presented to a given
customer in order to maximize the expected revenue from the customer’s choice?

The first step in answering this question is to understand how customers choose
from among a set of goods. Discrete choice models posit answers to this question in the
form of a probability distribution over choices. Luce [1959] proposed an early discrete
choice model based on an axiomatic theory, resulting in the basic attraction model.
Later, the work of McFadden [1973] on random utility theory led to the MNL model,
which posits that customer choices follow a log-linear model in a vector of customer
preference parameters. Fitting a single MNL model is as simple as counting the num-
ber of times an item is chosen relative to the other offerings. (These counts give the
maximum likelihood estimate for the model.) Under the MNL model, it is easy to op-
timize assortments: presenting items in revenue sorted order is optimal [Talluri and
Van Ryzin 2006].

Conceiving of assortments as arms and consumer choice as bandit feedback, Rus-
mevichientong et al. [2010] and Sauré and Zeevi [2013] consider dynamic assortment
optimization under a single MNL model. The former also present a polynomial-time
algorithm for optimizing assortment under an MNL model and with cardinality con-
straints.

The mixture of MNLs (MMNL) model models consumer choice as a mixture of MNL
models with different parameters. Unfortunately, it is NP-hard to optimize a single
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assortment to be offered to an MMNL population, even with only two mixture compo-
nents [Rusmevichientong et al. 2014]. Other derivatives of the MNL model include the
nested logit model [Williams 1977] and its extensions [McFadden 1980]. Assortment
optimization over these is also computationally hard [Davis et al. 2014].

Matrix Completion. Recent years have seen a surge of interest in matrix completion:
the problem of (approximately) recovering an (approximately) low rank matrix from a
few (noisy) samples from its values. The surprising result is that simple algorithms,
such as nuclear norm regularized maximum likelihood estimation, can often recover a
low rank matrix given only a small number of observations in each row or column.

Following groundbreaking work on exact completion of exactly low rank matrices
whose entries are observed without noise [Candès and Recht 2009; Candès and Tao
2010; Keshavan et al. 2010; Recht et al. 2010], approximate recovery results have
been obtained for a variety of different noisy observation models. These include obser-
vations with additive gaussian [Candès and Plan 2009] and subgaussian [Keshavan
et al. 2009a] noise, 0-1 (Bernoulli) observations [Davenport et al. 2012], observations
from any exponential family distribution [Gunasekar et al. 2014], and observations
generated according to the Bradley-Terry-Luce model for pairwise comparisons [Lu
and Negahban 2014].

Our results follow in the vein of the statistical matrix completion bounds. The proof
of our main result uses the machinery of restricted strong convexity developed by Ne-
gahban and Wainwright [2012], and echoes many of the ideas in the technical report by
Lu and Negahban [2014], which proved a similar sample complexity result for matrix
completion from observations of pairwise ranks. Our method extends these ideas to
address observations consisting only of a single choice from an arbitrarily-sized subset
of all items. Most recently (and independently of our work), Oh et al. [2015] extended
the results of Lu and Negahban [2014] to observations of the ranking of all items in a
subset, rather than the (pairwise) ranking of items in a subset of size two. A primary
distinguishing feature of our work is the observation model we consider — observing
choices, rather than rankings — which applies naturally to the type of data available in
realistic applications of assortment planning. This type of data is much more common
in practice because it corresponds to passive observations of consumer behavior that
is truthful (assuming choice is utility maximizing) and it is available in large amounts
because it can be derived from transactional data. We also use weaker assumptions on
the distribution of assortment sets offered: in particular, Oh et al. [2015] require that
the sets contain duplicate items (with nonzero probability), where duplicated items are
chosen with higher frequency, violating independence of irrelevant alternatives.

1.2. Contributions
This paper makes four main contributions.

— We propose the low rank MMNL model for customer preferences: the preferences
of each type follow a parametric (MNL) choice model, but the underlying latent
structure of parameters over types has low dimension.

— We consider the problem of learning such a choice model from observations of
choices from assortments and propose a nuclear-norm regularized maximum likeli-
hood estimator.

— Theorem 3.1 provides the first bound on sample complexity of learning this model
from choice data.

— Algorithm 1 provides a fast method for computing our estimator with a small mem-
ory footprint.
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2. PROBLEM STATEMENT AND ALGORITHM
We suppose that at each time t = 1, . . . , T a customer arrives with type it chosen
uniformly at random from the set {1, . . . ,m}. The customer is presented with a choice
of items St ⊆ {1, . . . , j} of size |St| = Kt, where St

∣∣Kt is sampled uniformly from the
set of subsets of {1, . . . , n} of size Kt. We make no assumption on the distribution of Kt

other than that Kt ≤ K is bounded almost surely.
The customer then chooses an item according to a multinomial logit model: item

jt ∈ St is chosen with probability

P (jt = j | it = i, St = S) =
e−Θ�

ij∑
j′∈S e

−Θ�
ij′

. (1)

The standing assumption is that Θ� is of low underlying dimension, either having low
rank r � m,n or approximately low rank (see below for details).

After T observations (it, jt, St) from this model, we wish to estimate the parameter
matrix Θ�. To eliminate redundant degrees of freedom, we assume without loss of
generality that

∑n
j=1 Θ

�
ij = 0 for every i = 1, . . . ,m, i.e., Θ�e = 0. We also assume that

||Θ∗||∞ ≤ α/
√
mn for purely technical reasons; see below. This assumption is standard

in matrix completion recovery results.

Discussion. Model (1) describes an MMNL over mixture components indexed by i.
Using the approximation results of McFadden and Train [2000], for any choice dis-
tribution over a population, there is a variable I such that, the choice distribution is
approximately MNL conditioned on I. Hence the model above can represent any choice
distribution so long as the population is segmented finely enough.

The MMNL model is equivalent to a utility maximizing model under a particular
distribution of customer utilities. Define uij = −Θ�

ij to be the nominal utility of type i
for item j. Suppose that a random customer of type i has utility uij + ζij , where ζij ∼
Gumbell(0, 1) is a random idiosyncratic deviation from the nominal utility distributed
according to the extreme value distribution. When presented with an assortment, each
customer simply chooses the product jt maximizing her own utility function:

jt = max
j∈St

(uij + ζij) . (2)

Our mathematical model (1) can be applied in two conceptually distinct problem
settings. In the first setting, each type i represents a group of customers, each one of
which has an idiosyncratic utility distributed as in (2). We say that the population is
heterogeneous because each type i is associated with a different nominal utility uij for
each product j. In the second setting, each type i represents a single customer. The
random idiosyncracies associated with each choice made by the same customer reflect
human inconsistencies in decision making, or slight variations in preferences over time
[DeShazo and Fermo 2002; Kahneman and Tversky 1979].

The observation model we propose has several advantages. Our observations consist
of customers’ choices from assortments. These choices are typically the only observa-
tion possible in applications of assortment planning. Moreover, these observations tend
to be truthful: customers generally make choices to maximize their utility. Observed
choices should be contrasted with data obtained by interrogating customers about their
ranking of products (for example, in surveys or focus groups); these stated preferences
are known to be unreliable as indicators of true, revealed preferences [Samuelson
1948].

One limitation of our results is that we require a somewhat random design (ran-
dom St) to guarantee that preferences are learned accurately. Hence our results can
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either be interpreted as a prescription on how to design practical, consistent experi-
ments in consumer choice where only choices are observed, or they can be interpreted
as theoretical justification for our algorithm, even if applied to data of general design.
Indeed, the empirical success of matrix completion approaches on real world data sets
suggests that the algorithm may work well even when applied to non-random obser-
vations [Funk 2006]. Other authors have suggested variations on the nuclear norm
regularizer we propose to compensate for non-uniform sampling distributions [Foygel
et al. 2011]; generalizing these variations to observations of assortments is an inter-
esting problem beyond the scope of this paper.

We are not the first to model customer preferences as a mixture of MNLs. For exam-
ple, Bernstein et al. [2011] consider the problem of multi-stage assortment optimiza-
tion over time with limited inventories and for consumers from two or more segments,
each distributed as MNL. They do not consider a learning problem but consider a stim-
ulation study of their optimization techniques based on MNL distributions estimated
from real choice data. This estimation method scales poorly with the dimension of the
problem and so is limited to very few segments (three in their case study). Our model,
on the other hand, scales easily to very large problems: fixing the rank of the parameter
matrix, the complexity of the estimation problem increases linearly with the number
of types and products, rather than the number of their combinations.

Algorithm. Define the negative log likelihood of the observations given parameter Θ
as

LT (Θ) =
1

T

T∑
t=1

log

⎛⎝∑
j∈St

eΘitjt−Θitj

⎞⎠ .

Define the estimator Θ̂ to be any solution of the nuclear norm regularized maximum
likelihood problem

minimize LT (Θ) + λ‖Θ‖∗,
subject to Θe = 0,

‖Θ‖∞ ≤ α/
√
mn,

(3)

where λ > 0 is a parameter, e is the vector of all 1’s, and we define the nuclear norm
‖Θ‖∗ to be the sum of the singular values of Θ. The constraint ‖Θ‖∞ ≤ α/

√
mn appears

as an artifact of the proof; this last constraint can be omitted without sacrificing good
practical performance. See Sec. 6.

Problem (3) is convex and hence can be solved by a variety of standard methods
[Boyd and Vandenberghe 2004]. In Sec. 5 we provide a specialized first-order algorithm
that works on the non-convex, factored form of the problem.

3. MAIN RESULT
We bound the error of our estimator (3) in terms of the following quantities, which
capture the complexity of learning the preferences of all customer types over all items.

— Number of observations. The bound decreases as the number of observations in-
creases.

— Number of parameters. The bound grows as d = m+n
2 grows, where Θ� consists of

m× n parameters.
— Underlying rank dimension. For any r < min (m,n), our bound decomposes into

two error terms. The first error term is the error in estimating the top r “princi-
pal components” of the parameter matrix. This error grows with

√
r and captures

the benefit of learning only the most salient features instead of all parameters at
once. The second error is the error in approximating the parameter matrix by only
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its top r “principal components.” In particular, if it is assumed that Θ� is exactly
rank r then this latter error is always zero. More generally, however, we may con-
ceive of parameter matrices that are approximately low rank, i.e., that have quickly
decaying singular values past the top r, which would lead to a nonzero but small
approximation error.

— Size of parameters. Our bound grows with the (scaled) maximum magnitude of any
entry α.

— Size of choice sets. Our bound grows with the maximum size of the choice sets K.

THEOREM 3.1. Suppose T ≤ d2 log d and λ = 32
√

Kd log d
mnT . Then under the obser-

vation model described and for any integer r ≤ min (m,n), with probability at least
1− 4/d3, any solution Θ̂ to Problem (3) satisfies

‖Θ̂−Θ�‖F ≤ 2048αe
6α√
mn max

{√
K3d log(d)

T

√
r,

(
K3d log(d)

T

)1/4
⎛⎝min{m,n}∑

j=r+1

σj(Θ
�)

⎞⎠1/4}
.

4. PROOF OF MAIN RESULT
Define Δ = Θ̂ − Θ� as the (matrix) error to bound, Kt = |St|, S′

t =
St\{jt}, γ = α/

√
mn, Xtj = eite

T
jt

− eite
T
j , and Yt(Θ) = Var ({Θitj : j ∈ St}) =

1
Kt

∑
j∈St

(
Θitj − 1

Kt

∑
j′∈St

Θitj′
)2

. We will use the following three lemmas, whose
proofs we defer to Sec. 8.

LEMMA 4.1. Let

AΓ,ν =

{
Θ : ‖Θ‖∞ ≤ γ, ‖Θ‖F ≤ Γ, ‖Θ‖∗ ≤ ν

240
√
Kmnγ

√
T

d log d
Γ2, Θe = 0

}
and

MΓ,ν = sup
Θ∈AΓ,ν

(
1

m

1

n
‖Θ‖2F − 1

T

T∑
t=1

Yt(Θ)

)
.

Then

P

(
MΓ,ν ≥ ν

Γ2

mn

)
≤ exp

(
−8

9

ν2

m2n2

Γ4

γ4
T

)
.

LEMMA 4.2. Let

A� =

{
Θ : ‖Θ‖∞ ≤ γ, ‖Θ‖∗ ≤ 1

128
√
Kmnγ

√
T

d log d
‖Θ‖2F, Θe = 0

}
.

Then

P

(
1

T

T∑
t=1

Yt(Θ) ≥ 1

2mn
||Θ||2F ∀Θ ∈ A�

)
≥ 1− 2d−227 .

LEMMA 4.3. With probability at least 1− 2d−3,

||∇LT (Θ
�)||2 ≤ 16

√
Kd log d

mnT
.

826



PROOF (THEOREM 3.1). Let us first assume Δ ∈ A�, and restrict to the high prob-
ability event that the events in both Lemma 4.2 and Lemma 4.3 occur.

Define D = LT (Θ̂) − LT (Θ
�) − ∇LT (Θ

�) · (Θ̂ − Θ�). By Taylor’s theorem, ∃s ∈ [0, 1]
such that

D = ∇2LT (Θ
� + sΔ)[Δ,Δ]

=
1

T

T∑
t=1

(
(1 +

∑
j∈S′

t
evtj )(

∑
j∈S′

t
evtj (Xtj ·Δ)2)

(1 +
∑

j∈S′
t
evtj )2

−
(
∑

j∈S′
t
evtjXtj ·Δ)2

(1 +
∑

j∈S′
t
evtj )2

)

≥ 1

T

T∑
t=1

1

(1 +
∑

j∈S′
t
evtj )2

∑
j∈S′

t

evtj (Xtj ·Δ)2

where vtj = Xtj · (Θ� + sΔ) and the last inequality is Jensen’s. Since ‖Θ�‖∞, ‖Θ̂‖∞ ≤ γ
we have |vtj | ≤ 2γ and since the mean minimizes sum of squared distances,

D ≥ 1

T

1

e6γ

T∑
t=1

1

K2
t

∑
j∈S′

t

(Xtj ·Δ)2 ≥ 1

T

1

K

1

e6γ

T∑
t=1

Yt(Δ). (4)

Let Θ� = U diag(σ1, σ2, . . . )V
T be the singular-value decomposition (SVD) of Θ� with

singular values sorted largest to smallest. Using block notation and following Recht
et al. [2010], let us rewrite Δ and define Δ′,Δ′′

UTΔV = Γ =

(
Γ11 Γ12

Γ21 Γ22

)
with Γ11 ∈ R

r×r

Δ′′ = U

(
0 0
0 Γ22

)
V T , Δ′ = U

(
Γ11 Γ12

Γ21 0

)
V T .

Then Δ = UΓV T = Δ′ +Δ′′. Note that,

rank(Δ′) = rank(UTΔ′V ) = rank

((
Γ11/2 Γ12

0 0

)
+

(
Γ11/2 0
Γ21 0

))
≤ 2r.

Letting Θ�
r = U diag(σ1, . . . , σr, 0, 0, . . . )V

T and its complement Θ�

r = Θ� −Θ�
r , we see

‖Θ̂‖∗ = ‖Θ� +Δ‖∗ = ‖Θ�
r +Θ

�

r +Δ′ +Δ′′‖∗
≥ ‖Θ�

r +Δ′′‖∗ − ‖Θ�

r‖∗ − ‖Δ′‖∗
= ‖Θ�

r‖∗ + ‖Δ′′‖∗ − ‖Θ�

r‖∗ − ‖Δ′‖∗
= ‖Θ�‖∗ + ‖Δ′′‖∗ − 2‖Θ�

r‖∗ − ‖Δ′‖∗,
and so ‖Θ̂‖∗ − ‖Θ�‖∗ ≤ 2‖Θ�

r‖∗ + ‖Δ′‖∗ − ‖Δ′′‖∗.
By the optimality of Θ̂, we have

LT (Θ̂) + λ‖Θ̂‖∗ ≤ L(Θ�) + λ‖Θ�‖∗.
Hence, by Hölder’s inequality,

0 ≤ D = LT (Θ̂)− LT (Θ
�)−∇LT (Θ

�) ·Δ
≤ ||∇LT (Θ

�)||2 ||Δ||∗ + λ
(
‖Θ�‖∗ − ‖Θ̂‖∗

)
. (5)

Since ||∇LT (Θ
�)||2 ≤ λ, triangle inequality in (5) yields

D ≤ ||∇LT (Θ
�)||2 ||Δ||∗ + λ||Δ||∗ ≤ 2λ ||Δ||∗ .
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Together with Lemma 4.2 and eq. (4) (for the lower bound) and our choice of λ (for the
upper bound), this yields

1

2e6γmnK
||Δ||2F ≤ D ≤ 64

√
Kd log d

mnT
||Δ||∗ . (6)

Hence, recalling γ = α√
mn

,

||Δ||2F ≤ 128αe
6α√
mnK3/2

√
d log d

T
||Δ||∗ . (7)

Returning to (5), since ||∇LT (Θ
�)||2 ≤ λ/2, we have

0 ≤ ‖∇LT (Θ
�)‖2‖Δ‖∗ + λ

(
‖Θ�‖∗ − ‖Θ̂‖∗

)
≤ λ

(
1

2
‖Δ‖∗ + 2‖Θ�

r‖∗ + ‖Δ′‖∗ − ‖Δ′′‖∗
)

≤ λ

(
2‖Θ�

r‖∗ +
3

2
‖Δ′‖∗ − 1

2
‖Δ′′‖∗

)
,

and so ||Δ′′||∗ ≤ 3 ||Δ′||∗+4‖Θ�

r‖∗. Let ρ = ‖Θ�

r‖∗ =
∑min{m,n}

j=r+1 σj . Since ||Δ||2F−||Δ′||2F =

||Γ22||2F ≥ 0,

||Δ||∗ ≤ ||Δ′||∗ + ||Δ′′||∗ = 4 ||Δ′||∗ + 4ρ

≤ 8max {||Δ′||∗ , ρ} ≤ 8max
{√

2r ||Δ′||F , ρ
}

≤ 16max
{√

r ||Δ||F , ρ
}
. (8)

If
√
r‖Δ‖F ≥ ρ, substitute (8) in (7) to see

||Δ||F ≤ 2048αe
6α√
mnK3/2

√
rd log d

T
.

Otherwise (if
√
r‖Δ‖F < ρ), substitute (8) in (7) and take the square root to see

||Δ||F ≤
√
2048αe

6α√
mnK3/2

√
ρd log d

T

≤ 2048αe
6α√
mnK3/4

(
ρd log d

T

)1/4

.

Combining yields the statement.
Our last step is to investigate the case where Δ ∈ A�, i.e.,

‖Δ‖∗ ≥ 1

128
√
Kmnγ

√
T

d log d
‖Δ‖2F.

In this case we can’t use (7), which relies on Lemma 4.2. But rewriting and introducing
redundant terms greater than 1, we see

‖Δ‖2F ≤ 128αe
6α√
mnK3/2

√
d log d

T
‖Δ‖∗,

Hence we recover (7) whether or not Δ ∈ A�.
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ALGORITHM 1: Factored Gradient Descent for (9)
input: dimensions m, n, r̃, data {(it, jt, St)}Tt=1, regularizing coefficient λ, and tolerance τ
U ← U0, V ← V 0, f ′ ← ∞.
repeat

η ← 1, f ← f ′, ΔU ← −λU, ΔV ← −λV
for t = 1, . . . , T do

Q = 0
for j ∈ St do
wj ← e−UT

it
Vj

W ← W + wj

end for
ΔU ← ΔU − 1

T

(
eitV

T
jt − 1

W

∑
j∈St

wjeitV
T
j

)

ΔV ← ΔV − 1
T

(
ejtU

T
it − 1

W

∑
j∈St

wjejU
T
it

)

end for
repeat

U ′ ← U + ηΔU , V ′ ← V + ηΔV
f ′ ← LT (U

′V ′T ) + λ
2
‖U ′‖2F + λ

2
‖V ′‖2F

η ← βdecη
until f ′ ≤ f
U ← U ′, V ← V ′

until f−f ′
f ′ ≤ τ

output: UV T − UV T eeT /n

5. A FACTORED GRADIENT DESCENT ALGORITHM
In this section we provide a factored gradient descent (FGD) algorithm for the prob-

lem
minimize LT (Θ) + λ‖Θ‖∗,
subject to Θe = 0.

(9)

As discussed in Sec. 2, the algorithm we employ does not enforce the constraint ||Θ||∞,
as is common for matrix completion. This constraint is necessary for the technical
result in our main theorem, but is unnecessary in practice, as can be seen in our nu-
merical results in Sec. 6.

In applications, one is interested in solving the problem (9) for very large m, n, T .
Due to the complexity of Cholesky factorization, this rules out theoretically-tractable
second-order interior point methods. One standard approach is to use a first-order
method, such as Cai et al. [2010]; Hazan [2008]; Orabona et al. [2012]; Parikh and
Boyd [2014]; however, this approach requires (at least a partial) SVD at each step.
An alternative approach, which we take here, is to optimize as variables the factors
U ∈ R

m×r̃ and V ∈ R
n×r̃ of the optimization variable Θ = UV T rather than producing

these via SVD at each step; see, e.g., Jain et al. [2013]; Keshavan et al. [2009b]. To
guarantee equivalence of the problems, we must take r̃ = min (m,n). However, if we
believe the solution is low rank, we may use a smaller r̃, reducing computational work
and storage.

Our FGD algorithm proceeds by applying gradient descent steps to the uncon-
strained problem

minimize LT (UV T ) + λ
2 ‖U‖2F + λ

2 ‖V ‖2F,
subject to U ∈ R

m×r̃, V ∈ R
n×r̃.

(10)

LEMMA 5.1. Problem (10) is equivalent to Problem (9) subject to the additional
constraint rank(Θ) ≤ r̃.
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Fig. 1: RMSE of estimators for Θ� with m = n = 100, 150, 200, . . . , 500, 750, . . . , 4000 and
r = 2, 25.

PROOF. Given Θ feasible in (9) with rank(Θ) ≤ r̃, write its SVD Θ = ŨΣṼ T , where
Σ ∈ R

r̃×r̃ is diagonal and U, V unitary. Letting U = ŨΣ1/2 and V = Ṽ Σ1/2, we obtain
a feasible solution to (10) with the same objective value Θ has in (9). Conversely, given
U, V feasible in (10), let Θ = UV T − UV T eeT /n. Note rank(Θ) ≤ r̃, Θe = 0, LT (UV T ) =
LT (Θ) as LT (·) is invariant to constant shifts to rows, and

‖Θ‖∗ ≤ ‖UV T ‖∗ = tr(Σ) = tr(ŨTUV T Ṽ )

≤ ‖ŨTU‖F‖V T Ṽ ‖F ≤ ‖U‖F‖V ‖F ≤ 1

2
‖U‖2F +

1

2
‖V ‖2F.

Hence, Θ has objective value no worse than (U, V ).

It is easy to compute the the gradients of the objective of (10). Since LT (Θ) is differ-
entiable,

∇ULT (UV T ) = ∇LT (UV T )V,

∇V LT (UV T ) = ∇LT (UV T )TU.

We do not need to explicitly form ∇LT (UV T ) in order to compute these; this obser-
vation reduces the memory required to implement the algorithm (see Algorithm 1).
Similarly, we need not form UV T to compute LT (UV T ). Recent work has shown that
gradient descent on the factors converges linearly to the global optimum for problems
that enjoy restricted strong convexity [Bhojanapalli et al. 2015]. In eq. (6) we establish
restricted strong convexity for our problem with high probability.

We initialize FGD using a technique recommended by Bhojanapalli et al. [2015]
which only requires access to gradients of the objective of (9). Using the SVD, write
−∇LT (0) = Ũ diag(σ̃1, . . . , σ̃min(m,n))Ṽ

T and initialize

U0 = γ−1/2 diag(
√
σ̃1, . . . ,

√
σ̃r̃)Ũ:,r̃,

V 0 = γ−1/2 diag(
√
σ̃1, . . . ,

√
σ̃r̃)Ṽ:,r̃,

where γ = ‖∇LT (0) − (∇LT (e1e
T
1 ) + λe1e

T
1 )‖F and Ũ:,r̃, Ṽ:,r̃ denote the first r columns

of Ũ , Ṽ . We use an adaptive step size with a line search that guarantees descent.
Starting with a stepsize of η = 1, the stepsize is repeatedly decreased by a factor βdec

until the step produces a decrease in the objective. We terminate the algorithm when
the decrease in the relative objective value is smaller than the convergence tolerance
τ .
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Fig. 2: RMSE of our estimators for Θ� by observation per row with r = 2.

6. EXPERIMENTAL RESULTS
In this section we study the problem experimentally to investigate the success of our
algorithm. We compare our estimate Θ̂ with the standard maximum likelihood esti-
mate Θ̂MLE that solves

minimize LT (Θ),
subject to Θe = 0.

(11)

Note that since it imposes no structure on the whole matrix Θ, problem (11) decom-
poses into m subproblems for each type (row of Θ̂MLE), each solving a separate MNL
MLE in n variables. In our experiments, we use Newton’s method as implemented by
Optim.jl to solve each of the subproblems, omitting the constraint Θe = 0 and project-
ing onto it at termination since LT (·) is invariant to shifts in this subspace.

To generate Θ�, we fix m, n, r, let Θ0 be an m × n matrix composed of indepen-
dent draws from a standard normal, take its SVD Θ0 = U diag (σ1, σ2, . . . )V

T , trun-
cate it past the top r components Θ1 = U diag (σ1, . . . , σr, 0, . . . )V

T , and renormalize to
achieve unit sample standard deviation to get Θ�, i.e., Θ� = Θ1/ std(vec(Θ1)). To gen-
erate the choice data, we let it be drawn uniformly at random from {1, . . . ,m}, St be
drawn uniformly at random from all subsets of size 10, and jt be chosen according to
(1) with parameter Θ�.

For our estimator we use Algorithm 1 with r̃ = 2r, λ = 1
8

√
Kd log d
mnT , βdec = 0.8, and

τ = 10−10. This regularizing coefficient scales with m, n, d, T , and K as suggested
by Theorem 3.1, but we find the algorithm performs better in practice when we use a
smaller constant than that suggested by the theorem.

We plot the results in Figure 1, where error is measured in root mean squared error
(RMSE)

RMSE(Θ) =
√

Avg
({(Θij −Θ�

ij)
2}i,j

)
=

1√
mn

||Θ−Θ�||F .

The results show the advantage in efficient use of the data offered by our approach. The
results also show that, relative to MLE, the advantage is greatest when the underlying
rank r is small and the number of parameters m × n is large, but that we maintain a
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significant advantage even for moderate r and m×n. For large numbers of parameters
(m = n ≥ 750), the RMSE of MLE is very large and does not appear in the plots. Only
in the case of greatest rank (r = 25), smallest number of parameters (m = n = 100),
and greatest number of observations (T = 106) does MLE appear to somewhat catch
up with our estimator.

In Figure 2, we plot the RMSE of our estimator against the number of observations
per type (or item) T/d for a square problem with d = m = n. We see nearly the same
error curve traced out as we vary the problem size d. This scaling shows that our
estimator is able to leverage the low-rank assumption and require the same number
of choice observations per type to achieve the same RMSE regardless of problem size.

7. CONCLUSION
This paper proposes a new model for assortment choices — the low rank MMNL model
— in which the preferences of each type follow a parametric multinomial logit distribu-
tion, but share a latent linear structure. We show that this preference structure can be
efficiently learned both in theory and in practice through a bound on the sample com-
plexity and through numerical simulations. The optimization problem we propose ad-
mits a fast algorithm that scales linearly in the number of types and products. The low
rank MMNL approach can make learning choice models from choice data significantly
more efficient compared with standard methods, and thereby enables a fine-grained
understanding of preferences in a diverse population.

8. PROOFS OF PRELIMINARY LEMMAS
PROOF (LEMMA 4.1). Let Θe = 0. Then because St is permutation symmetric we

get that

E [Yt(Θ)] =
1

m

∣∣∣∣∣∣∣∣Θ( In√
n
− 1n×n

n
√
n

)∣∣∣∣∣∣∣∣2
F
=

1

m

1

n
‖Θ‖2F.

Therefore, letting Y ′
t (Θ) be an identical and independent replicate of Yt(Θ) and let-

ting εt be iid Rademacher random variables independent of all else, we have

EMΓ,ν = E

[
sup

Θ∈AΓ,ν

1

T

T∑
t=1

(EY ′
t (Θ)− Yt(Θ))

]

≤ E

[
sup

Θ∈AΓ,ν

1

T

T∑
t=1

(Y ′
t (Θ)− Yt(Θ))

]

= E

[
sup

Θ∈AΓ,ν

1

T

T∑
t=1

εt (Y
′
t (Θ)− Yt(Θ))

]

≤ 2E

[
sup

Θ∈AΓ,ν

1

T

T∑
t=1

εtYt(Θ)

]
.

Letting eS ∈ R
n be the indicator vector of the set S,

Yt(Θ) =
1

Kt

∣∣∣∣∣∣∣∣(diag(eSt)−
1

Kt
eSte

T
St

)
ΘT eit

∣∣∣∣∣∣∣∣2
2

.

Note ||·||22 is 2γk-Lipschitz with respect to ∞-norm on a domain in [−γ, γ]n where only
k entries are nonzero. Therefore, by Lemma 7 of Bertsimas and Kallus [2014] and by
Hölder’s inequality, letting Wt =

∑
j∈St

εtj

(
eite

T
j − 1

Kt

∑
j′∈St

eite
T
j′

)
where εtj are iid
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Rademacher random variables independent of all else,

EMΓ,ν ≤ 4γE

[
sup

Θ∈AΓ,ν

1

T

T∑
t=1

Wt ·Θ
]

≤ 4γE

∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

Wt

∣∣∣∣∣
∣∣∣∣∣
2

sup
Θ∈AΓ,ν

||Θ||∗ .

Note ||Wt||2 ≤ √
Kt ≤

√
K. Moreover,

E
[
WtW

T
t

∣∣St, it
]
= (Kt − 1)eite

T
it ,

and so
∣∣∣∣E [WtW

T
t

]∣∣∣∣
2
=

EKt − 1

m
.

Since St|Kt is uniform,

E
[
WT

t Wt

∣∣St

]
= diag(eSt)−

1

Kt
eSt

eTSt
,∣∣∣∣E [WT

t Wt

∣∣Kt

]∣∣∣∣
2
=

Kt − 1

n− 1
,

and so
∣∣∣∣E [WT

t Wt

]∣∣∣∣
2
≤ EKt − 1

n− 1
,

by iterated expectation and Jensen’s inequality. The matrix Bernstein inequality
[Tropp 2012, Thm. 1.6] gives that

∣∣∣∣∣∣ 1T ∑T
t=1 Wt

∣∣∣∣∣∣
2
≥ δ with probability at most

(m+ n)max

{
e−

Tδ2 min{m,n−1}
4(EKt−1) , e

− δ
2
√

K

}
.

Setting the probability to 1/d3/2 and using T ≤ d2 log d,

E

[∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

Wt

∣∣∣∣∣
∣∣∣∣∣
2

]
≤

√
K

d3/2
+ 2

√
(EKt − 1) log(2d3/2)

T min {m,n− 1}

≤
√
K

d3/2
+ 2

√
3

√
K log d

T min {m,n− 1}

≤ 5

√
K log d

T min {m,n− 1} ≤ 10

√
K log d

T min {m,n} .

Putting it all together, we get,

EMΓ,ν ≤ νΓ2

6
√
mn

√
1

dmin {m,n} ≤ ν

3

Γ2

mn
.

Next we use this to prove the concentration of MΓ,ν . Let M′
Γ,ν be a replicate of MΓ,ν

with i′t = it, S
′
t = St for all t except t′. The difference MΓ,ν −M′

Γ,ν is bounded by

1

T
sup

Θ∈AΓ,ν

(
Var

({
Θit′ j

}
j∈St′

)
−Var

({
Θi′

t′ j

}
j∈S′

t′

))
≤ 1

T

(
γ2 − 0

)
=

γ2

T
.
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Hence, by McDiarmid’s inequality, we have

P (MΓ,ν − EMΓ,ν ≥ δ) ≤ e
− 2Tδ2

γ4 .

Using δ = 2ν
3

Γ2

mn and EMΓ,ν ≤ δ/2 we get the result.

PROOF (LEMMA 4.2). Since ‖ · ‖∗ ≥ ‖ · ‖F, we have infΘ∈A� ‖Θ‖F ≥ τ :=

128
√
Kmnγ

√
d log d/T . Let Al = A� ∩ {√2

l−1 ≤ ||Θ||F ≤ √
2
l} and note that A� =⋃∞

l=1 Al and Al ⊂ A√
2
l
τ,1/4

. Moreover, if Θ ∈ Al has 1
T

∑T
t=1 Yt(Θ) < 1

2mn ||Θ||2F then

||Θ||2F
mn

− 1

T

T∑
t=1

Yt(Θ) >
||Θ||2F
2mn

≥ 1

mn

1

4
(
√
2
l
τ)2.

Therefore, with p denoting the probability in the statement of the theorem to be
bounded,

1− p ≤ min

{
1,

∞∑
l=1

P

(
M√

2
l
τ,1/4

>
1

4

1

mn

(√
2
l
τ
)2)}

≤ min

{
1,

∞∑
l=1

exp

(
− 1

18

4lτ4T

m2n2γ4

)}

≤ min

{
1,

∞∑
l=1

exp

(
−2

9

τ4T

m2n2γ4
l

)}

= min

{
1,

(
exp

(
1

72

τ4T

m2n2γ4

)
− 1

)−1
}

≤ 2 exp

(
−2

9

τ4T

m2n2γ4

)
= 2 exp

(−59652323.6d2K2(log d)2/T
)

≤ 2d−59652323.6·22

≤ 2d−238609294

≤ 2d−227 ,

using Lemma 4.1, T ≤ d2 log d, and K ≥ 2.

PROOF (LEMMA 4.3). Let Rt(Θ) = eitejt −
∑

j∈St
ηtj(Θ)eite

T
j∑

j∈St
ηtj(Θ) where ηtj(Θ) = e−Θitj .

Then ∇LT (Θ) = 1
T

∑T
t=1 Rt(Θ). Note that because jt is drawn according to Θ�, we have

that E
[
Rt(Θ

�)
∣∣it, St

]
= 0 and hence ERt(Θ

�) = 0. Let Rt = Rt(Θ
�), ηtj = ηtj(Θ

�). Note
that ‖Rt‖2 ≤ √

2. Moreover, letting κt =
∑

l∈St
ηtl,

RtR
T
t = eiteit

(
1− 2ηtjt

κt
+

∑
j∈St

η2tj

κ2
t

)
.
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Since by Jensen’s inequality the multiplier in the parentheses is no greater than 2, we
get

∣∣∣∣E [RtR
T
t

]∣∣∣∣
2
≤ 2

m ≤ 2K
m . Letting ytj = I [j = jt], we have

RT
t Rt =

∑
j,k∈St

eje
T
k

(
ytjytk − 2ytjηtk

κt
+

ηtjηtk
κ2
t

)
.

Since ytj ≥ 0, ηtj ≥ 0, and ytjytk ≤ I [j = k],∣∣∣∣E [RT
t Rt

]∣∣∣∣
2
≤ ||E [diag(eSt

]||2 +
∣∣∣∣∣
∣∣∣∣∣E
[
eSt

eTSt

]
K2

t

∣∣∣∣∣
∣∣∣∣∣
2

≤ K

n
+

1

n
≤ 2K

n
.

By matrix Bernstein inequality [Tropp 2012, Thm. 1.6],
∣∣∣∣∣∣ 1T ∑T

t=1 Rt

∣∣∣∣∣∣
2
≥ δ with prob-

ability at most

2dmax

{
e−

Tδ2 min{m,n}
8K , e

− Tδ
2
√

2

}
.

Hence, with probability at least 1− 2d−3,∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

Rt

∣∣∣∣∣
∣∣∣∣∣
2

≤
√

32K log d

min {m,n}T ≤
√

128Kd log d

mnT
.
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