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Abstract

This paper develops a new class of nonconvex regularizers for low-rank matrix re-
covery. Many regularizers are motivated as convex relaxations of the matrix rank
function. Our new factor group-sparse regularizers are motivated as a relaxation of
the number of nonzero columns in a factorization of the matrix. These nonconvex
regularizers are sharper than the nuclear norm; indeed, we show they are related
to Schatten-p norms with arbitrarily small 0 < p ≤ 1. Moreover, these factor
group-sparse regularizers can be written in a factored form that enables efficient
and effective nonconvex optimization; notably, the method does not use singular
value decomposition. We provide generalization error bounds for low-rank matrix
completion which show improved upper bounds for Schatten-p norm reglarization
as p decreases. Compared to the max norm and the factored formulation of the
nuclear norm, factor group-sparse regularizers are more efficient, accurate, and
robust to the initial guess of rank. Experiments show promising performance of
factor group-sparse regularization for low-rank matrix completion and robust prin-
cipal component analysis.

1 Introduction

Low-rank matrices appear throughout the sciences and engineering, in fields as diverse as computer
science, biology, and economics [1]. One canonical low-rank matrix recovery problem is low-rank
matrix completion (LRMC) [2, 3, 4, 5, 6, 7, 8, 9, 10], which aims to recover a low-rank matrix
from a few entries. LRMC has been used to impute missing data, make recommendations, discover
latent structure, perform image inpainting, and classification [11, 12, 1]. Another important low-
rank recovery problem is robust principal components analysis (RPCA) [13, 14, 15, 16, 17], which
aims to recover a low-rank matrix from sparse but arbitrary corruptions. RPCA is often used for
denoising and image/video processing [18].

LRMC Take LRMC as an example. Suppose M ∈ R
m×n is a low-rank matrix with rank(M) =

r ≪ min(m,n). We wish to recover M from a few observed entries. Let Ω ⊂ [m]× [n] index the
observed entries. Suppose card(Ω), the number of observations, is sufficiently large. A natural idea
is to recover the missing entries by solving

minimize
X

rank(X), subject to PΩ(X) = PΩ(M), (1)
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where the operator PΩ : R
m×n → R

m×n acts on any X ∈ R
m×n in the following way:

(PΩ(X))ij = Xij if (i, j) ∈ Ω and 0 if (i, j) /∈ Ω. However, since the direct rank minimiza-
tion problem (1) is NP-hard, a standard approach is to replace the rank with a tractable surrogae
R(X) and solve

minimize
X

R(X), subject to PΩ(X) = PΩ(M). (2)

Below we review typical choices of R(X) to provide context for our factor group-sparse regulariz-
ers.

Nuclear and Schatten-p norms One popular convex surrogate function for the rank function is
the nuclear norm (also called trace norm), which is defined as the sum of singular values:

‖X‖∗ :=

min(m,n)
∑

i=1

σi(X), (3)

where σi(X) denotes the i-th largest singular value of X ∈ R
m×n. Variants of the nuclear norm,

including the truncated nuclear norm [19] and weighted nuclear norm [20], sometimes perform
better empirically on imputation tasks.

The Schatten-p norms1 with 0 ≤ p ≤ 1 [21, 22, 23] form another important class of rank surrogates:

‖X‖Sp :=
(

min(m,n)
∑

i=1

σp
i (X)

)1/p

. (4)

For p = 1, we have ‖X‖1S1
= ‖X‖∗, the nuclear norm. For 0 < p < 1, ‖X‖pSp

is a nonconvex

surrogate for rank(X). In the extreme case p = 0, ‖X‖0S0
= rank(X), which is exactly what we

wish to minimize. Thus we see ‖X‖pSp
with 0 < p < 1 interpolates between the rank function and

the nuclear norm. Instead of (1), we hope to solve

minimize
X

‖X‖pSp
, subject to PΩ(X) = PΩ(M), (5)

with 0 < p ≤ 1. Smaller values of p (0 < p ≤ 1) are better approximations of the rank function
and may lead to better recovery performance for LRMC and RPCA. However, for 0 < p < 1 the
problem (5) is nonconvex, and it is not generally possible to guarantee we find a global optimal
solution. Even worse, common algorithms for minimizing the nuclear norm and Schatten-p norm
cannot scale to large matrices because they compute the singular value decomposition (SVD) in
every iteration of the optimization [2, 3, 24].

Factor regularizations A few SVD-free methods have been develoepd to recover large low-rank
matrices. For example, the work in [25, 26] uses the well-known fact that

‖X‖∗ = min
AB=X

‖A‖F‖B‖F = min
AB=X

1

2

(

‖A‖2F + ‖B‖2F
)

, (6)

where A ∈ R
m×d, B ∈ R

d×n, and d ≥ rank(X). For LRMC they suggest solving

minimize
A,B

1

2
‖PΩ(M −AB)‖2F +

λ

2

(

‖A‖2F + ‖B‖2F
)

. (7)

In this paper, we use the name factored nuclear norm (F-nuclear norm for short) for the varia-
tional characterization of nuclear norm as minAB=X

1
2

(

‖A‖2F + ‖B‖2F
)

in (6). This expression
matches the nuclear norm when d is chosen large enough. Srebro and Salakhutdinov [27] proposed
a weighted F-nuclear norm; the corresponding formulation of matrix completion is similar to (7).
Note that to solve (7) we must first choose the value of d. We require d ≥ r := rank(M) to be
able to recover (or even represent) M . Any d ≥ r gives the same solution AB to (7). However, as
d increases from r, the difficulty of optimizing the objective increases. Indeed, we observe in our
experiments that the recovery error is larger for large d using standard algorithms, particularly when

1Note that formally ‖ · ‖Sp with 0 ≤ p < 1 is a quasi-norm, not a norm; abusively, we still use the term
“norm” in this paper.
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the proportion of observed entries is low. In practice, it is difficult to guess r, and generally a very
large d is required. The methods of [28] and [29] estimate r dynamically.

Another SVD-free surrogate of rank is the max norm, proposed by Srebro and Shraibman [30]:

‖X‖max = min
AB=X

(

max
i

‖ai‖
)(

max
j

‖bj‖
)

, (8)

where ai and bj denotes the i-th row of A and the j-th row of BT respectively. Lee et al. [31]
proposed several efficient algorithms to solve optimization problems with the max norm. Foygel
and Srebro [5] provided recovery guarantees for LRMC using the max norm as a regularizer.

Another very different approach uses implicit regularization. Gunasekar et al. [32] show that for
full dimensional factorization without any regularization, gradient descent with small enough step
size and initialized close enough to the origin converges to the minimum nuclear norm solution.
However, convergence slows as the initial point and step size converge to zero, making this method
impractical.

Shang et al. [33] provided the following characterization of the Schatten-1/2 norm:

‖X‖S1/2
= min

AB=X
‖A‖∗‖B‖∗ = min

AB=X

(‖A‖∗+‖B‖∗

2

)2
. (9)

Hence instead of directly minimizing ‖X‖1/2S1/2
, one can minimize ‖A‖∗ + ‖B‖∗, which is much

easier when r ≤ d ≪ min(m,n). But again, this method and its extension ‖A‖∗ + 1
2‖B‖2F

proposed in [34] require d ≥ r, and the computational cost increases with larger d. Figure 1(d)
shows these approaches are nearly as expensive as directly minimizing ‖X‖pSp

when d is large. We

call the regularizers minAB=X(‖A‖∗ + ‖B‖∗) and minAB=X(‖A‖∗ + 1
2‖B‖2F ) the Bi-nuclear

norm and F2+nuclear norm respectively.

Our methods and contributions In this paper, we propose a new class of factor group-sparse
regularizers (FGSR) as a surrogate for the rank of X . To derive our regularizers, we introduce the
factorization AB = X and seek to minimize the number of nonzero columns of A or BT . Each
factor group-sparse regularizer is formed by taking the convex relaxation of the number of nonzero
columns. These regularizers are convex functions of the factors A and B but capture the nonconvex
Schatten-p (quasi-)norms of X using the nonconvex factorization constraint X = AB.

• We show that these regularizers match arbitrarily sharp Schatten-p norms: for each 0 < p′ ≤ 1,
there is some p < p′ for which we exhibit a factor group-sparse regularizer equal to the sum of
the pth powers of the singular values of X .

• For a class of p, we propose a generalized factorization model that enables us to minimize
‖X‖pSp

without performing the SVD.

• We show in experiments that the resulting algorithms improve on state-of-the-art methods for
LRMC and RPCA.

• We prove generalization error bounds for LRMC with Schatten-p norm regularization, which
explain the superiority of our methods over nuclear norm minimization.

Notation Throughout this paper, ‖ · ‖ denotes the Euclidean norm of a vector argument. We

factor X ∈ R
m×n as A = [a1,a2, · · · ,ad] ∈ R

m×d and B = [b1, b2, · · · , bd]T ∈ R
d×n, where

d ≥ r := rank(X), and aj and bj are column vectors. Without loss of generality, we assume
m ≤ n. All proofs appear in the supplement.

2 FGSRs match Schatten-p norms with p =
2

3
or 1

2
.

Let nnzc(A) denote the number of nonzero columns of matrix A. Write the rank of X ∈ R
m×n as

rank(X) = min
AB=X

nnzc(A) = min
AB=X

nnzc(BT ) = min
AB=X

1

2

(

nnzc(A) + nnzc(BT )
)

. (10)

Now relax: notice nnzc(A) ≥∑d
j=1 ‖aj‖ when ‖aj‖ ≤ 1 for each column j. We show that using

this relaxation in (10) gives a factored characterization of the Schatten-p norm with p = 1
2 or 2

3 .
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Theorem 1. Fix α > 0. For any matrix X ∈ R
m×n with rank(X) = r ≤ d ≤ min(m,n),

min
X=

∑d
j=1

ajb
T
j

d
∑

j=1

‖aj‖+ ‖bj‖ =2

r
∑

j=1

σ
1/2
j (X) (11)

min
X=

∑
d
j=1

ajb
T
j

d
∑

j=1

‖aj‖+
α

2
‖bj‖2 =

3α1/3

2

r
∑

j=1

σ
2/3
j (X). (12)

Denote the SVD of X as X = UXSXV T
X . Equality holds in equation (11) when A = UXS

1/2
X

and B = S
1/2
X V T

X ; in equation (12), when A = α1/3UXS
2/3
X and B = α−1/3S

1/3
X V T

X .

Motivated by this theorem, we define the following factor group-sparse regularizers (FGSR):

FGSR1/2(X) :=
1

2
min

AB=X
‖A‖2,1 + ‖BT ‖2,1. (13)

FGSR2/3(X) :=
2

3α1/3
min

AB=X
‖A‖2,1 +

α

2
‖B‖2F , (14)

where ‖A‖2,1 :=
∑d

j=1 ‖aj‖. Theorem 1 shows that FGSR2/3 has the same value regardless of the

choice of α, which justifies the definition. As a corollary of Theorem 1, we see

FGSR1/2(X) =
r
∑

j=1

σ
1/2
j (X) = ‖X‖1/2S1/2

, FGSR2/3(X) =
r
∑

j=1

σ
2/3
j (X) = ‖X‖2/3S2/3

.

To solve optimization problems involving these surrogates for the rank, we can use the definition of
the FGSR and optimize over the factors A and B. It is easier to minimize FGSR2/3(X) than to

minimize FGSR1/2(X) because the latter has two nonsmooth terms.

As surrogates for the rank function, FGSR2/3 and FGSR1/2 have the following advantages:

• Tighter rank approximation. Compared to the nuclear norm, the spectral quantities in Theo-
rem 1 are tighter approximations to the rank of X .

• Robust to rank initialization. The iterative algorithms we propose in Sections 4 and 6 to min-
imize FGSR2/3 and FGSR1/2 quickly force some of the columns of A and BT to zero, where
they remain. Hence the number of nonzero columns is reduced dynamically, and converges to
r quickly in experiments: these methods are rank-revealing. In constrast, iterative methods to
minimize the F-nuclear norm or max norm never produce an exactly-rank-r iterate after a finite
number of iterations.

• Low computational cost. Most optimization methods for solving problems with the Schatten-
p norm perform SVD on X at every iteration, with time complexity of O(m2n) (supposing
m ≤ n) [21, 22]. In contrast, the natural algorithm to minimize FGSR2/3 and FGSR1/2 does
not use the SVD, as the regularizers are simple (not spectral) functions of the factors. The main
computational cost is to form AB, which has a time complexity of O(d′mn) when the iterates
A and B have d′ nonzero columns. The complexity of LRMC can be as low as O(d′card(Ω)).

3 Toward exact rank minimization

In the previous section, we developed a factored representation for ‖X‖pSp
when p = 2

3 or 1
2 . This

section develops a similar representation for ‖X‖pSp
with arbitrarily small p.

Theorem 2. Fix α > 0, and choose q ∈ {1, 12 , 1
4 , · · · }. For any matrix X ∈ R

m×n with rank(X) =
r ≤ d ≤ min(m,n), we have

min
X=

∑d
j=1

ajb
T
j

d
∑

j=1

1

q
‖aj‖q + α‖bj‖ =(1 + 1/q)αq/(q+1)

r
∑

j=1

σ
q/(q+1)
j (X), (15)

min
X=

∑
d
j=1

ajb
T
j

d
∑

j=1

1

q
‖aj‖q +

α

2
‖bj‖2 =(1/2 + 1/q)αq/(q+2)

r
∑

j=1

σ
2q/(2+q)
j (X). (16)
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By choosing an appropriate q, these representations give arbitrarily tight approximations to the rank,
since ‖X‖pSp

→ rank(X) as p → 0. For example, use (16) in Theorem 2 when q = 1
4 to see

min∑d
j=1

ajb
T
j =X

d
∑

j=1

1

1/4
‖aj‖1/4 +

α

2
‖bj‖2 = 4.5α1/9

d
∑

i=1

σ
2/9
i (X) = 4.5α1/9‖X‖2/9S2/9

. (17)

Equality holds in equation (15) when A = α1/(q+1)UXS
1/(q+1)
X and B = α−1/(q+1)S

q/(q+1)
X V T

X ;

in equation (16), when A = α1/(q+2)UXS
2/(q+2)
X and B = α−1/(q+2)S

q/(q+2)
X V T

X .

4 Application to low-rank matrix completion

As an application, we model noiseless matrix completion using FGSR as a surrogate for the rank:

minimize
X

FGSR(X), subject to PΩ(X) = PΩ(M). (18)

Take FGSR2/3 as an example. We rewrite (18) as

minimize
X,A,B

‖A‖2,1 +
α

2
‖B‖2F , subject to X = AB, PΩ(X) = PΩ(M). (19)

This problem is separable in the three blocks of unknowns X , A, and B. We propose to use
the Alternating Direction Method of Multipliers (ADMM) [35, 36, 37] with linearization to solve
this problem, as the ADMM subproblem for A has no closed-form solution. Details are in the
supplement.

Now consider an application to noisy matrix completion. Suppose we observe PΩ(Me) with Me =
M +E, where E represents measurement noise. Model the problem using FGSR2/3 as

minimize
A,B

‖A‖2,1 +
α

2
‖B‖2F +

β

2
‖PΩ(Me −AB)‖2F . (20)

We can still solve the problem via linearized ADMM. However, proximal alternating linearized
minimization (PALM) [38, 39] gives a more efficient method. Details are in the supplement.

Motivated by Theorem 2, we can also model noisy matrix completion with a sharper rank surrogate:

minimize
A,B

1

2
‖PΩ(Me −AB)‖2F + γ

(1

q
‖A‖q2,q +

α

2
‖BT ‖2F

)

, (21)

where q ∈ {1, 12 , 14 , · · · } and ‖A‖2,q :=
(

∑d
j=1 ‖aj‖q

)1/q

. When q < 1, we suggest solving

the problem (21) using PALM coupled with iteratively reweighted minimization [24]. According to
the number of degrees of freedom of low-rank matrix, we suggest d = |Ω|/(m + n) in practical
applications.

5 Generalization error bound for LRMC

Above, we proposed a method to solve LRMC problems using a FGSR as a rank surrogate. Here,
we develop an upper bound on the error of the resulting estimator using a new generalization bound
for LRMC with a Schatten-p norm constraint. Similar bounds are available for LRMC using the
nuclear norm [30] and max norm [5].

Consider the following observation model. A matrix M is corrupted with iid N (0, ǫ2) noise E to
form Me = M +E. Suppose each entry of Me is observed independently with probability ρ and
the number of observed entries is |Ω|, where E|Ω| = ρmn.

Choose q ∈ {1, 12 , 1
4 , · · · } and p = 2q

2+q . For any γ > 0, consider a solution (A,B) to (21). Let

‖AB‖pSp
= Rp. Then use Theorem 2 to see that the following problem has the same solution,

minimize
‖X‖p

Sp
≤Rp,rank(X)≤d

‖PΩ(Me −X)‖2F . (22)

Therefore, we may solve (21) using the methods described above to find a solution to (22) efficiently.

In this section, we provide generalization error bounds for the solution M̂ of (22).
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5.1 Bound with optimal solution

Without loss of generality, we may assume ‖M‖∞ ≤ ς/
√
mn for some constant ς . Hence it is

reasonable to assume that ǫ = ǫ0/
√
mn for some constant ǫ0. The following theorem provides a

generalization error bound for the solution of (22).

Theorem 3. Suppose ‖M‖pSp
≤ Rp, M̂ is the optimal solution of (22), and |Ω| ≥ 32

3 n log2 n.

Denote ζ := max{‖M‖∞, ‖M̂‖∞}. Then there exist numerical constants c1 and c2 such that the
following inequality holds with probability at least 1− 5n−2

‖M − M̂‖2F ≤ max







c1ζ
2n logn

|Ω| , (5.5 +
√
10)Rp

(

(4
√
3ǫ0 + c2ζ)

2n logn

|Ω|

)1−p/2






. (23)

When |Ω| is sufficiently large, we see that the second term in the brace of (23) is the dominant term,
which decreases as p decreases. A more complicated but more informative bound can be found
in the supplement (inequality (24)). In sum, Theorem 3 shows it is possible to reduce the matrix
completion error by using a smaller p in (22) or a smaller q in (21).

5.2 Bound with arbitrary A and B

Since (21) and (22) are nonconvex problems, it is difficult to guarantee that an optimization method
has found a globally optimal solution. The following theorem provides a generalization bound for

any feasible point (Â, B̂) of (21):

Theorem 4. Suppose Me = M + E. For any Â and B̂), let M̂ = ÂB̂ and d be the number of

nonzero columns of Â. Define ζ := max{‖M‖∞, ‖M̂‖∞}. Then there exists a numerical constant
C0, such that with probability at least 1− 2 exp(−n), the following equality holds:

‖M − M̂‖F√
mn

≤ ‖PΩ(Me − M̂ )‖F
√

|Ω|
+

‖E‖F√
mn

+ C0ζ
(nd logn

|Ω|
)1/4

.

Theorem 4 indicates that if the training error ‖PΩ(Me − ÂB̂)‖F and the number d of nonzero

columns of Â are small, the matrix completion error is small. In particular, if E = 0 and

PΩ(Me − ÂB̂) = 0, the matrix completion error is upper-bounded by C0ζ
(

nd logn
|Ω|

)1/4
. We

hope that a smaller q in (21) can lead to smaller training error and d such that the upper bound of
matrix completion error is smaller. Indeed, in our experiments, we find that smaller q often leads
to smaller matrix completion error, but the improvement saturates quickly as q decreases. We find
q = 1 or 1

2 (corresponding to a Schatten-p norm with p = 2
3 or 2

5 ) are enough to provide high matrix
completion accuracy and outperform max norm and nuclear norm.

6 Application to robust PCA

Suppose a fraction of entries in a matrix are corrupted in random locations. Formally, we observe

Me = M +E, (24)

where M is a low-rank matrix and E is the sparse corruption matrix whose nonzero entries may be
arbitrary. The robust principal component analysis (RPCA) asks to recover M from Me; a by-now
classic approach uses nuclear norm minimization [13]. We propose to use FGSR instead, and solve

minimize
A,B,E

1

q
‖A‖q2,q +

α

2
‖B‖2F + λ‖E‖1, subject to Me = AB +E, (25)

where q ∈ {1, 12 , 1
4 , · · · }. An optimization algorithm is detailed in the supplement.

7 Numerical results

7.1 Matrix completion

Baseline methods We compare the FGSR regularizers with the nuclear norm, truncated nuclear
norm [19], weighted nuclear norm [20], F-nuclear norm, max norm [31], Riemannian pursuit [29],
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Schatten-p norm, Bi-nuclear norm [33], and F2+nuclear norm [34]. We choose the parameters of
all methods to ensure they perform as well as possible. Details about the optimizations, parameters,
evaluation metrics are in the supplement. All experiments present the average of ten trials.

Noiseless synthetic data We generate random matrices of size 500×500 and rank 50. More details
about the experiment are in the supplement. In Figure 1(a), the factored methods all use factors of
size d = 1.5r. We see the Schatten-p norm (p = 2

3 , 12 , 14 ), Bi-nuclear norm, F2+nuclear norm,
FGSR2/3, and FGSR1/2 have similar performances and outperform other methods when the missing
rate (proportion of unobserved entries) is high. In particular, the F-nuclear norm outperforms the
nuclear norm because the bound d on the rank is binding. In Figure 1(b) and (c), in which the
missing rates are high, the max norm and F-nuclear norm are sensitive to the initial rank d, while the
F2+nuclear norm, Bi-nuclear norm, FGSR2/3, and FGSR1/2 always have nearly zero recovery error.
Interestingly, the max norm and F-nuclear norm are robust to the initial rank when the missing rate
is much lower than 0.6 in this experiment. In Figure 1(d), we compare the computational time in the
case of missing rate= 0.7, in which, for fair comparison, the optimization algorithms of all methods
were stopped when the relative change of the recovered matrix was less than 10−5 or the number of
iterations reached 1000. The computational cost of nuclear norm, truncated nuclear norm, weighted
nuclear norm, and Schatten- 12 norm are especially large, as they require computing the SVD in every

iteration. The computational costs of max norm, F-nuclear norm, F2+nuclear norm, and Bi-nuclear
norm increase quickly as the initial rank d increases. In contrast, our FGSR2/3 and FGSR1/2 are
very efficient even when the initial rank is large, because they are SVD-free and able to reduce the
size of the factors in the progress of optimization. While Riemannian pursuit is a bit faster than
FGSR, FGSR has lower error. Note that the Riemannian pursuit code mixes C and MATLAB, while
all other methods are written in pure MATLAB, explaining (part of) its more nimble performance.
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Figure 1: Matrix completion on noiseless synthetic data (r = 50): (a) the effect of missing rate on
recovery error; (b)(c) the effect of rank initialization on recovery error (missing rate = 0.6 or 0.7);
(d) the effect of rank initialization on computational cost (missing rate = 0.7).

Noisy synthetic data We simulate a noisy matrix completion problem by adding Gaussian noise
to low-rank random matrices. We omit F2+nuclear norm and Bi-nuclear norm from these results
because they are less efficient that FGSR2/3 and FGSR1/2 but perform similarly on recovery error.
The recovery errors for different missing rate are reported in Figure 2 (a) and (b) for SNR = 10 and
SNR = 5 (SNR:= ‖M‖F/‖E‖F ) respectively. The max norm outperforms the nuclear norm when
the missing rate is low. The recovery errors of Schatten- 12 norm, FGSR2/3, and FGSR1/2 are much
lower than those of others. Figure 2(c) demonstrates that our FGSR2/3 and FGSR1/2 are robust to
the initial rank, while max norm and F-nuclear norm degrade as the initial rank increases. In Figure
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2(d), we see decreasing p from 1 to 2/9 reduces the recovery error significantly, but the recovery
error stabilizes for smaller p. This result is consistent with Theorem 3.
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Figure 2: Matrix completion on noisy synthetic data: (a)(b) recovery error when SNR = 10 or 5; (c)
the effect of rank initialization on recovery error (SNR = 10, missing rate = 0.5); (d) the effect of
p in Schatten-p norm (using FGSR when p < 1).
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Figure 3: NMAE and RMSE on Movielens-1M data (Υ: known entries; Ω: sampled entries from
Υ)

Real data We consider the MovieLens-1M dataset [40], which consists of 1 million ratings (1 to
5) for 3900 movies by 6040 users. The movies rated by less than 5 users are deleted in this study
because the corresponding ratings may never be recovered when the matrix rank is higher than 5. We
randomly sample 70% or 50% of the known ratings of each user and perform matrix completion. The
normalized mean absolute error (NMAE) [3, 8] and normalized root-mean-squared-error (RMSE)
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[8] are reported in Figure 3, in which each value is the average of ten repeated trials and the standard
deviation is less than 0.0003. Although Riemannian pursuit can adaptively determine the rank, its
performance is not satisfactory. As the initial rank increases, the NMAE and RMSE of max norm
and F-nuclear norm increase. In contrast, FGSR2/3 and FGSR1/2 have consistent low NMAE and
RMSE. Moreover, FGSR1/2 outperforms FGSR2/3.

7.2 Robust PCA

We simulate a corrupted matrix as Me = M +E, where M is a random matrix of size 500× 500
with rank 50 and E is a sparse matrix whose nonzero entries are N (0, ǫ2). Define the signal-noise-
ratio SNRc := σ/ǫ, where σ denotes the standard deviation of the entries of M . Figure 4(a) and (b)
show the recovery errors for different noise densities (proportion of nonzero entries of E). When the
noise density is high, FGSR2/3 and FGSR1/2 outperform nuclear norm and F-nuclear norm. Figure
4(c) and (d) shows again that unlide the F-nuclear norm, FGSR2/3 and FGSR1/2 are not sensitive
to the initial rank, and that FGSR1/2 outperforms FGSR2/3 slightly when the noise density is high.
More results, including for image denoising, appear in the supplement.
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Figure 4: RPCA on synthetic data: (a)(b) recovery error when SNRc = 1 or 0.2; (c)(d) the effect of
rank initialization on recovery error (SNRc = 1, noise density = 0.3 or 0.5).

8 Conclusion

This paper proposed a class of nonconvex surrogates for matrix rank that we call Factor Group-
Sparse Regularizers (FGSRs). These FGSRs give a factored formulation for certain Schatten-p
norms with arbitrarily small p. These FGSRs are tighter surrogates for the rank than the nuclear
norm, can be optimized without the SVD, and perform well in denoising and completion tasks re-
gardless of the initial choice of rank. In addition, we provide generalization error bounds for LRMC
using the FGSR (or, more generally, any Schatten-p norm) as a regularizer. Our experimental results
demonstrate the proposed methods2 achieve state-of-the-art performances in LRMC and RPCA.

These experiments provide compelling evidence that PALM and ADMM may often (perhaps always)
converge to the global optimum of these problems. A full convergence theory is an interesting prob-
lem for future work. A proof of global convergence would reveal the required sample complexity
for LRMC and RPCA with FGSR as a computationally tractable rank proxy.

2The MATLAB codes of the proposed methods are available at https://github.com/udellgroup/Codes-of-
FGSR-for-effecient-low-rank-matrix-recovery
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